Python pandas常用函数详解


Posted in Python onFebruary 07, 2018

本文研究的主要是pandas常用函数,具体介绍如下。

1 import语句

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import datetime
import re

2 文件读取

df = pd.read_csv(path='file.csv')
参数:header=None 用默认列名,0,1,2,3...
names=['A', 'B', 'C'...] 自定义列名
index_col='A'|['A', 'B'...] 给索引列指定名称,如果是多重索引,可以传list
skiprows=[0,1,2] 需要跳过的行号,从文件头0开始,skip_footer从文件尾开始
nrows=N 需要读取的行数,前N行
chunksize=M 返回迭代类型TextFileReader,每M条迭代一次,数据占用较大内存时使用
sep=':'数据分隔默认是',',根据文件选择合适的分隔符,如果不指定参数,会自动解析
skip_blank_lines=False 默认为True,跳过空行,如果选择不跳过,会填充NaN
converters={'col1', func} 对选定列使用函数func转换,通常表示编号的列会使用(避免转换成int)

dfjs = pd.read_json('file.json') 可以传入json格式字符串
dfex = pd.read_excel('file.xls', sheetname=[0,1..]) 读取多个sheet页,返回多个df的字典

3 数据预处理

df.duplicated() 返回各行是否是上一行的重复行
df.drop_duplicates() 删除重复行,如果需要按照列过滤,参数选填['col1', 'col2',...]
df.fillna(0) 用实数0填充na
df.dropna() axis=0|1 0-index 1-column
how='all'|'any' all-全部是NA才删 any-只要有NA就全删
del df['col1'] 直接删除某一列
df.drop(['col1',...], aixs=1) 删除指定列,也可以删除行
df.column = col_lst 重新制定列名
df.rename(index={'row1':'A'}, 重命名索引名和列名
columns={'col1':'A1'})
df.replace(dict) 替换df值,前后值可以用字典表,{1:‘A', '2':'B'}

def get_digits(str):
m = re.match(r'(\d+(\.\d+)?)', str.decode('utf-8'))
if m is not None:
return float(m.groups()[0])
else:
return 0
df.apply(get_digits) DataFrame.apply,只获取小数部分,可以选定某一列或行
df['col1'].map(func) Series.map,只对列进行函数转换

pd.merge(df1, df2, on='col1',
how='inner',sort=True) 合并两个DataFrame,按照共有的某列做内连接(交集),outter为外连接(并集),结果排序

pd.merge(df1, df2, left_on='col1',
right_on='col2') df1 df2没有公共列名,所以合并需指定两边的参考列

pd.concat([sr1, sr2, sr3,...], axis=0) 多个Series堆叠成多行,结果仍然是一个Series
pd.concat([sr1, sr2, sr3,...], axis=1) 多个Series组合成多行多列,结果是一个DataFrame,索引取并集,没有交集的位置填入缺省值NaN

df1.combine_first(df2) 用df2的数据补充df1的缺省值NaN,如果df2有更多行,也一并补上

df.stack() 列旋转成行,也就是列名变为索引名,原索引变成多层索引,结果是具有多层索引的Series,实际上是把数据集拉长

df.unstack() 将含有多层索引的Series转换为DataFrame,实际上是把数据集压扁,如果某一列具有较少类别,那么把这些类别拉出来作为列
df.pivot() 实际上是unstack的应用,把数据集压扁

pd.get_dummies(df['col1'], prefix='key') 某列含有有限个值,且这些值一般是字符串,例如国家,借鉴位图的思想,可以把k个国家这一列量化成k列,每列用0、1表示

4 数据筛选

df.columns 列名,返回Index类型的列的集合
df.index 索引名,返回Index类型的索引的集合
df.shape 返回tuple,行x列
df.head(n=N) 返回前N条
df.tail(n=M) 返回后M条
df.values 值的二维数组,以numpy.ndarray对象返回
df.index DataFrame的索引,索引不可以直接赋值修改
df.reindex(index=['row1', 'row2',...]
columns=['col1', 'col2',...]) 根据新索引重新排序
df[m:n] 切片,选取m~n-1行
df[df['col1'] > 1] 选取满足条件的行
df.query('col1 > 1') 选取满足条件的行
df.query('col1==[v1,v2,...]')
df.ix[:,'col1'] 选取某一列
df.ix['row1', 'col2'] 选取某一元素
df.ix[:,:'col2'] 切片选取某一列之前(包括col2)的所有列
df.loc[m:n] 获取从m~n行(推荐)
df.iloc[m:n] 获取从m~n-1行
df.loc[m:n-1,'col1':'coln'] 获取从m~n行的col1~coln列

sr=df['col'] 取某一列,返回Series
sr.values Series的值,以numpy.ndarray对象返回
sr.index Series的索引,以index对象返回

5 数据运算与排序

df.T DataFrame转置
df1 + df2 按照索引和列相加,得到并集,NaN填充
df1.add(df2, fill_value=0) 用其他值填充
df1.add/sub//mul/div 四则运算的方法
df - sr DataFrame的所有行同时减去Series
df * N 所有元素乘以N
df.add(sr, axis=0) DataFrame的所有列同时减去Series

sr.order() Series升序排列
df.sort_index(aixs=0, ascending=True) 按行索引升序
df.sort_index(by=['col1', 'col2'...]) 按指定列优先排序
df.rank() 计算排名rank值

6 数学统计

sr.unique Series去重
sr.value_counts() Series统计频率,并从大到小排序,DataFrame没有这个方法
sr.describe() 返回基本统计量和分位数

df.describe() 按各列返回基本统计量和分位数
df.count() 求非NA值得数量
df.max() 求最大值
df.min() 求最大值
df.sum(axis=0) 按各列求和
df.mean() 按各列求平均值
df.median() 求中位数
df.var() 求方差
df.std() 求标准差
df.mad() 根据平均值计算平均绝对利差
df.cumsum() 求累计和
sr1.corr(sr2) 求相关系数
df.cov() 求协方差矩阵
df1.corrwith(df2) 求相关系数

pd.cut(array1, bins) 求一维数据的区间分布
pd.qcut(array1, 4) 按指定分位数进行区间划分,4可以替换成自定义的分位数列表

df['col1'].groupby(df['col2']) 列1按照列2分组,即列2作为key
df.groupby('col1') DataFrame按照列1分组
grouped.aggreagte(func) 分组后根据传入函数来聚合
grouped.aggregate([f1, f2,...]) 根据多个函数聚合,表现成多列,函数名为列名
grouped.aggregate([('f1_name', f1), ('f2_name', f2)]) 重命名聚合后的列名
grouped.aggregate({'col1':f1, 'col2':f2,...}) 对不同的列应用不同函数的聚合,函数也可以是多个

df.pivot_table(['col1', 'col2'],
rows=['row1', 'row2'],
aggfunc=[np.mean, np.sum]
fill_value=0,
margins=True) 根据row1, row2对col1, col2做分组聚合,聚合方法可以指定多种,并用指定值替换缺省值

pd.crosstab(df['col1'], df['col2']) 交叉表,计算分组的频率

总结

以上就是本文关于Python pandas常用函数详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

Python 相关文章推荐
Python描述器descriptor详解
Feb 03 Python
Anaconda2 5.2.0安装使用图文教程
Sep 19 Python
python判断字符串或者集合是否为空的实例
Jan 23 Python
Python中的正则表达式与JSON数据交换格式
Jul 03 Python
Python学习笔记之列表推导式实例分析
Aug 13 Python
Python使用matplotlib绘制Logistic曲线操作示例
Nov 28 Python
python 实现一个反向单位矩阵示例
Nov 29 Python
TensorFlow实现checkpoint文件转换为pb文件
Feb 10 Python
Python绘制动态水球图过程详解
Jun 03 Python
Keras loss函数剖析
Jul 06 Python
Python基于爬虫实现全网搜索并下载音乐
Feb 14 Python
Python中else的三种使用场景
Jun 16 Python
详解python字节码
Feb 07 #Python
Tensorflow之构建自己的图片数据集TFrecords的方法
Feb 07 #Python
python深度优先搜索和广度优先搜索
Feb 07 #Python
Python Flask基础教程示例代码
Feb 07 #Python
Python装饰器用法实例总结
Feb 07 #Python
使用apidocJs快速生成在线文档的实例讲解
Feb 07 #Python
Python自定义线程池实现方法分析
Feb 07 #Python
You might like
PHP获取当前url的具体方法全面解析
2013/11/26 PHP
PHP中使用Imagick读取pdf并生成png缩略图实例
2015/01/21 PHP
摘自织梦CMS中的图片处理类
2015/08/08 PHP
php is_writable判断文件是否可写实例代码
2016/10/13 PHP
Laravel框架控制器的middleware中间件用法分析
2019/09/30 PHP
javascript下过滤数组重复值的代码
2007/09/10 Javascript
javascript 面向对象编程 function也是类
2009/09/17 Javascript
JavaScript中json使用自己总结
2013/08/13 Javascript
JQuery插件开发示例代码
2013/11/06 Javascript
如何实现移动端浏览器不显示 pc 端的广告
2015/10/15 Javascript
JavaScript数组操作函数汇总
2016/08/05 Javascript
JS获取鼠标位置距浏览器窗口距离的方法示例
2017/04/11 Javascript
vue.js如何更改默认端口号8080为指定端口的方法
2017/07/14 Javascript
Vue infinite update loop的问题解决
2019/04/23 Javascript
Vue中的transition封装组件的实现方法
2019/08/13 Javascript
关于layui 实现点击按钮添加一行(方法渲染创建的table)
2019/09/29 Javascript
python实现哈希表
2014/02/07 Python
Python自动化测试工具Splinter简介和使用实例
2014/05/13 Python
Python读写Excel文件方法介绍
2014/11/22 Python
详解python之多进程和进程池(Processing库)
2017/06/09 Python
Python回文字符串及回文数字判定功能示例
2018/03/20 Python
如何利用Python分析出微信朋友男女统计图
2019/01/25 Python
通过pycharm使用git的步骤(图文详解)
2019/06/13 Python
L*SPACE官网:比基尼、泳装和度假服装
2019/03/18 全球购物
自我鉴定写作要点
2014/01/17 职场文书
高中生职业生涯规划书
2014/02/24 职场文书
成品库仓管员岗位职责
2014/04/06 职场文书
产品售后服务承诺书
2014/05/21 职场文书
食品质量与安全专业毕业生求职信
2014/08/11 职场文书
红领巾广播站广播稿
2014/10/19 职场文书
2015年党风廉政承诺书
2015/01/22 职场文书
党员年终个人总结
2015/02/14 职场文书
运动会三级跳加油稿
2015/07/21 职场文书
2019商业计划书格式、范文
2019/04/24 职场文书
2020年基层司法所建设情况调研报告
2019/11/30 职场文书
MySQL约束超详解
2021/09/04 MySQL