关于Tensorflow 模型持久化详解


Posted in Python onFebruary 12, 2020

当我们使用 tensorflow 训练神经网络的时候,模型持久化对于我们的训练有很重要的作用。

如果我们的神经网络比较复杂,训练数据比较多,那么我们的模型训练就会耗时很长,如果在训练过程中出现某些不可预计的错误,导致我们的训练意外终止,那么我们将会前功尽弃。为了避免这个问题,我们就可以通过模型持久化(保存为CKPT格式)来暂存我们训练过程中的临时数据。

如果我们训练的模型需要提供给用户做离线的预测,那么我们只需要前向传播的过程,只需得到预测值就可以了,这个时候我们就可以通过模型持久化(保存为PB格式)只保存前向传播中需要的变量并将变量的值固定下来,这个时候只需用户提供一个输入,我们就可以通过模型得到一个输出给用户。

保存为 CKPT 格式的模型

定义运算过程

声明并得到一个 Saver

通过 Saver.save 保存模型

# coding=UTF-8 支持中文编码格式
import tensorflow as tf
import shutil
import os.path

MODEL_DIR = "model/ckpt"
MODEL_NAME = "model.ckpt"

# if os.path.exists(MODEL_DIR): 删除目录
#   shutil.rmtree(MODEL_DIR)
if not tf.gfile.Exists(MODEL_DIR): #创建目录
  tf.gfile.MakeDirs(MODEL_DIR)

#下面的过程你可以替换成CNN、RNN等你想做的训练过程,这里只是简单的一个计算公式
input_holder = tf.placeholder(tf.float32, shape=[1], name="input_holder") #输入占位符,并指定名字,后续模型读取可能会用的
W1 = tf.Variable(tf.constant(5.0, shape=[1]), name="W1")
B1 = tf.Variable(tf.constant(1.0, shape=[1]), name="B1")
_y = (input_holder * W1) + B1
predictions = tf.greater(_y, 50, name="predictions") #输出节点名字,后续模型读取会用到,比50大返回true,否则返回false

init = tf.global_variables_initializer()
saver = tf.train.Saver() #声明saver用于保存模型

with tf.Session() as sess:
  sess.run(init)
  print "predictions : ", sess.run(predictions, feed_dict={input_holder: [10.0]}) #输入一个数据测试一下
  saver.save(sess, os.path.join(MODEL_DIR, MODEL_NAME)) #模型保存
  print("%d ops in the final graph." % len(tf.get_default_graph().as_graph_def().node)) #得到当前图有几个操作节点

for op in tf.get_default_graph().get_operations(): #打印模型节点信息
  print (op.name, op.values())

运行后生成的文件如下:

关于Tensorflow 模型持久化详解

checkpoint : 记录目录下所有模型文件列表
ckpt.data : 保存模型中每个变量的取值
ckpt.meta : 保存整个计算图的结构

保存为 PB 格式模型

定义运算过程
通过 get_default_graph().as_graph_def() 得到当前图的计算节点信息
通过 graph_util.convert_variables_to_constants 将相关节点的values固定
通过 tf.gfile.GFile 进行模型持久化

# coding=UTF-8
import tensorflow as tf
import shutil
import os.path
from tensorflow.python.framework import graph_util


# MODEL_DIR = "model/pb"
# MODEL_NAME = "addmodel.pb"

# if os.path.exists(MODEL_DIR): 删除目录
#   shutil.rmtree(MODEL_DIR)
#
# if not tf.gfile.Exists(MODEL_DIR): #创建目录
#   tf.gfile.MakeDirs(MODEL_DIR)

output_graph = "model/pb/add_model.pb"

#下面的过程你可以替换成CNN、RNN等你想做的训练过程,这里只是简单的一个计算公式
input_holder = tf.placeholder(tf.float32, shape=[1], name="input_holder")
W1 = tf.Variable(tf.constant(5.0, shape=[1]), name="W1")
B1 = tf.Variable(tf.constant(1.0, shape=[1]), name="B1")
_y = (input_holder * W1) + B1
# predictions = tf.greater(_y, 50, name="predictions") #比50大返回true,否则返回false
predictions = tf.add(_y, 10,name="predictions") #做一个加法运算

init = tf.global_variables_initializer()

with tf.Session() as sess:
  sess.run(init)
  print "predictions : ", sess.run(predictions, feed_dict={input_holder: [10.0]})
  graph_def = tf.get_default_graph().as_graph_def() #得到当前的图的 GraphDef 部分,通过这个部分就可以完成重输入层到输出层的计算过程

  output_graph_def = graph_util.convert_variables_to_constants( # 模型持久化,将变量值固定
    sess,
    graph_def,
    ["predictions"] #需要保存节点的名字
  )
  with tf.gfile.GFile(output_graph, "wb") as f: # 保存模型
    f.write(output_graph_def.SerializeToString()) # 序列化输出
  print("%d ops in the final graph." % len(output_graph_def.node))
  print (predictions)

# for op in tf.get_default_graph().get_operations(): 打印模型节点信息
#   print (op.name)

*GraphDef:这个属性记录了tensorflow计算图上节点的信息。

关于Tensorflow 模型持久化详解

add_model.pb : 里面保存了重输入层到输出层这个计算过程的计算图和相关变量的值,我们得到这个模型后传入一个输入,既可以得到一个预估的输出值

CKPT 转换成 PB格式

通过传入 CKPT 模型的路径得到模型的图和变量数据
通过 import_meta_graph 导入模型中的图
通过 saver.restore 从模型中恢复图中各个变量的数据
通过 graph_util.convert_variables_to_constants 将模型持久化

# coding=UTF-8
import tensorflow as tf
import os.path
import argparse
from tensorflow.python.framework import graph_util

MODEL_DIR = "model/pb"
MODEL_NAME = "frozen_model.pb"

if not tf.gfile.Exists(MODEL_DIR): #创建目录
  tf.gfile.MakeDirs(MODEL_DIR)

def freeze_graph(model_folder):
  checkpoint = tf.train.get_checkpoint_state(model_folder) #检查目录下ckpt文件状态是否可用
  input_checkpoint = checkpoint.model_checkpoint_path #得ckpt文件路径
  output_graph = os.path.join(MODEL_DIR, MODEL_NAME) #PB模型保存路径

  output_node_names = "predictions" #原模型输出操作节点的名字
  saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=True) #得到图、clear_devices :Whether or not to clear the device field for an `Operation` or `Tensor` during import.

  graph = tf.get_default_graph() #获得默认的图
  input_graph_def = graph.as_graph_def() #返回一个序列化的图代表当前的图

  with tf.Session() as sess:
    saver.restore(sess, input_checkpoint) #恢复图并得到数据

    print "predictions : ", sess.run("predictions:0", feed_dict={"input_holder:0": [10.0]}) # 测试读出来的模型是否正确,注意这里传入的是输出 和输入 节点的 tensor的名字,不是操作节点的名字

    output_graph_def = graph_util.convert_variables_to_constants( #模型持久化,将变量值固定
      sess,
      input_graph_def,
      output_node_names.split(",") #如果有多个输出节点,以逗号隔开
    )
    with tf.gfile.GFile(output_graph, "wb") as f: #保存模型
      f.write(output_graph_def.SerializeToString()) #序列化输出
    print("%d ops in the final graph." % len(output_graph_def.node)) #得到当前图有几个操作节点

    for op in graph.get_operations():
      print(op.name, op.values())

if __name__ == '__main__':
  parser = argparse.ArgumentParser()
  parser.add_argument("model_folder", type=str, help="input ckpt model dir") #命令行解析,help是提示符,type是输入的类型,
  # 这里运行程序时需要带上模型ckpt的路径,不然会报 error: too few arguments
  aggs = parser.parse_args()
  freeze_graph(aggs.model_folder)
  # freeze_graph("model/ckpt") #模型目录

以上这篇关于Tensorflow 模型持久化详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python启动办公软件进程(word、excel、ppt、以及wps的et、wps、wpp)
Apr 09 Python
python登录豆瓣并发帖的方法
Jul 08 Python
Python中super()函数简介及用法分享
Jul 11 Python
django模型层(model)进行建表、查询与删除的基础教程
Nov 21 Python
怎么使用pipenv管理你的python项目
Mar 12 Python
python机器学习之贝叶斯分类
Mar 26 Python
python pandas 如何替换某列的一个值
Jun 09 Python
Python基于最小二乘法实现曲线拟合示例
Jun 14 Python
python 基于卡方值分箱算法的实现示例
Jul 17 Python
anaconda3安装及jupyter环境配置全教程
Aug 24 Python
TensorFlow2.0使用keras训练模型的实现
Feb 20 Python
Python爬虫之爬取最新更新的小说网站
May 06 Python
Python qrcode 生成一个二维码的实例详解
Feb 12 #Python
python标准库sys和OS的函数使用方法与实例详解
Feb 12 #Python
python标准库os库的函数介绍
Feb 12 #Python
Tensorflow 1.0之后模型文件、权重数值的读取方式
Feb 12 #Python
Python django框架开发发布会签到系统(web开发)
Feb 12 #Python
Python计算公交发车时间的完整代码
Feb 12 #Python
详解Django3中直接添加Websockets方式
Feb 12 #Python
You might like
PHP中路径问题的解决方案
2006/10/09 PHP
通过curl模拟post和get方式提交的表单类
2014/04/23 PHP
关于php中一些字符串总结
2016/05/05 PHP
php版微信返回用户text输入的方法
2016/11/14 PHP
Laravel 集成 Geetest验证码的方法
2018/05/14 PHP
javascript 学习笔记(一)DOM基本操作
2011/04/08 Javascript
JS分割字符串并放入数组的函数
2011/07/04 Javascript
在新窗口打开超链接的方法小结
2013/04/14 Javascript
jquery打开直接跳到网页最下面、最低端实现代码
2013/04/22 Javascript
JavaScript四种调用模式和this示例介绍
2014/01/02 Javascript
Jquery之Bind方法参数传递与接收的三种方法
2014/06/24 Javascript
详解webpack+es6+angular1.x项目构建
2017/05/02 Javascript
JS自动生成动态HTML验证码页面
2017/06/14 Javascript
10分钟上手vue-cli 3.0 入门介绍
2018/04/04 Javascript
JS构造一个html文本内容成文件流形式发送到后台
2018/07/31 Javascript
详解vue中async-await的使用误区
2018/12/05 Javascript
详解axios中封装使用、拦截特定请求、判断所有请求加载完毕)
2019/04/09 Javascript
小程序rich-text组件如何改变内部img图片样式的方法
2019/05/22 Javascript
详解Vue中的watch和computed
2020/11/09 Javascript
Python中的map、reduce和filter浅析
2014/04/26 Python
Python中的包和模块实例
2014/11/22 Python
在Mac OS上部署Nginx和FastCGI以及Flask框架的教程
2015/05/02 Python
Django Admin 实现外键过滤的方法
2017/09/29 Python
Python使用sqlalchemy模块连接数据库操作示例
2019/03/13 Python
python enumerate内置函数用法总结
2020/01/07 Python
Python Scrapy框架:通用爬虫之CrawlSpider用法简单示例
2020/04/11 Python
Python colormap库的安装和使用详情
2020/10/06 Python
澳大利亚玩具剧场:Toy Playhouse
2019/03/03 全球购物
彪马土耳其官网:PUMA土耳其
2019/07/14 全球购物
意大利网上书店:LaFeltrinelli
2020/06/12 全球购物
材料员岗位职责
2014/03/13 职场文书
学习之星事迹材料
2014/05/17 职场文书
2014迎国庆演讲稿
2014/09/19 职场文书
2014年党员自我评议总结
2014/09/23 职场文书
家庭困难证明
2014/10/12 职场文书
军训结束新闻稿
2015/07/17 职场文书