使用遗传算法求二元函数的最小值


Posted in Python onFebruary 11, 2020

二元函数为y=x1^2+x2^2,x∈[-5,5]

NIND=121;  %初始种群的个数(Number of individuals)
NVAR=2;   %一个染色体(个体)有多少基因
PRECI=20;  %变量的二进制位数(Precision of variables)
MAXGEN=200;  %最大遗传代数(Maximum number of generations)
GGAP=0.8;  %代沟(Generation gap),以一定概率选择父代遗传到下一代
trace=zeros(MAXGEN,2);   %寻优结果的初始值

Chrom=crtbp(NIND,PRECI*NVAR); %初始种群

%区域描述器(Build field descriptor)
%确定每个变量的二进制位数,取值范围,及取值范围是否包括边界等。
FieldD=[rep([PRECI],[1,NVAR]);rep([-5;5],[1,NVAR]);rep([1;0;1;1],[1,NVAR])];
Objv=objfun(bs2rv(Chrom,FieldD))
gen=1;     %代计数器
while gen<=MAXGEN
 Fitv=ranking(Objv); %分配适应度值(Assign fitness values)
 SelCh=select('sus',Chrom,Fitv,GGAP); %选择
 SelCh=recombin('xovsp',SelCh,1);  %重组
 SelCh=mut(SelCh);      %变异
 ObjVSel=objfun(bs2rv(SelCh,FieldD));%子代个体的十进制转换
 %重插入子代的新种群
 [Chrom,Objv]=reins(Chrom,SelCh,1,1,Objv,ObjVSel);
 trace(gen,1)=min(Objv);   %遗传算法性能跟踪
 trace(gen,2)=sum(Objv)/length(Objv);
  gen=gen+1;     %代计数器增加
end
plot(trace(:,1));
hold on
plot(trace(:,2),'.')
grid
legend('最优解的变化','解的平均值的变化')

使用遗传算法求二元函数的最小值

根据上面的求解模型,可以写出模型的.M文件如下,即适应度函数

% OBJFUN.M  
% Syntax: ObjVal = objfun1(Chrom,rtn_type)
%
% Input parameters:
% Chrom  - Matrix containing the chromosomes of the current
%    population. Each row corresponds to one individual's
%    string representation.
%    if Chrom == [], then special values will be returned
% rtn_type - if Chrom == [] and
%    rtn_type == 1 (or []) return boundaries
%    rtn_type == 2 return title
%    rtn_type == 3 return value of global minimum
%
% Output parameters:
% ObjVal - Column vector containing the objective values of the
%    individuals in the current population.
%    if called with Chrom == [], then ObjVal contains
%    rtn_type == 1, matrix with the boundaries of the function
%    rtn_type == 2, text for the title of the graphic output
%    rtn_type == 3, value of global minimum
% Author:  YQ_younger

function ObjVal = objfun(Chrom,rtn_type);

% Dimension of objective function
 Dim = 2; 
% Compute population parameters
 [Nind,Nvar] = size(Chrom);
% Check size of Chrom and do the appropriate thing
 % if Chrom is [], then define size of boundary-matrix and values
 if Nind == 0
  % return text of title for graphic output
  if rtn_type == 2
   ObjVal = ['DE JONG function 1-' int2str(Dim)];
  % return value of global minimum
  elseif rtn_type == 3
   ObjVal = 0;
  % define size of boundary-matrix and values
  else 
   % lower and upper bound, identical for all n variables  
   ObjVal = 1*[-5; 5];
   ObjVal = ObjVal(1:2,ones(Dim,1));
  end
 % if Dim variables, compute values of function
 elseif Nvar == Dim
  % function 1, sum of xi^2 for i = 1:Dim (Dim=30)
  % n = Dim, -5 <= xi <= 5
  % global minimum at (xi)=(0) ; fmin=0
  ObjVal = sum((Chrom .* Chrom)')';
  % ObjVal = diag(Chrom * Chrom'); % both lines produce the same
 % otherwise error, wrong format of Chrom
 else
  error('size of matrix Chrom is not correct for function evaluation');
 end 
% End of function

注释:
种群表示和初始化函数 bs2rv:
二进制串到实值的转换
Phen=bs2rv(Chrom,FieldD) FieldD=[len, lb, ub, code, scale, lbin, ubin]
code(i)=1为标准的二进制编码,code(i)=0为格雷编码
scale(i)=0为算术刻度,scale(i)=1为对数刻度
函数 crtbp:
创建初始种群
[Chrom,Lind,BaseV]=crtbp(Nind,Lind)

[Chrom,Lind,BaseV]=crtbp(Nind,BaseV)
[Chrom,Lind,BaseV]=crtbp(Nind,Lind,BaseV)

Nind指定种群中个体的数量,Lind指定个体的长度
函数 crtrp:
创建实值原始种群
Chrom=crtrp(Nind,FieldDR)

适应度计算函数 ranking:
基于排序的适应度分配(此函数是从最小化方向对个体进行排序的)
FitV=ranking(ObjV)
FitV=ranking(ObjV, RFun)
FitV=ranking(ObjV, RFun, SUBPOP)
Rfun(1)线性排序标量在[1 2]间为,非线性排序在[1 length(ObjV)-2]
Rfun(2)指定排序方法,0为线性排序,1为非线性排序
SUBPOP指明ObjV中子种群的数量,默认为1

选择高级函数 select:
从种群中选择个体
SelCh=select(SEL_F, Chrom, FitnV)
SelCh=select(SEL_F, Chrom, FitnV, GGAP)
SelCh=select(SEL_F, Chrom, FitnV, GGAP, SUBPOP)

SEL_F是一字符串,为一低级选择函数名,如rws或sus
GGAP指出了代沟,默认为1;也可大于1,允许子代数多于父代的数量
rws: 轮盘赌选择
NewChrIx=rws(FitnV, Nsel) 使用轮盘赌选择从一个种群中选择Nsel个个体
NewChrIx 是为育种选择的个体的索引值
sus:
随机遍历抽样
NewChrIx=sus(FitnV, Nsel)

交叉高级函数 recombin:
重组个体
NewChrom=recombin(REC_F, Chrom)
NewChrom=recombin(REC_F, Chrom, RecOpt)
NewChrom=recombin(REC_F, Chrom, RecOpt, SUBPOP)
REC_F是包含低级重组函数名的字符串,例如recdis,recint,reclin,xovdp, xovdprs, xovmp, xovsh, xovshrs, xovsp, xovsprs
recdis:
离散重组
NewChrom=recdis(OldChorm)
recint:
中间重组
NewChrom=recint(OldChorm)
reclin:
线性重组
NewChrom=reclin(OldChorm)
xovdp:

两点交叉

NewChrom=xovdp(OldChrom, XOVR)

XOVR为交叉概率, 默认为0.7
Xovdprs:
减少代理的两点交叉
NewChrom=xovdprs(OldChrom, XOVR)
Xovmp:

多点交叉

NewChrom=xovmp(OldChrom, XOVR, Npt, Rs)

Npt指明交叉点数, 0 洗牌交叉;1 单点交叉;2 两点交叉;
默认为0

Rs指明使用减少代理, 0 不减少代理;1 减少代理;
默认为0
Xovsh:

洗牌交叉

NewChrom=xovsh(OldChrom, XOVR)
Xovshrs:
减少代理的洗牌交叉
NewChrom=xovshrs(OldChrom, XOVR)
Xovsp:
单点交叉
NewChrom=xovsp(OldChrom, XOVR)
Xovsprs:
减少代理的单点交叉
NewChrom=xovsprs(OldChrom, XOVR)

变异高级函数 mutate:
个体的变异
NewChorm=mutate(MUT_F, OldChorm, FieldDR) NewChorm=mutate(MUT_F, OldChorm, FieldDR, MutOpt) NewChorm=mutate(MUT_F, OldChorm, FieldDR, MutOpt, SUBPOP) MUT_F为包含低级变异函数的字符串,例如mut, mutbga, recmut
mut:
离散变异算子
NewChrom=mut(OldChorm, Pm) NewChrom=mut(OldChorm, Pm, BaseV)
Pm为变异概率,默认为Pm=0.7/Lind
mutbga:
实值种群的变异(遗传算法育种器的变异算子) NewChrom=mutbga(OldChorm, FieldDR)
NewChrom=mubga(OldChorm, FieidDR, MutOpt)
MutOpt(1)是在[ 0 1]间的重组概率的标量,默认为1
MutOpt(2)是在[0 1]间的压缩重组范围的标量,默认为1(不压缩)
recmut:
具有突变特征的线性重组
NewChrom=recmut(OldChorm, FieldDR)
NewChrom=recmut(OldChorm, FieidDR, MutOpt)

重插入函数 reins:
重插入子群到种群
Chorm=reins(Chorm, SelCh)
Chorm=reins(Chorm, SelCh, SUBPOP)
Chorm=reins(Chorm, SelCh, SUBPOP, InsOpt, ObjVch)
[Chorm, ObjVch]=reins(Chorm, SelCh, SUBPOP, InsOpt, ObjVch, ObjVSel)
InsOpt(1)指明用子代代替父代的选择方法,0为均匀选择,1为基于适应度的选择,默认为0
InsOpt(2)指明在[0 1]间每个子种群中重插入的子代个体在整个子种群的中个体的比率,默认为1

ObjVch包含Chorm中个体的目标值,对基于适应度的重插入是必需的
ObjVSel包含Selch中个体的目标值,如子代数量大于重插入种群的子代数量是必需的

其他函数矩阵复试函数 rep:
MatOut=rep(MatIn, REPN)
REPN为复制次数

以上这篇使用遗传算法求二元函数的最小值就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python二叉树的实现实例
Nov 21 Python
Python中请使用isinstance()判断变量类型
Aug 25 Python
python中安装Scrapy模块依赖包汇总
Jul 02 Python
Python实现求笛卡尔乘积的方法
Sep 16 Python
Python通过paramiko远程下载Linux服务器上的文件实例
Dec 27 Python
Python面向对象程序设计类变量与成员变量、类方法与成员方法用法分析
Apr 12 Python
使用pyinstaller打包PyQt4程序遇到的问题及解决方法
Jun 24 Python
python自定义时钟类、定时任务类
Feb 22 Python
Flask教程之重定向与错误处理实例分析
Aug 01 Python
Win 10下Anaconda虚拟环境的教程
May 18 Python
Tensorflow中批量读取数据的案列分析及TFRecord文件的打包与读取
Jun 30 Python
详解Python+OpenCV进行基础的图像操作
Feb 15 Python
Python for循环搭配else常见问题解决
Feb 11 #Python
Python获取二维数组的行列数的2种方法
Feb 11 #Python
使用Puppeteer爬取微信文章的实现
Feb 11 #Python
Python实现遗传算法(二进制编码)求函数最优值方式
Feb 11 #Python
python加密解密库cryptography使用openSSL生成的密匙加密解密
Feb 11 #Python
如何通过python实现全排列
Feb 11 #Python
Python3加密解密库Crypto的RSA加解密和签名/验签实现方法实例
Feb 11 #Python
You might like
深入理解:XML与对象的序列化与反序列化
2013/06/08 PHP
PHP函数超时处理方法
2016/02/14 PHP
YII2 实现多语言配置的方法分享
2017/01/11 PHP
php变量与JS变量实现不通过跳转直接交互的方法
2017/08/25 PHP
jquery拖动插件(jquery.drag)使用介绍
2013/06/18 Javascript
jQuery.extend()的实现方式详解及实例
2013/06/29 Javascript
从零学JS之你需要了解的几本书
2014/05/19 Javascript
把文本中的URL地址转换为可点击链接的JavaScript、PHP自定义函数
2014/07/29 Javascript
jQuery ajax的功能实现方法详解
2017/01/06 Javascript
php输出全部gb2312编码内的汉字方法
2017/03/04 Javascript
详解vue模拟加载更多功能(数据追加)
2017/06/23 Javascript
详解Angular CLI + Electron 开发环境搭建
2017/07/20 Javascript
Vue.js实现输入框绑定的实例代码
2017/08/24 Javascript
浅谈JavaScript作用域和闭包
2017/09/18 Javascript
vue使用中的内存泄漏【推荐】
2018/07/10 Javascript
vue自定义全局共用函数详解
2018/09/18 Javascript
js设置默认时间跨度过程详解
2019/07/17 Javascript
Javascript Web Worker使用过程解析
2020/03/16 Javascript
详解JS深拷贝与浅拷贝
2020/08/04 Javascript
jQuery是用来干什么的 jquery其实就是一个js框架
2021/02/04 jQuery
[01:25]2014DOTA2国际邀请赛 zhou分析LGD比赛情况
2014/07/14 DOTA
python 字典 按key值大小 倒序取值的实例
2018/07/06 Python
利用python在大量数据文件下删除某一行的例子
2019/08/21 Python
Python对接支付宝支付自实现功能
2019/10/10 Python
python实现指定ip端口扫描方式
2019/12/17 Python
Python爬取网页信息的示例
2020/09/24 Python
python递归函数用法详解
2020/10/26 Python
3.12植树节活动总结2014
2014/03/13 职场文书
天猫某品牌专卖店运营计划书
2014/03/21 职场文书
小学语文教研活动总结
2014/07/01 职场文书
2014银行领导班子群众路线对照检查材料思想汇报
2014/09/17 职场文书
2014幼儿园小班工作总结
2014/11/10 职场文书
养成教育工作总结
2015/08/13 职场文书
2015年度个人工作总结报告
2015/10/24 职场文书
PHP获取学生成绩的方法
2021/11/17 PHP
CentOS安装Nginx并部署vue
2022/04/12 Servers