Python pandas常用函数详解


Posted in Python onFebruary 07, 2018

本文研究的主要是pandas常用函数,具体介绍如下。

1 import语句

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import datetime
import re

2 文件读取

df = pd.read_csv(path='file.csv')
参数:header=None 用默认列名,0,1,2,3...
names=['A', 'B', 'C'...] 自定义列名
index_col='A'|['A', 'B'...] 给索引列指定名称,如果是多重索引,可以传list
skiprows=[0,1,2] 需要跳过的行号,从文件头0开始,skip_footer从文件尾开始
nrows=N 需要读取的行数,前N行
chunksize=M 返回迭代类型TextFileReader,每M条迭代一次,数据占用较大内存时使用
sep=':'数据分隔默认是',',根据文件选择合适的分隔符,如果不指定参数,会自动解析
skip_blank_lines=False 默认为True,跳过空行,如果选择不跳过,会填充NaN
converters={'col1', func} 对选定列使用函数func转换,通常表示编号的列会使用(避免转换成int)

dfjs = pd.read_json('file.json') 可以传入json格式字符串
dfex = pd.read_excel('file.xls', sheetname=[0,1..]) 读取多个sheet页,返回多个df的字典

3 数据预处理

df.duplicated() 返回各行是否是上一行的重复行
df.drop_duplicates() 删除重复行,如果需要按照列过滤,参数选填['col1', 'col2',...]
df.fillna(0) 用实数0填充na
df.dropna() axis=0|1 0-index 1-column
how='all'|'any' all-全部是NA才删 any-只要有NA就全删
del df['col1'] 直接删除某一列
df.drop(['col1',...], aixs=1) 删除指定列,也可以删除行
df.column = col_lst 重新制定列名
df.rename(index={'row1':'A'}, 重命名索引名和列名
columns={'col1':'A1'})
df.replace(dict) 替换df值,前后值可以用字典表,{1:‘A', '2':'B'}

def get_digits(str):
m = re.match(r'(\d+(\.\d+)?)', str.decode('utf-8'))
if m is not None:
return float(m.groups()[0])
else:
return 0
df.apply(get_digits) DataFrame.apply,只获取小数部分,可以选定某一列或行
df['col1'].map(func) Series.map,只对列进行函数转换

pd.merge(df1, df2, on='col1',
how='inner',sort=True) 合并两个DataFrame,按照共有的某列做内连接(交集),outter为外连接(并集),结果排序

pd.merge(df1, df2, left_on='col1',
right_on='col2') df1 df2没有公共列名,所以合并需指定两边的参考列

pd.concat([sr1, sr2, sr3,...], axis=0) 多个Series堆叠成多行,结果仍然是一个Series
pd.concat([sr1, sr2, sr3,...], axis=1) 多个Series组合成多行多列,结果是一个DataFrame,索引取并集,没有交集的位置填入缺省值NaN

df1.combine_first(df2) 用df2的数据补充df1的缺省值NaN,如果df2有更多行,也一并补上

df.stack() 列旋转成行,也就是列名变为索引名,原索引变成多层索引,结果是具有多层索引的Series,实际上是把数据集拉长

df.unstack() 将含有多层索引的Series转换为DataFrame,实际上是把数据集压扁,如果某一列具有较少类别,那么把这些类别拉出来作为列
df.pivot() 实际上是unstack的应用,把数据集压扁

pd.get_dummies(df['col1'], prefix='key') 某列含有有限个值,且这些值一般是字符串,例如国家,借鉴位图的思想,可以把k个国家这一列量化成k列,每列用0、1表示

4 数据筛选

df.columns 列名,返回Index类型的列的集合
df.index 索引名,返回Index类型的索引的集合
df.shape 返回tuple,行x列
df.head(n=N) 返回前N条
df.tail(n=M) 返回后M条
df.values 值的二维数组,以numpy.ndarray对象返回
df.index DataFrame的索引,索引不可以直接赋值修改
df.reindex(index=['row1', 'row2',...]
columns=['col1', 'col2',...]) 根据新索引重新排序
df[m:n] 切片,选取m~n-1行
df[df['col1'] > 1] 选取满足条件的行
df.query('col1 > 1') 选取满足条件的行
df.query('col1==[v1,v2,...]')
df.ix[:,'col1'] 选取某一列
df.ix['row1', 'col2'] 选取某一元素
df.ix[:,:'col2'] 切片选取某一列之前(包括col2)的所有列
df.loc[m:n] 获取从m~n行(推荐)
df.iloc[m:n] 获取从m~n-1行
df.loc[m:n-1,'col1':'coln'] 获取从m~n行的col1~coln列

sr=df['col'] 取某一列,返回Series
sr.values Series的值,以numpy.ndarray对象返回
sr.index Series的索引,以index对象返回

5 数据运算与排序

df.T DataFrame转置
df1 + df2 按照索引和列相加,得到并集,NaN填充
df1.add(df2, fill_value=0) 用其他值填充
df1.add/sub//mul/div 四则运算的方法
df - sr DataFrame的所有行同时减去Series
df * N 所有元素乘以N
df.add(sr, axis=0) DataFrame的所有列同时减去Series

sr.order() Series升序排列
df.sort_index(aixs=0, ascending=True) 按行索引升序
df.sort_index(by=['col1', 'col2'...]) 按指定列优先排序
df.rank() 计算排名rank值

6 数学统计

sr.unique Series去重
sr.value_counts() Series统计频率,并从大到小排序,DataFrame没有这个方法
sr.describe() 返回基本统计量和分位数

df.describe() 按各列返回基本统计量和分位数
df.count() 求非NA值得数量
df.max() 求最大值
df.min() 求最大值
df.sum(axis=0) 按各列求和
df.mean() 按各列求平均值
df.median() 求中位数
df.var() 求方差
df.std() 求标准差
df.mad() 根据平均值计算平均绝对利差
df.cumsum() 求累计和
sr1.corr(sr2) 求相关系数
df.cov() 求协方差矩阵
df1.corrwith(df2) 求相关系数

pd.cut(array1, bins) 求一维数据的区间分布
pd.qcut(array1, 4) 按指定分位数进行区间划分,4可以替换成自定义的分位数列表

df['col1'].groupby(df['col2']) 列1按照列2分组,即列2作为key
df.groupby('col1') DataFrame按照列1分组
grouped.aggreagte(func) 分组后根据传入函数来聚合
grouped.aggregate([f1, f2,...]) 根据多个函数聚合,表现成多列,函数名为列名
grouped.aggregate([('f1_name', f1), ('f2_name', f2)]) 重命名聚合后的列名
grouped.aggregate({'col1':f1, 'col2':f2,...}) 对不同的列应用不同函数的聚合,函数也可以是多个

df.pivot_table(['col1', 'col2'],
rows=['row1', 'row2'],
aggfunc=[np.mean, np.sum]
fill_value=0,
margins=True) 根据row1, row2对col1, col2做分组聚合,聚合方法可以指定多种,并用指定值替换缺省值

pd.crosstab(df['col1'], df['col2']) 交叉表,计算分组的频率

总结

以上就是本文关于Python pandas常用函数详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

Python 相关文章推荐
Python中的引用和拷贝浅析
Nov 22 Python
使用tensorflow实现AlexNet
Nov 20 Python
Python星号*与**用法分析
Feb 02 Python
python按综合、销量排序抓取100页的淘宝商品列表信息
Feb 24 Python
Django代码性能优化与Pycharm Profile使用详解
Aug 26 Python
python如何生成各种随机分布图
Aug 27 Python
Python Datetime模块和Calendar模块用法实例分析
Apr 15 Python
python变量命名的7条建议
Jul 04 Python
如何在mac版pycharm选择python版本
Jul 21 Python
Pycharm自动添加文件头注释和函数注释参数的方法
Oct 23 Python
windows系统Tensorflow2.x简单安装记录(图文)
Jan 18 Python
一行代码python实现文件共享服务器
Apr 22 Python
详解python字节码
Feb 07 #Python
Tensorflow之构建自己的图片数据集TFrecords的方法
Feb 07 #Python
python深度优先搜索和广度优先搜索
Feb 07 #Python
Python Flask基础教程示例代码
Feb 07 #Python
Python装饰器用法实例总结
Feb 07 #Python
使用apidocJs快速生成在线文档的实例讲解
Feb 07 #Python
Python自定义线程池实现方法分析
Feb 07 #Python
You might like
CodeIgniter图像处理类的深入解析
2013/06/17 PHP
PHP常见的序列化与反序列化操作实例分析
2019/10/28 PHP
关于Yii2框架跑脚本时内存泄漏问题的分析与解决
2019/12/01 PHP
javascript一些不错的函数脚本代码
2008/09/10 Javascript
Javascript Cookie读写删除操作的函数
2010/03/02 Javascript
javascript数字数组去重复项的实现代码
2010/12/30 Javascript
passwordStrength 基于jquery的密码强度检测代码使用介绍
2011/10/08 Javascript
js对文章内容进行分页示例代码
2014/03/05 Javascript
js写的方法实现上传图片之后查看大图
2014/03/05 Javascript
JavaScript中string转换成number介绍
2014/12/31 Javascript
jQuery进行组件开发完整实例
2015/12/15 Javascript
js格式化时间的方法
2015/12/18 Javascript
基于Node.js的强大爬虫 能直接发布抓取的文章哦
2016/01/10 Javascript
seajs学习之模块的依赖加载及模块API的导出
2016/10/20 Javascript
JS新包管理工具yarn和npm的对比与使用入门
2016/12/09 Javascript
Bootstrap和Java分页实例第二篇
2016/12/23 Javascript
layer插件select选中默认值的方法
2018/08/14 Javascript
使用Angular Cli如何创建Angular私有库详解
2019/01/30 Javascript
优雅的将ElementUI表格变身成树形表格的方法步骤
2019/04/11 Javascript
jQuery pager.js 插件动态分页功能实例分析
2019/08/02 jQuery
JS call()及apply()方法使用实例汇总
2020/07/11 Javascript
python 图片验证码代码
2008/12/07 Python
python MySQLdb使用教程详解
2018/03/20 Python
Python 实现数据结构中的的栈队列
2019/05/16 Python
详解10个可以快速用Python进行数据分析的小技巧
2019/06/24 Python
python如何保证输入键入数字的方法
2019/08/23 Python
python单例模式原理与创建方法实例分析
2019/10/26 Python
python实现打砖块游戏
2020/02/25 Python
python接入支付宝的实例操作
2020/07/20 Python
乐高官方旗舰店:LEGO积木玩具
2019/04/06 全球购物
会计演讲稿范文
2014/05/23 职场文书
工作经常出错的检讨书
2014/09/13 职场文书
故意伤害人身损害赔偿协议书
2014/11/19 职场文书
2016年社会主义核心价值观心得体会
2016/01/21 职场文书
Redis可视化客户端小结
2021/06/10 Redis
Java实现二维数组和稀疏数组之间的转换
2021/06/27 Java/Android