关于Tensorflow 模型持久化详解


Posted in Python onFebruary 12, 2020

当我们使用 tensorflow 训练神经网络的时候,模型持久化对于我们的训练有很重要的作用。

如果我们的神经网络比较复杂,训练数据比较多,那么我们的模型训练就会耗时很长,如果在训练过程中出现某些不可预计的错误,导致我们的训练意外终止,那么我们将会前功尽弃。为了避免这个问题,我们就可以通过模型持久化(保存为CKPT格式)来暂存我们训练过程中的临时数据。

如果我们训练的模型需要提供给用户做离线的预测,那么我们只需要前向传播的过程,只需得到预测值就可以了,这个时候我们就可以通过模型持久化(保存为PB格式)只保存前向传播中需要的变量并将变量的值固定下来,这个时候只需用户提供一个输入,我们就可以通过模型得到一个输出给用户。

保存为 CKPT 格式的模型

定义运算过程

声明并得到一个 Saver

通过 Saver.save 保存模型

# coding=UTF-8 支持中文编码格式
import tensorflow as tf
import shutil
import os.path

MODEL_DIR = "model/ckpt"
MODEL_NAME = "model.ckpt"

# if os.path.exists(MODEL_DIR): 删除目录
#   shutil.rmtree(MODEL_DIR)
if not tf.gfile.Exists(MODEL_DIR): #创建目录
  tf.gfile.MakeDirs(MODEL_DIR)

#下面的过程你可以替换成CNN、RNN等你想做的训练过程,这里只是简单的一个计算公式
input_holder = tf.placeholder(tf.float32, shape=[1], name="input_holder") #输入占位符,并指定名字,后续模型读取可能会用的
W1 = tf.Variable(tf.constant(5.0, shape=[1]), name="W1")
B1 = tf.Variable(tf.constant(1.0, shape=[1]), name="B1")
_y = (input_holder * W1) + B1
predictions = tf.greater(_y, 50, name="predictions") #输出节点名字,后续模型读取会用到,比50大返回true,否则返回false

init = tf.global_variables_initializer()
saver = tf.train.Saver() #声明saver用于保存模型

with tf.Session() as sess:
  sess.run(init)
  print "predictions : ", sess.run(predictions, feed_dict={input_holder: [10.0]}) #输入一个数据测试一下
  saver.save(sess, os.path.join(MODEL_DIR, MODEL_NAME)) #模型保存
  print("%d ops in the final graph." % len(tf.get_default_graph().as_graph_def().node)) #得到当前图有几个操作节点

for op in tf.get_default_graph().get_operations(): #打印模型节点信息
  print (op.name, op.values())

运行后生成的文件如下:

关于Tensorflow 模型持久化详解

checkpoint : 记录目录下所有模型文件列表
ckpt.data : 保存模型中每个变量的取值
ckpt.meta : 保存整个计算图的结构

保存为 PB 格式模型

定义运算过程
通过 get_default_graph().as_graph_def() 得到当前图的计算节点信息
通过 graph_util.convert_variables_to_constants 将相关节点的values固定
通过 tf.gfile.GFile 进行模型持久化

# coding=UTF-8
import tensorflow as tf
import shutil
import os.path
from tensorflow.python.framework import graph_util


# MODEL_DIR = "model/pb"
# MODEL_NAME = "addmodel.pb"

# if os.path.exists(MODEL_DIR): 删除目录
#   shutil.rmtree(MODEL_DIR)
#
# if not tf.gfile.Exists(MODEL_DIR): #创建目录
#   tf.gfile.MakeDirs(MODEL_DIR)

output_graph = "model/pb/add_model.pb"

#下面的过程你可以替换成CNN、RNN等你想做的训练过程,这里只是简单的一个计算公式
input_holder = tf.placeholder(tf.float32, shape=[1], name="input_holder")
W1 = tf.Variable(tf.constant(5.0, shape=[1]), name="W1")
B1 = tf.Variable(tf.constant(1.0, shape=[1]), name="B1")
_y = (input_holder * W1) + B1
# predictions = tf.greater(_y, 50, name="predictions") #比50大返回true,否则返回false
predictions = tf.add(_y, 10,name="predictions") #做一个加法运算

init = tf.global_variables_initializer()

with tf.Session() as sess:
  sess.run(init)
  print "predictions : ", sess.run(predictions, feed_dict={input_holder: [10.0]})
  graph_def = tf.get_default_graph().as_graph_def() #得到当前的图的 GraphDef 部分,通过这个部分就可以完成重输入层到输出层的计算过程

  output_graph_def = graph_util.convert_variables_to_constants( # 模型持久化,将变量值固定
    sess,
    graph_def,
    ["predictions"] #需要保存节点的名字
  )
  with tf.gfile.GFile(output_graph, "wb") as f: # 保存模型
    f.write(output_graph_def.SerializeToString()) # 序列化输出
  print("%d ops in the final graph." % len(output_graph_def.node))
  print (predictions)

# for op in tf.get_default_graph().get_operations(): 打印模型节点信息
#   print (op.name)

*GraphDef:这个属性记录了tensorflow计算图上节点的信息。

关于Tensorflow 模型持久化详解

add_model.pb : 里面保存了重输入层到输出层这个计算过程的计算图和相关变量的值,我们得到这个模型后传入一个输入,既可以得到一个预估的输出值

CKPT 转换成 PB格式

通过传入 CKPT 模型的路径得到模型的图和变量数据
通过 import_meta_graph 导入模型中的图
通过 saver.restore 从模型中恢复图中各个变量的数据
通过 graph_util.convert_variables_to_constants 将模型持久化

# coding=UTF-8
import tensorflow as tf
import os.path
import argparse
from tensorflow.python.framework import graph_util

MODEL_DIR = "model/pb"
MODEL_NAME = "frozen_model.pb"

if not tf.gfile.Exists(MODEL_DIR): #创建目录
  tf.gfile.MakeDirs(MODEL_DIR)

def freeze_graph(model_folder):
  checkpoint = tf.train.get_checkpoint_state(model_folder) #检查目录下ckpt文件状态是否可用
  input_checkpoint = checkpoint.model_checkpoint_path #得ckpt文件路径
  output_graph = os.path.join(MODEL_DIR, MODEL_NAME) #PB模型保存路径

  output_node_names = "predictions" #原模型输出操作节点的名字
  saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=True) #得到图、clear_devices :Whether or not to clear the device field for an `Operation` or `Tensor` during import.

  graph = tf.get_default_graph() #获得默认的图
  input_graph_def = graph.as_graph_def() #返回一个序列化的图代表当前的图

  with tf.Session() as sess:
    saver.restore(sess, input_checkpoint) #恢复图并得到数据

    print "predictions : ", sess.run("predictions:0", feed_dict={"input_holder:0": [10.0]}) # 测试读出来的模型是否正确,注意这里传入的是输出 和输入 节点的 tensor的名字,不是操作节点的名字

    output_graph_def = graph_util.convert_variables_to_constants( #模型持久化,将变量值固定
      sess,
      input_graph_def,
      output_node_names.split(",") #如果有多个输出节点,以逗号隔开
    )
    with tf.gfile.GFile(output_graph, "wb") as f: #保存模型
      f.write(output_graph_def.SerializeToString()) #序列化输出
    print("%d ops in the final graph." % len(output_graph_def.node)) #得到当前图有几个操作节点

    for op in graph.get_operations():
      print(op.name, op.values())

if __name__ == '__main__':
  parser = argparse.ArgumentParser()
  parser.add_argument("model_folder", type=str, help="input ckpt model dir") #命令行解析,help是提示符,type是输入的类型,
  # 这里运行程序时需要带上模型ckpt的路径,不然会报 error: too few arguments
  aggs = parser.parse_args()
  freeze_graph(aggs.model_folder)
  # freeze_graph("model/ckpt") #模型目录

以上这篇关于Tensorflow 模型持久化详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
深入理解Python中的元类(metaclass)
Feb 14 Python
Python的迭代器和生成器
Jul 29 Python
学习python之编写简单简单连接数据库并执行查询操作
Feb 27 Python
Python实现全角半角字符互转的方法
Nov 28 Python
python3 判断列表是一个空列表的方法
May 04 Python
python中scikit-learn机器代码实例
Aug 05 Python
Python二叉树的镜像转换实现方法示例
Mar 06 Python
python解析yaml文件过程详解
Aug 30 Python
Python打包工具PyInstaller的安装与pycharm配置支持PyInstaller详细方法
Feb 27 Python
Jupyter Notebook打开任意文件夹操作
Apr 14 Python
python关于集合的知识案例详解
May 30 Python
Python实现简单得递归下降Parser
May 02 Python
Python qrcode 生成一个二维码的实例详解
Feb 12 #Python
python标准库sys和OS的函数使用方法与实例详解
Feb 12 #Python
python标准库os库的函数介绍
Feb 12 #Python
Tensorflow 1.0之后模型文件、权重数值的读取方式
Feb 12 #Python
Python django框架开发发布会签到系统(web开发)
Feb 12 #Python
Python计算公交发车时间的完整代码
Feb 12 #Python
详解Django3中直接添加Websockets方式
Feb 12 #Python
You might like
用在PHP里的JS打印函数
2006/10/09 PHP
PHP读书笔记_运算符详解
2016/07/01 PHP
超级强大的表单验证
2006/06/26 Javascript
jquery ajax abort()的使用方法
2010/10/28 Javascript
html中table数据排序的js代码
2011/08/09 Javascript
js弹出层之1:JQuery.Boxy (二)
2011/10/06 Javascript
js 如何实现对数据库的增删改查
2012/11/23 Javascript
javascript中节点的最近的相关节点访问方法
2013/03/20 Javascript
jquery实现拖拽调整Div大小
2015/01/30 Javascript
JavaScript中var关键字的使用详解
2015/08/14 Javascript
jQuery实现选中弹出窗口选择框内容后赋值给文本框的方法
2015/11/23 Javascript
zTree插件下拉树使用入门教程
2016/04/11 Javascript
React Form组件的实现封装杂谈
2018/05/07 Javascript
详解js获取video任意时间的画面截图
2019/04/17 Javascript
在vue中实现嵌套页面(iframe)
2020/07/30 Javascript
[01:03:41]完美世界DOTA2联赛PWL S3 DLG vs Phoenix 第一场 12.17
2020/12/19 DOTA
Python使用正则匹配实现抓图代码分享
2015/04/02 Python
Python实现根据IP地址和子网掩码算出网段的方法
2015/07/30 Python
Java Web开发过程中登陆模块的验证码的实现方式总结
2016/05/25 Python
python3 发送任意文件邮件的实例
2018/01/23 Python
Python使用numpy模块创建数组操作示例
2018/06/20 Python
python微信公众号之关注公众号自动回复
2018/10/25 Python
python实现一个简单的ping工具方法
2019/01/31 Python
Python 中的pygame安装与配置教程详解
2020/02/10 Python
tensorflow2.0的函数签名与图结构(推荐)
2020/04/28 Python
Python 利用OpenCV给照片换底色的示例代码
2020/08/03 Python
浅谈CSS3特性查询(Feature Query: @supports)功能简介
2017/07/31 HTML / CSS
CSS3中引入多种自定义字体font-face
2020/06/12 HTML / CSS
HTML5逐步分析实现拖放功能的方法
2020/09/30 HTML / CSS
德国孕妇装和婴童服装网上商店:bellybutton
2018/04/12 全球购物
Book Depository亚太地区:一家领先的国际图书零售商
2019/05/05 全球购物
教师党员自我评价范文
2015/03/04 职场文书
消防演习通知
2015/04/25 职场文书
闪闪红星观后感
2015/06/08 职场文书
陪护人员误工证明
2015/06/24 职场文书
新的CSS 伪类函数 :is() 和 :where()示例详解
2022/08/05 HTML / CSS