Python pandas常用函数详解


Posted in Python onFebruary 07, 2018

本文研究的主要是pandas常用函数,具体介绍如下。

1 import语句

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import datetime
import re

2 文件读取

df = pd.read_csv(path='file.csv')
参数:header=None 用默认列名,0,1,2,3...
names=['A', 'B', 'C'...] 自定义列名
index_col='A'|['A', 'B'...] 给索引列指定名称,如果是多重索引,可以传list
skiprows=[0,1,2] 需要跳过的行号,从文件头0开始,skip_footer从文件尾开始
nrows=N 需要读取的行数,前N行
chunksize=M 返回迭代类型TextFileReader,每M条迭代一次,数据占用较大内存时使用
sep=':'数据分隔默认是',',根据文件选择合适的分隔符,如果不指定参数,会自动解析
skip_blank_lines=False 默认为True,跳过空行,如果选择不跳过,会填充NaN
converters={'col1', func} 对选定列使用函数func转换,通常表示编号的列会使用(避免转换成int)

dfjs = pd.read_json('file.json') 可以传入json格式字符串
dfex = pd.read_excel('file.xls', sheetname=[0,1..]) 读取多个sheet页,返回多个df的字典

3 数据预处理

df.duplicated() 返回各行是否是上一行的重复行
df.drop_duplicates() 删除重复行,如果需要按照列过滤,参数选填['col1', 'col2',...]
df.fillna(0) 用实数0填充na
df.dropna() axis=0|1 0-index 1-column
how='all'|'any' all-全部是NA才删 any-只要有NA就全删
del df['col1'] 直接删除某一列
df.drop(['col1',...], aixs=1) 删除指定列,也可以删除行
df.column = col_lst 重新制定列名
df.rename(index={'row1':'A'}, 重命名索引名和列名
columns={'col1':'A1'})
df.replace(dict) 替换df值,前后值可以用字典表,{1:‘A', '2':'B'}

def get_digits(str):
m = re.match(r'(\d+(\.\d+)?)', str.decode('utf-8'))
if m is not None:
return float(m.groups()[0])
else:
return 0
df.apply(get_digits) DataFrame.apply,只获取小数部分,可以选定某一列或行
df['col1'].map(func) Series.map,只对列进行函数转换

pd.merge(df1, df2, on='col1',
how='inner',sort=True) 合并两个DataFrame,按照共有的某列做内连接(交集),outter为外连接(并集),结果排序

pd.merge(df1, df2, left_on='col1',
right_on='col2') df1 df2没有公共列名,所以合并需指定两边的参考列

pd.concat([sr1, sr2, sr3,...], axis=0) 多个Series堆叠成多行,结果仍然是一个Series
pd.concat([sr1, sr2, sr3,...], axis=1) 多个Series组合成多行多列,结果是一个DataFrame,索引取并集,没有交集的位置填入缺省值NaN

df1.combine_first(df2) 用df2的数据补充df1的缺省值NaN,如果df2有更多行,也一并补上

df.stack() 列旋转成行,也就是列名变为索引名,原索引变成多层索引,结果是具有多层索引的Series,实际上是把数据集拉长

df.unstack() 将含有多层索引的Series转换为DataFrame,实际上是把数据集压扁,如果某一列具有较少类别,那么把这些类别拉出来作为列
df.pivot() 实际上是unstack的应用,把数据集压扁

pd.get_dummies(df['col1'], prefix='key') 某列含有有限个值,且这些值一般是字符串,例如国家,借鉴位图的思想,可以把k个国家这一列量化成k列,每列用0、1表示

4 数据筛选

df.columns 列名,返回Index类型的列的集合
df.index 索引名,返回Index类型的索引的集合
df.shape 返回tuple,行x列
df.head(n=N) 返回前N条
df.tail(n=M) 返回后M条
df.values 值的二维数组,以numpy.ndarray对象返回
df.index DataFrame的索引,索引不可以直接赋值修改
df.reindex(index=['row1', 'row2',...]
columns=['col1', 'col2',...]) 根据新索引重新排序
df[m:n] 切片,选取m~n-1行
df[df['col1'] > 1] 选取满足条件的行
df.query('col1 > 1') 选取满足条件的行
df.query('col1==[v1,v2,...]')
df.ix[:,'col1'] 选取某一列
df.ix['row1', 'col2'] 选取某一元素
df.ix[:,:'col2'] 切片选取某一列之前(包括col2)的所有列
df.loc[m:n] 获取从m~n行(推荐)
df.iloc[m:n] 获取从m~n-1行
df.loc[m:n-1,'col1':'coln'] 获取从m~n行的col1~coln列

sr=df['col'] 取某一列,返回Series
sr.values Series的值,以numpy.ndarray对象返回
sr.index Series的索引,以index对象返回

5 数据运算与排序

df.T DataFrame转置
df1 + df2 按照索引和列相加,得到并集,NaN填充
df1.add(df2, fill_value=0) 用其他值填充
df1.add/sub//mul/div 四则运算的方法
df - sr DataFrame的所有行同时减去Series
df * N 所有元素乘以N
df.add(sr, axis=0) DataFrame的所有列同时减去Series

sr.order() Series升序排列
df.sort_index(aixs=0, ascending=True) 按行索引升序
df.sort_index(by=['col1', 'col2'...]) 按指定列优先排序
df.rank() 计算排名rank值

6 数学统计

sr.unique Series去重
sr.value_counts() Series统计频率,并从大到小排序,DataFrame没有这个方法
sr.describe() 返回基本统计量和分位数

df.describe() 按各列返回基本统计量和分位数
df.count() 求非NA值得数量
df.max() 求最大值
df.min() 求最大值
df.sum(axis=0) 按各列求和
df.mean() 按各列求平均值
df.median() 求中位数
df.var() 求方差
df.std() 求标准差
df.mad() 根据平均值计算平均绝对利差
df.cumsum() 求累计和
sr1.corr(sr2) 求相关系数
df.cov() 求协方差矩阵
df1.corrwith(df2) 求相关系数

pd.cut(array1, bins) 求一维数据的区间分布
pd.qcut(array1, 4) 按指定分位数进行区间划分,4可以替换成自定义的分位数列表

df['col1'].groupby(df['col2']) 列1按照列2分组,即列2作为key
df.groupby('col1') DataFrame按照列1分组
grouped.aggreagte(func) 分组后根据传入函数来聚合
grouped.aggregate([f1, f2,...]) 根据多个函数聚合,表现成多列,函数名为列名
grouped.aggregate([('f1_name', f1), ('f2_name', f2)]) 重命名聚合后的列名
grouped.aggregate({'col1':f1, 'col2':f2,...}) 对不同的列应用不同函数的聚合,函数也可以是多个

df.pivot_table(['col1', 'col2'],
rows=['row1', 'row2'],
aggfunc=[np.mean, np.sum]
fill_value=0,
margins=True) 根据row1, row2对col1, col2做分组聚合,聚合方法可以指定多种,并用指定值替换缺省值

pd.crosstab(df['col1'], df['col2']) 交叉表,计算分组的频率

总结

以上就是本文关于Python pandas常用函数详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

Python 相关文章推荐
Python实现截屏的函数
Jul 25 Python
深入理解Django的自定义过滤器
Oct 17 Python
mac下pycharm设置python版本的图文教程
Jun 13 Python
python中ASCII码字符与int之间的转换方法
Jul 09 Python
python远程调用rpc模块xmlrpclib的方法
Jan 11 Python
简单了解python元组tuple相关原理
Dec 02 Python
python中的split()函数和os.path.split()函数使用详解
Dec 21 Python
Pytorch之卷积层的使用详解
Dec 31 Python
pytorch中的上采样以及各种反操作,求逆操作详解
Jan 03 Python
python3注册全局热键的实现
Mar 22 Python
使用py-spy解决scrapy卡死的问题方法
Sep 29 Python
Pycharm编辑器功能之代码折叠效果的实现代码
Oct 15 Python
详解python字节码
Feb 07 #Python
Tensorflow之构建自己的图片数据集TFrecords的方法
Feb 07 #Python
python深度优先搜索和广度优先搜索
Feb 07 #Python
Python Flask基础教程示例代码
Feb 07 #Python
Python装饰器用法实例总结
Feb 07 #Python
使用apidocJs快速生成在线文档的实例讲解
Feb 07 #Python
Python自定义线程池实现方法分析
Feb 07 #Python
You might like
造势之举?韩国总统候选人发布《星际争霸》地图
2017/04/22 星际争霸
php Sql Server连接失败问题及解决办法
2009/08/07 PHP
windows的文件系统机制引发的PHP路径爆破问题分析
2014/07/28 PHP
php简单实现快速排序的方法
2015/04/04 PHP
PHP实现根据图片色界在不同位置加水印的方法
2015/08/08 PHP
php 无限分类 树形数据格式化代码
2016/10/11 PHP
jQuery实现的数值范围range2dslider选取插件特效多款代码分享
2015/08/27 Javascript
简单实现jquery焦点图
2016/12/12 Javascript
bootstrap suggest下拉框使用详解
2017/04/10 Javascript
微信小程序 input表单与redio及下拉列表的使用实例
2017/09/20 Javascript
JavaScript实现左侧菜单效果
2017/12/14 Javascript
详解Vue2.0配置mint-ui踩过的那些坑
2018/04/23 Javascript
js中的 || 与 && 运算符详解
2018/05/24 Javascript
js防抖和节流的深入讲解
2018/12/06 Javascript
微信小程序之onLaunch与onload异步问题详解
2019/03/28 Javascript
jQuery 图片查看器插件 Viewer.js用法简单示例
2020/04/04 jQuery
python实现的防DDoS脚本
2011/02/08 Python
用Python实现一个简单的能够发送带附件的邮件程序的教程
2015/04/08 Python
Python 提取dict转换为xml/json/table并输出的实现代码
2016/08/28 Python
利用Python获取操作系统信息实例
2016/09/02 Python
Python发送http请求解析返回json的实例
2018/03/26 Python
Python数据存储之 h5py详解
2019/12/26 Python
pandas dataframe 中的explode函数用法详解
2020/05/18 Python
pytorch查看通道数 维数 尺寸大小方式
2020/05/26 Python
MYSQL相比于其他数据库有哪些特点
2013/07/19 面试题
大学生蛋糕店创业计划书
2014/01/13 职场文书
会计岗位职责范本
2014/03/07 职场文书
电子工程专业毕业生求职信
2014/03/14 职场文书
旅游节目策划方案
2014/05/26 职场文书
离婚协议书应该怎么写
2014/10/12 职场文书
民主生活会发言材料
2014/10/20 职场文书
红色经典观后感
2015/06/18 职场文书
2016年万圣节家长开放日活动总结
2016/04/05 职场文书
Vue过滤器(filter)实现及应用场景详解
2021/06/15 Vue.js
详解Python为什么不用设计模式
2021/06/24 Python
tree shaking对打包体积优化及作用
2022/07/07 Java/Android