关于Tensorflow 模型持久化详解


Posted in Python onFebruary 12, 2020

当我们使用 tensorflow 训练神经网络的时候,模型持久化对于我们的训练有很重要的作用。

如果我们的神经网络比较复杂,训练数据比较多,那么我们的模型训练就会耗时很长,如果在训练过程中出现某些不可预计的错误,导致我们的训练意外终止,那么我们将会前功尽弃。为了避免这个问题,我们就可以通过模型持久化(保存为CKPT格式)来暂存我们训练过程中的临时数据。

如果我们训练的模型需要提供给用户做离线的预测,那么我们只需要前向传播的过程,只需得到预测值就可以了,这个时候我们就可以通过模型持久化(保存为PB格式)只保存前向传播中需要的变量并将变量的值固定下来,这个时候只需用户提供一个输入,我们就可以通过模型得到一个输出给用户。

保存为 CKPT 格式的模型

定义运算过程

声明并得到一个 Saver

通过 Saver.save 保存模型

# coding=UTF-8 支持中文编码格式
import tensorflow as tf
import shutil
import os.path

MODEL_DIR = "model/ckpt"
MODEL_NAME = "model.ckpt"

# if os.path.exists(MODEL_DIR): 删除目录
#   shutil.rmtree(MODEL_DIR)
if not tf.gfile.Exists(MODEL_DIR): #创建目录
  tf.gfile.MakeDirs(MODEL_DIR)

#下面的过程你可以替换成CNN、RNN等你想做的训练过程,这里只是简单的一个计算公式
input_holder = tf.placeholder(tf.float32, shape=[1], name="input_holder") #输入占位符,并指定名字,后续模型读取可能会用的
W1 = tf.Variable(tf.constant(5.0, shape=[1]), name="W1")
B1 = tf.Variable(tf.constant(1.0, shape=[1]), name="B1")
_y = (input_holder * W1) + B1
predictions = tf.greater(_y, 50, name="predictions") #输出节点名字,后续模型读取会用到,比50大返回true,否则返回false

init = tf.global_variables_initializer()
saver = tf.train.Saver() #声明saver用于保存模型

with tf.Session() as sess:
  sess.run(init)
  print "predictions : ", sess.run(predictions, feed_dict={input_holder: [10.0]}) #输入一个数据测试一下
  saver.save(sess, os.path.join(MODEL_DIR, MODEL_NAME)) #模型保存
  print("%d ops in the final graph." % len(tf.get_default_graph().as_graph_def().node)) #得到当前图有几个操作节点

for op in tf.get_default_graph().get_operations(): #打印模型节点信息
  print (op.name, op.values())

运行后生成的文件如下:

关于Tensorflow 模型持久化详解

checkpoint : 记录目录下所有模型文件列表
ckpt.data : 保存模型中每个变量的取值
ckpt.meta : 保存整个计算图的结构

保存为 PB 格式模型

定义运算过程
通过 get_default_graph().as_graph_def() 得到当前图的计算节点信息
通过 graph_util.convert_variables_to_constants 将相关节点的values固定
通过 tf.gfile.GFile 进行模型持久化

# coding=UTF-8
import tensorflow as tf
import shutil
import os.path
from tensorflow.python.framework import graph_util


# MODEL_DIR = "model/pb"
# MODEL_NAME = "addmodel.pb"

# if os.path.exists(MODEL_DIR): 删除目录
#   shutil.rmtree(MODEL_DIR)
#
# if not tf.gfile.Exists(MODEL_DIR): #创建目录
#   tf.gfile.MakeDirs(MODEL_DIR)

output_graph = "model/pb/add_model.pb"

#下面的过程你可以替换成CNN、RNN等你想做的训练过程,这里只是简单的一个计算公式
input_holder = tf.placeholder(tf.float32, shape=[1], name="input_holder")
W1 = tf.Variable(tf.constant(5.0, shape=[1]), name="W1")
B1 = tf.Variable(tf.constant(1.0, shape=[1]), name="B1")
_y = (input_holder * W1) + B1
# predictions = tf.greater(_y, 50, name="predictions") #比50大返回true,否则返回false
predictions = tf.add(_y, 10,name="predictions") #做一个加法运算

init = tf.global_variables_initializer()

with tf.Session() as sess:
  sess.run(init)
  print "predictions : ", sess.run(predictions, feed_dict={input_holder: [10.0]})
  graph_def = tf.get_default_graph().as_graph_def() #得到当前的图的 GraphDef 部分,通过这个部分就可以完成重输入层到输出层的计算过程

  output_graph_def = graph_util.convert_variables_to_constants( # 模型持久化,将变量值固定
    sess,
    graph_def,
    ["predictions"] #需要保存节点的名字
  )
  with tf.gfile.GFile(output_graph, "wb") as f: # 保存模型
    f.write(output_graph_def.SerializeToString()) # 序列化输出
  print("%d ops in the final graph." % len(output_graph_def.node))
  print (predictions)

# for op in tf.get_default_graph().get_operations(): 打印模型节点信息
#   print (op.name)

*GraphDef:这个属性记录了tensorflow计算图上节点的信息。

关于Tensorflow 模型持久化详解

add_model.pb : 里面保存了重输入层到输出层这个计算过程的计算图和相关变量的值,我们得到这个模型后传入一个输入,既可以得到一个预估的输出值

CKPT 转换成 PB格式

通过传入 CKPT 模型的路径得到模型的图和变量数据
通过 import_meta_graph 导入模型中的图
通过 saver.restore 从模型中恢复图中各个变量的数据
通过 graph_util.convert_variables_to_constants 将模型持久化

# coding=UTF-8
import tensorflow as tf
import os.path
import argparse
from tensorflow.python.framework import graph_util

MODEL_DIR = "model/pb"
MODEL_NAME = "frozen_model.pb"

if not tf.gfile.Exists(MODEL_DIR): #创建目录
  tf.gfile.MakeDirs(MODEL_DIR)

def freeze_graph(model_folder):
  checkpoint = tf.train.get_checkpoint_state(model_folder) #检查目录下ckpt文件状态是否可用
  input_checkpoint = checkpoint.model_checkpoint_path #得ckpt文件路径
  output_graph = os.path.join(MODEL_DIR, MODEL_NAME) #PB模型保存路径

  output_node_names = "predictions" #原模型输出操作节点的名字
  saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=True) #得到图、clear_devices :Whether or not to clear the device field for an `Operation` or `Tensor` during import.

  graph = tf.get_default_graph() #获得默认的图
  input_graph_def = graph.as_graph_def() #返回一个序列化的图代表当前的图

  with tf.Session() as sess:
    saver.restore(sess, input_checkpoint) #恢复图并得到数据

    print "predictions : ", sess.run("predictions:0", feed_dict={"input_holder:0": [10.0]}) # 测试读出来的模型是否正确,注意这里传入的是输出 和输入 节点的 tensor的名字,不是操作节点的名字

    output_graph_def = graph_util.convert_variables_to_constants( #模型持久化,将变量值固定
      sess,
      input_graph_def,
      output_node_names.split(",") #如果有多个输出节点,以逗号隔开
    )
    with tf.gfile.GFile(output_graph, "wb") as f: #保存模型
      f.write(output_graph_def.SerializeToString()) #序列化输出
    print("%d ops in the final graph." % len(output_graph_def.node)) #得到当前图有几个操作节点

    for op in graph.get_operations():
      print(op.name, op.values())

if __name__ == '__main__':
  parser = argparse.ArgumentParser()
  parser.add_argument("model_folder", type=str, help="input ckpt model dir") #命令行解析,help是提示符,type是输入的类型,
  # 这里运行程序时需要带上模型ckpt的路径,不然会报 error: too few arguments
  aggs = parser.parse_args()
  freeze_graph(aggs.model_folder)
  # freeze_graph("model/ckpt") #模型目录

以上这篇关于Tensorflow 模型持久化详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python使用7z解压软件备份文件脚本分享
Feb 21 Python
教你如何在Django 1.6中正确使用 Signal
Jun 22 Python
Python写的Socks5协议代理服务器
Aug 06 Python
django 使用 request 获取浏览器发送的参数示例代码
Jun 11 Python
django模板加载静态文件的方法步骤
Mar 01 Python
python抖音表白程序源代码
Apr 07 Python
pycharm 批量修改变量名称的方法
Aug 01 Python
python数据归一化及三种方法详解
Aug 06 Python
python如何使用jt400.jar包代码实例
Dec 20 Python
基于Python词云分析政府工作报告关键词
Jun 02 Python
anaconda安装pytorch1.7.1和torchvision0.8.2的方法(亲测可用)
Feb 01 Python
ubuntu安装jupyter并设置远程访问的实现
Mar 31 Python
Python qrcode 生成一个二维码的实例详解
Feb 12 #Python
python标准库sys和OS的函数使用方法与实例详解
Feb 12 #Python
python标准库os库的函数介绍
Feb 12 #Python
Tensorflow 1.0之后模型文件、权重数值的读取方式
Feb 12 #Python
Python django框架开发发布会签到系统(web开发)
Feb 12 #Python
Python计算公交发车时间的完整代码
Feb 12 #Python
详解Django3中直接添加Websockets方式
Feb 12 #Python
You might like
IIS6的PHP最佳配置方法
2007/03/19 PHP
PHP写入WRITE编码为UTF8的文件的实现代码
2008/07/07 PHP
php实现字符串首字母大写和单词首字母大写的方法
2015/03/14 PHP
php解析xml方法实例详解
2015/05/12 PHP
php实现无限级分类(递归方法)
2015/08/06 PHP
原生php实现excel文件读写的方法分析
2018/04/25 PHP
laravel框架中视图的基本使用方法分析
2019/11/23 PHP
phpstudy后门rce批量利用脚本的实现
2019/12/12 PHP
用js实现计算加载页面所用的时间
2010/04/02 Javascript
jquery方法+js一般方法+js面向对象方法实现拖拽效果
2012/08/30 Javascript
jQuery :first选择器使用介绍
2013/08/09 Javascript
js中的hasOwnProperty和isPrototypeOf方法使用实例
2014/06/06 Javascript
js封装可使用的构造函数继承用法分析
2015/01/28 Javascript
原生js实现模拟滚动条
2015/06/15 Javascript
JS利用cookie记忆当前位置的防刷新导航效果
2015/10/15 Javascript
js点击按钮实现带遮罩层的弹出视频效果
2015/12/19 Javascript
JS代码实现百度地图 画圆 删除标注
2016/10/12 Javascript
js控制台输出的方法(详解)
2016/11/26 Javascript
jQuery页面弹出框实现文件上传
2017/02/09 Javascript
JS的函数调用栈stack size的计算方法
2018/06/24 Javascript
Vue中的Props(不可变状态)
2018/09/29 Javascript
微信小程序点击view动态添加样式过程解析
2020/01/21 Javascript
Vue自动构建发布脚本的方法示例
2020/07/24 Javascript
谈谈JavaScript中的垃圾回收机制
2020/09/17 Javascript
微信小程序实现点击导航条切换页面
2020/11/19 Javascript
[31:47]夜魇凡尔赛茶话会 第三期01:选手知多少
2021/03/11 DOTA
Python3使用requests发闪存的方法
2016/05/11 Python
jupyter notebook引用from pyecharts.charts import Bar运行报错
2020/04/23 Python
Django框架的中的setting.py文件说明详解
2018/10/15 Python
python不使用for计算两组、多个矩形两两间的iou方式
2020/01/18 Python
浅谈Python 函数式编程
2020/06/20 Python
PIP和conda 更换国内安装源的方法步骤
2020/09/21 Python
pycharm 使用anaconda为默认环境的操作
2021/02/05 Python
攻略丨滑雪究竟该选哪款对讲机?
2022/02/18 无线电
golang三种设计模式之简单工厂、方法工厂和抽象工厂
2022/04/10 Golang
详解Vue3使用axios的配置教程
2022/04/29 Vue.js