使用遗传算法求二元函数的最小值


Posted in Python onFebruary 11, 2020

二元函数为y=x1^2+x2^2,x∈[-5,5]

NIND=121;  %初始种群的个数(Number of individuals)
NVAR=2;   %一个染色体(个体)有多少基因
PRECI=20;  %变量的二进制位数(Precision of variables)
MAXGEN=200;  %最大遗传代数(Maximum number of generations)
GGAP=0.8;  %代沟(Generation gap),以一定概率选择父代遗传到下一代
trace=zeros(MAXGEN,2);   %寻优结果的初始值

Chrom=crtbp(NIND,PRECI*NVAR); %初始种群

%区域描述器(Build field descriptor)
%确定每个变量的二进制位数,取值范围,及取值范围是否包括边界等。
FieldD=[rep([PRECI],[1,NVAR]);rep([-5;5],[1,NVAR]);rep([1;0;1;1],[1,NVAR])];
Objv=objfun(bs2rv(Chrom,FieldD))
gen=1;     %代计数器
while gen<=MAXGEN
 Fitv=ranking(Objv); %分配适应度值(Assign fitness values)
 SelCh=select('sus',Chrom,Fitv,GGAP); %选择
 SelCh=recombin('xovsp',SelCh,1);  %重组
 SelCh=mut(SelCh);      %变异
 ObjVSel=objfun(bs2rv(SelCh,FieldD));%子代个体的十进制转换
 %重插入子代的新种群
 [Chrom,Objv]=reins(Chrom,SelCh,1,1,Objv,ObjVSel);
 trace(gen,1)=min(Objv);   %遗传算法性能跟踪
 trace(gen,2)=sum(Objv)/length(Objv);
  gen=gen+1;     %代计数器增加
end
plot(trace(:,1));
hold on
plot(trace(:,2),'.')
grid
legend('最优解的变化','解的平均值的变化')

使用遗传算法求二元函数的最小值

根据上面的求解模型,可以写出模型的.M文件如下,即适应度函数

% OBJFUN.M  
% Syntax: ObjVal = objfun1(Chrom,rtn_type)
%
% Input parameters:
% Chrom  - Matrix containing the chromosomes of the current
%    population. Each row corresponds to one individual's
%    string representation.
%    if Chrom == [], then special values will be returned
% rtn_type - if Chrom == [] and
%    rtn_type == 1 (or []) return boundaries
%    rtn_type == 2 return title
%    rtn_type == 3 return value of global minimum
%
% Output parameters:
% ObjVal - Column vector containing the objective values of the
%    individuals in the current population.
%    if called with Chrom == [], then ObjVal contains
%    rtn_type == 1, matrix with the boundaries of the function
%    rtn_type == 2, text for the title of the graphic output
%    rtn_type == 3, value of global minimum
% Author:  YQ_younger

function ObjVal = objfun(Chrom,rtn_type);

% Dimension of objective function
 Dim = 2; 
% Compute population parameters
 [Nind,Nvar] = size(Chrom);
% Check size of Chrom and do the appropriate thing
 % if Chrom is [], then define size of boundary-matrix and values
 if Nind == 0
  % return text of title for graphic output
  if rtn_type == 2
   ObjVal = ['DE JONG function 1-' int2str(Dim)];
  % return value of global minimum
  elseif rtn_type == 3
   ObjVal = 0;
  % define size of boundary-matrix and values
  else 
   % lower and upper bound, identical for all n variables  
   ObjVal = 1*[-5; 5];
   ObjVal = ObjVal(1:2,ones(Dim,1));
  end
 % if Dim variables, compute values of function
 elseif Nvar == Dim
  % function 1, sum of xi^2 for i = 1:Dim (Dim=30)
  % n = Dim, -5 <= xi <= 5
  % global minimum at (xi)=(0) ; fmin=0
  ObjVal = sum((Chrom .* Chrom)')';
  % ObjVal = diag(Chrom * Chrom'); % both lines produce the same
 % otherwise error, wrong format of Chrom
 else
  error('size of matrix Chrom is not correct for function evaluation');
 end 
% End of function

注释:
种群表示和初始化函数 bs2rv:
二进制串到实值的转换
Phen=bs2rv(Chrom,FieldD) FieldD=[len, lb, ub, code, scale, lbin, ubin]
code(i)=1为标准的二进制编码,code(i)=0为格雷编码
scale(i)=0为算术刻度,scale(i)=1为对数刻度
函数 crtbp:
创建初始种群
[Chrom,Lind,BaseV]=crtbp(Nind,Lind)

[Chrom,Lind,BaseV]=crtbp(Nind,BaseV)
[Chrom,Lind,BaseV]=crtbp(Nind,Lind,BaseV)

Nind指定种群中个体的数量,Lind指定个体的长度
函数 crtrp:
创建实值原始种群
Chrom=crtrp(Nind,FieldDR)

适应度计算函数 ranking:
基于排序的适应度分配(此函数是从最小化方向对个体进行排序的)
FitV=ranking(ObjV)
FitV=ranking(ObjV, RFun)
FitV=ranking(ObjV, RFun, SUBPOP)
Rfun(1)线性排序标量在[1 2]间为,非线性排序在[1 length(ObjV)-2]
Rfun(2)指定排序方法,0为线性排序,1为非线性排序
SUBPOP指明ObjV中子种群的数量,默认为1

选择高级函数 select:
从种群中选择个体
SelCh=select(SEL_F, Chrom, FitnV)
SelCh=select(SEL_F, Chrom, FitnV, GGAP)
SelCh=select(SEL_F, Chrom, FitnV, GGAP, SUBPOP)

SEL_F是一字符串,为一低级选择函数名,如rws或sus
GGAP指出了代沟,默认为1;也可大于1,允许子代数多于父代的数量
rws: 轮盘赌选择
NewChrIx=rws(FitnV, Nsel) 使用轮盘赌选择从一个种群中选择Nsel个个体
NewChrIx 是为育种选择的个体的索引值
sus:
随机遍历抽样
NewChrIx=sus(FitnV, Nsel)

交叉高级函数 recombin:
重组个体
NewChrom=recombin(REC_F, Chrom)
NewChrom=recombin(REC_F, Chrom, RecOpt)
NewChrom=recombin(REC_F, Chrom, RecOpt, SUBPOP)
REC_F是包含低级重组函数名的字符串,例如recdis,recint,reclin,xovdp, xovdprs, xovmp, xovsh, xovshrs, xovsp, xovsprs
recdis:
离散重组
NewChrom=recdis(OldChorm)
recint:
中间重组
NewChrom=recint(OldChorm)
reclin:
线性重组
NewChrom=reclin(OldChorm)
xovdp:

两点交叉

NewChrom=xovdp(OldChrom, XOVR)

XOVR为交叉概率, 默认为0.7
Xovdprs:
减少代理的两点交叉
NewChrom=xovdprs(OldChrom, XOVR)
Xovmp:

多点交叉

NewChrom=xovmp(OldChrom, XOVR, Npt, Rs)

Npt指明交叉点数, 0 洗牌交叉;1 单点交叉;2 两点交叉;
默认为0

Rs指明使用减少代理, 0 不减少代理;1 减少代理;
默认为0
Xovsh:

洗牌交叉

NewChrom=xovsh(OldChrom, XOVR)
Xovshrs:
减少代理的洗牌交叉
NewChrom=xovshrs(OldChrom, XOVR)
Xovsp:
单点交叉
NewChrom=xovsp(OldChrom, XOVR)
Xovsprs:
减少代理的单点交叉
NewChrom=xovsprs(OldChrom, XOVR)

变异高级函数 mutate:
个体的变异
NewChorm=mutate(MUT_F, OldChorm, FieldDR) NewChorm=mutate(MUT_F, OldChorm, FieldDR, MutOpt) NewChorm=mutate(MUT_F, OldChorm, FieldDR, MutOpt, SUBPOP) MUT_F为包含低级变异函数的字符串,例如mut, mutbga, recmut
mut:
离散变异算子
NewChrom=mut(OldChorm, Pm) NewChrom=mut(OldChorm, Pm, BaseV)
Pm为变异概率,默认为Pm=0.7/Lind
mutbga:
实值种群的变异(遗传算法育种器的变异算子) NewChrom=mutbga(OldChorm, FieldDR)
NewChrom=mubga(OldChorm, FieidDR, MutOpt)
MutOpt(1)是在[ 0 1]间的重组概率的标量,默认为1
MutOpt(2)是在[0 1]间的压缩重组范围的标量,默认为1(不压缩)
recmut:
具有突变特征的线性重组
NewChrom=recmut(OldChorm, FieldDR)
NewChrom=recmut(OldChorm, FieidDR, MutOpt)

重插入函数 reins:
重插入子群到种群
Chorm=reins(Chorm, SelCh)
Chorm=reins(Chorm, SelCh, SUBPOP)
Chorm=reins(Chorm, SelCh, SUBPOP, InsOpt, ObjVch)
[Chorm, ObjVch]=reins(Chorm, SelCh, SUBPOP, InsOpt, ObjVch, ObjVSel)
InsOpt(1)指明用子代代替父代的选择方法,0为均匀选择,1为基于适应度的选择,默认为0
InsOpt(2)指明在[0 1]间每个子种群中重插入的子代个体在整个子种群的中个体的比率,默认为1

ObjVch包含Chorm中个体的目标值,对基于适应度的重插入是必需的
ObjVSel包含Selch中个体的目标值,如子代数量大于重插入种群的子代数量是必需的

其他函数矩阵复试函数 rep:
MatOut=rep(MatIn, REPN)
REPN为复制次数

以上这篇使用遗传算法求二元函数的最小值就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
ssh批量登录并执行命令的python实现代码
May 25 Python
python使用rsa加密算法模块模拟新浪微博登录
Jan 22 Python
python简单获取数组元素个数的方法
Jul 13 Python
Python max内置函数详细介绍
Nov 17 Python
python实现Floyd算法
Jan 03 Python
TensorFlow实现Logistic回归
Sep 07 Python
Python遍历文件夹 处理json文件的方法
Jan 22 Python
Django单元测试工具test client使用详解
Aug 02 Python
python类的实例化问题解决
Aug 31 Python
Python hashlib模块实例使用详解
Dec 24 Python
python轮询机制控制led实例
May 03 Python
20行Python代码实现一款永久免费PDF编辑工具的实现
Aug 27 Python
Python for循环搭配else常见问题解决
Feb 11 #Python
Python获取二维数组的行列数的2种方法
Feb 11 #Python
使用Puppeteer爬取微信文章的实现
Feb 11 #Python
Python实现遗传算法(二进制编码)求函数最优值方式
Feb 11 #Python
python加密解密库cryptography使用openSSL生成的密匙加密解密
Feb 11 #Python
如何通过python实现全排列
Feb 11 #Python
Python3加密解密库Crypto的RSA加解密和签名/验签实现方法实例
Feb 11 #Python
You might like
在PHP中使用Sockets 从Usenet中获取文件
2008/01/10 PHP
php生成EAN_13标准条形码实例
2013/11/13 PHP
php根据日期显示所在星座的方法
2015/07/13 PHP
yii2控制器Controller Ajax操作示例
2016/07/23 PHP
CI框架(CodeIgniter)公共模型类定义与用法示例
2017/08/10 PHP
Thinkphp5.0 框架实现控制器向视图view赋值及视图view取值操作示例
2019/10/12 PHP
JavaScript 继承详解 第一篇
2009/08/30 Javascript
js解析xml字符串和xml文档实现原理及代码(针对ie与火狐)
2013/02/02 Javascript
网站繁简切换的JS遇到页面卡死的解决方法
2014/03/12 Javascript
Node.js实现的简易网页抓取功能示例
2014/12/05 Javascript
JavaScript中的ArrayBuffer详细介绍
2014/12/08 Javascript
jQuery实现个性翻牌效果导航菜单的方法
2015/03/09 Javascript
JS+JSP通过img标签调用实现静态页面访问次数统计的方法
2015/12/14 Javascript
jQuery基础知识点总结(必看)
2016/05/31 Javascript
jquery实现网站列表切换效果的2种方法
2016/08/12 Javascript
JavaScript登录验证码的实现
2016/10/27 Javascript
使用JavaScript获取URL中的参数(两种方法)
2016/11/16 Javascript
利用JQuery阻止事件冒泡
2016/12/01 Javascript
bootstrapValidator 重新启用提交按钮的方法
2017/02/20 Javascript
关于jQuery里prev()的简单操作代码
2017/10/27 jQuery
简单的Vue异步组件实例Demo
2017/12/27 Javascript
vue.js数据绑定操作详解
2018/04/23 Javascript
vue实现一个炫酷的日历组件
2018/10/08 Javascript
利用原生JavaScript实现造日历轮子实例代码
2019/05/08 Javascript
原生JS实现列表内容自动向上滚动效果
2019/05/22 Javascript
[20:46]Ti4循环赛第三日VG vs DK
2014/07/12 DOTA
python查找目录下指定扩展名的文件实例
2015/04/01 Python
Django如何实现内容缓存示例详解
2017/09/24 Python
利用python如何处理nc数据详解
2018/05/23 Python
python如何获取apk的packagename和activity
2020/01/10 Python
python中绕过反爬虫的方法总结
2020/11/25 Python
美国最大的珠宝商之一:Littman Jewelers
2016/11/13 全球购物
目标责任书范本
2014/04/16 职场文书
技术员岗位职责范本
2015/04/11 职场文书
Nginx同一个域名配置多个项目的实现方法
2021/03/31 Servers
索尼ICF-5900W收音机测评
2022/04/24 无线电