关于Tensorflow 模型持久化详解


Posted in Python onFebruary 12, 2020

当我们使用 tensorflow 训练神经网络的时候,模型持久化对于我们的训练有很重要的作用。

如果我们的神经网络比较复杂,训练数据比较多,那么我们的模型训练就会耗时很长,如果在训练过程中出现某些不可预计的错误,导致我们的训练意外终止,那么我们将会前功尽弃。为了避免这个问题,我们就可以通过模型持久化(保存为CKPT格式)来暂存我们训练过程中的临时数据。

如果我们训练的模型需要提供给用户做离线的预测,那么我们只需要前向传播的过程,只需得到预测值就可以了,这个时候我们就可以通过模型持久化(保存为PB格式)只保存前向传播中需要的变量并将变量的值固定下来,这个时候只需用户提供一个输入,我们就可以通过模型得到一个输出给用户。

保存为 CKPT 格式的模型

定义运算过程

声明并得到一个 Saver

通过 Saver.save 保存模型

# coding=UTF-8 支持中文编码格式
import tensorflow as tf
import shutil
import os.path

MODEL_DIR = "model/ckpt"
MODEL_NAME = "model.ckpt"

# if os.path.exists(MODEL_DIR): 删除目录
#   shutil.rmtree(MODEL_DIR)
if not tf.gfile.Exists(MODEL_DIR): #创建目录
  tf.gfile.MakeDirs(MODEL_DIR)

#下面的过程你可以替换成CNN、RNN等你想做的训练过程,这里只是简单的一个计算公式
input_holder = tf.placeholder(tf.float32, shape=[1], name="input_holder") #输入占位符,并指定名字,后续模型读取可能会用的
W1 = tf.Variable(tf.constant(5.0, shape=[1]), name="W1")
B1 = tf.Variable(tf.constant(1.0, shape=[1]), name="B1")
_y = (input_holder * W1) + B1
predictions = tf.greater(_y, 50, name="predictions") #输出节点名字,后续模型读取会用到,比50大返回true,否则返回false

init = tf.global_variables_initializer()
saver = tf.train.Saver() #声明saver用于保存模型

with tf.Session() as sess:
  sess.run(init)
  print "predictions : ", sess.run(predictions, feed_dict={input_holder: [10.0]}) #输入一个数据测试一下
  saver.save(sess, os.path.join(MODEL_DIR, MODEL_NAME)) #模型保存
  print("%d ops in the final graph." % len(tf.get_default_graph().as_graph_def().node)) #得到当前图有几个操作节点

for op in tf.get_default_graph().get_operations(): #打印模型节点信息
  print (op.name, op.values())

运行后生成的文件如下:

关于Tensorflow 模型持久化详解

checkpoint : 记录目录下所有模型文件列表
ckpt.data : 保存模型中每个变量的取值
ckpt.meta : 保存整个计算图的结构

保存为 PB 格式模型

定义运算过程
通过 get_default_graph().as_graph_def() 得到当前图的计算节点信息
通过 graph_util.convert_variables_to_constants 将相关节点的values固定
通过 tf.gfile.GFile 进行模型持久化

# coding=UTF-8
import tensorflow as tf
import shutil
import os.path
from tensorflow.python.framework import graph_util


# MODEL_DIR = "model/pb"
# MODEL_NAME = "addmodel.pb"

# if os.path.exists(MODEL_DIR): 删除目录
#   shutil.rmtree(MODEL_DIR)
#
# if not tf.gfile.Exists(MODEL_DIR): #创建目录
#   tf.gfile.MakeDirs(MODEL_DIR)

output_graph = "model/pb/add_model.pb"

#下面的过程你可以替换成CNN、RNN等你想做的训练过程,这里只是简单的一个计算公式
input_holder = tf.placeholder(tf.float32, shape=[1], name="input_holder")
W1 = tf.Variable(tf.constant(5.0, shape=[1]), name="W1")
B1 = tf.Variable(tf.constant(1.0, shape=[1]), name="B1")
_y = (input_holder * W1) + B1
# predictions = tf.greater(_y, 50, name="predictions") #比50大返回true,否则返回false
predictions = tf.add(_y, 10,name="predictions") #做一个加法运算

init = tf.global_variables_initializer()

with tf.Session() as sess:
  sess.run(init)
  print "predictions : ", sess.run(predictions, feed_dict={input_holder: [10.0]})
  graph_def = tf.get_default_graph().as_graph_def() #得到当前的图的 GraphDef 部分,通过这个部分就可以完成重输入层到输出层的计算过程

  output_graph_def = graph_util.convert_variables_to_constants( # 模型持久化,将变量值固定
    sess,
    graph_def,
    ["predictions"] #需要保存节点的名字
  )
  with tf.gfile.GFile(output_graph, "wb") as f: # 保存模型
    f.write(output_graph_def.SerializeToString()) # 序列化输出
  print("%d ops in the final graph." % len(output_graph_def.node))
  print (predictions)

# for op in tf.get_default_graph().get_operations(): 打印模型节点信息
#   print (op.name)

*GraphDef:这个属性记录了tensorflow计算图上节点的信息。

关于Tensorflow 模型持久化详解

add_model.pb : 里面保存了重输入层到输出层这个计算过程的计算图和相关变量的值,我们得到这个模型后传入一个输入,既可以得到一个预估的输出值

CKPT 转换成 PB格式

通过传入 CKPT 模型的路径得到模型的图和变量数据
通过 import_meta_graph 导入模型中的图
通过 saver.restore 从模型中恢复图中各个变量的数据
通过 graph_util.convert_variables_to_constants 将模型持久化

# coding=UTF-8
import tensorflow as tf
import os.path
import argparse
from tensorflow.python.framework import graph_util

MODEL_DIR = "model/pb"
MODEL_NAME = "frozen_model.pb"

if not tf.gfile.Exists(MODEL_DIR): #创建目录
  tf.gfile.MakeDirs(MODEL_DIR)

def freeze_graph(model_folder):
  checkpoint = tf.train.get_checkpoint_state(model_folder) #检查目录下ckpt文件状态是否可用
  input_checkpoint = checkpoint.model_checkpoint_path #得ckpt文件路径
  output_graph = os.path.join(MODEL_DIR, MODEL_NAME) #PB模型保存路径

  output_node_names = "predictions" #原模型输出操作节点的名字
  saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=True) #得到图、clear_devices :Whether or not to clear the device field for an `Operation` or `Tensor` during import.

  graph = tf.get_default_graph() #获得默认的图
  input_graph_def = graph.as_graph_def() #返回一个序列化的图代表当前的图

  with tf.Session() as sess:
    saver.restore(sess, input_checkpoint) #恢复图并得到数据

    print "predictions : ", sess.run("predictions:0", feed_dict={"input_holder:0": [10.0]}) # 测试读出来的模型是否正确,注意这里传入的是输出 和输入 节点的 tensor的名字,不是操作节点的名字

    output_graph_def = graph_util.convert_variables_to_constants( #模型持久化,将变量值固定
      sess,
      input_graph_def,
      output_node_names.split(",") #如果有多个输出节点,以逗号隔开
    )
    with tf.gfile.GFile(output_graph, "wb") as f: #保存模型
      f.write(output_graph_def.SerializeToString()) #序列化输出
    print("%d ops in the final graph." % len(output_graph_def.node)) #得到当前图有几个操作节点

    for op in graph.get_operations():
      print(op.name, op.values())

if __name__ == '__main__':
  parser = argparse.ArgumentParser()
  parser.add_argument("model_folder", type=str, help="input ckpt model dir") #命令行解析,help是提示符,type是输入的类型,
  # 这里运行程序时需要带上模型ckpt的路径,不然会报 error: too few arguments
  aggs = parser.parse_args()
  freeze_graph(aggs.model_folder)
  # freeze_graph("model/ckpt") #模型目录

以上这篇关于Tensorflow 模型持久化详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python sort、sorted高级排序技巧
Nov 21 Python
详解Python3中的Sequence type的使用
Aug 01 Python
Python的Flask框架标配模板引擎Jinja2的使用教程
Jul 12 Python
pycharm安装和首次使用教程
Aug 27 Python
python中字符串内置函数的用法总结
Sep 13 Python
python for 循环获取index索引的方法
Feb 01 Python
Python3中exp()函数用法分析
Feb 19 Python
深入了解python中元类的相关知识
Aug 29 Python
Python对称的二叉树多种思路实现方法
Feb 28 Python
Python更换pip源方法过程解析
May 19 Python
Windows 平台做 Python 开发的最佳组合(推荐)
Jul 27 Python
Python实现智慧校园自动评教全新版
Jun 18 Python
Python qrcode 生成一个二维码的实例详解
Feb 12 #Python
python标准库sys和OS的函数使用方法与实例详解
Feb 12 #Python
python标准库os库的函数介绍
Feb 12 #Python
Tensorflow 1.0之后模型文件、权重数值的读取方式
Feb 12 #Python
Python django框架开发发布会签到系统(web开发)
Feb 12 #Python
Python计算公交发车时间的完整代码
Feb 12 #Python
详解Django3中直接添加Websockets方式
Feb 12 #Python
You might like
php批量删除数据
2007/01/18 PHP
php中强制下载文件的代码(解决了IE下中文文件名乱码问题)
2011/05/09 PHP
一漂亮的PHP图片验证码实例
2014/03/21 PHP
php动态函数调用方法
2015/05/21 PHP
php递归函数怎么用才有效
2018/02/24 PHP
PHP实现数组转JSon和JSon转数组的方法示例
2018/06/14 PHP
jQuery DOM操作小结与实例
2010/01/07 Javascript
元素的内联事件处理函数的特殊作用域在各浏览器中存在差异
2011/01/12 Javascript
js中的前绑定和后绑定详解
2013/08/01 Javascript
jQuery中click事件的定义和用法
2014/12/20 Javascript
常用DOM整理
2015/06/16 Javascript
JS+DIV+CSS排版布局实现美观的选项卡效果
2015/10/10 Javascript
SublimeText自带格式化代码功能之reindent
2015/12/27 Javascript
JavaScript动态添加css样式和script标签
2016/07/19 Javascript
Node.js的特点详解
2017/02/03 Javascript
jQuery基于ajax实现页面加载后检查用户登录状态的方法
2017/02/10 Javascript
BootStrap中jQuery插件Carousel实现轮播广告效果
2017/03/27 jQuery
详解Vue项目编译后部署在非网站根目录的解决方案
2018/04/26 Javascript
JS+DIV实现拖动效果
2020/02/11 Javascript
Python实现的检测web服务器健康状况的小程序
2014/09/17 Python
Python中自定义函数的教程
2015/04/27 Python
机器学习python实战之手写数字识别
2017/11/01 Python
Centos下实现安装Python3.6和Python2共存
2018/08/15 Python
pymongo中聚合查询的使用方法
2019/03/22 Python
python提取log文件内容并画出图表
2019/07/08 Python
python selenium爬取斗鱼所有直播房间信息过程详解
2019/08/09 Python
Python使用Pandas读写Excel实例解析
2019/11/19 Python
使用pyplot.matshow()函数添加绘图标题
2020/06/16 Python
世界领先的以旅馆为主的在线预订平台:Hostelworld
2016/10/09 全球购物
全球第二大家装零售商:Lowe’s
2018/01/13 全球购物
计算机专业毕业生推荐信
2013/11/25 职场文书
三八妇女节活动总结
2014/05/04 职场文书
个人房屋转让协议书范本
2014/10/26 职场文书
2015年元旦主持词结束语
2014/12/14 职场文书
《成长的天空》读后感3篇
2019/12/06 职场文书
MySQL实现用逗号进行拼接、以逗号进行分割
2022/12/24 MySQL