使用遗传算法求二元函数的最小值


Posted in Python onFebruary 11, 2020

二元函数为y=x1^2+x2^2,x∈[-5,5]

NIND=121;  %初始种群的个数(Number of individuals)
NVAR=2;   %一个染色体(个体)有多少基因
PRECI=20;  %变量的二进制位数(Precision of variables)
MAXGEN=200;  %最大遗传代数(Maximum number of generations)
GGAP=0.8;  %代沟(Generation gap),以一定概率选择父代遗传到下一代
trace=zeros(MAXGEN,2);   %寻优结果的初始值

Chrom=crtbp(NIND,PRECI*NVAR); %初始种群

%区域描述器(Build field descriptor)
%确定每个变量的二进制位数,取值范围,及取值范围是否包括边界等。
FieldD=[rep([PRECI],[1,NVAR]);rep([-5;5],[1,NVAR]);rep([1;0;1;1],[1,NVAR])];
Objv=objfun(bs2rv(Chrom,FieldD))
gen=1;     %代计数器
while gen<=MAXGEN
 Fitv=ranking(Objv); %分配适应度值(Assign fitness values)
 SelCh=select('sus',Chrom,Fitv,GGAP); %选择
 SelCh=recombin('xovsp',SelCh,1);  %重组
 SelCh=mut(SelCh);      %变异
 ObjVSel=objfun(bs2rv(SelCh,FieldD));%子代个体的十进制转换
 %重插入子代的新种群
 [Chrom,Objv]=reins(Chrom,SelCh,1,1,Objv,ObjVSel);
 trace(gen,1)=min(Objv);   %遗传算法性能跟踪
 trace(gen,2)=sum(Objv)/length(Objv);
  gen=gen+1;     %代计数器增加
end
plot(trace(:,1));
hold on
plot(trace(:,2),'.')
grid
legend('最优解的变化','解的平均值的变化')

使用遗传算法求二元函数的最小值

根据上面的求解模型,可以写出模型的.M文件如下,即适应度函数

% OBJFUN.M  
% Syntax: ObjVal = objfun1(Chrom,rtn_type)
%
% Input parameters:
% Chrom  - Matrix containing the chromosomes of the current
%    population. Each row corresponds to one individual's
%    string representation.
%    if Chrom == [], then special values will be returned
% rtn_type - if Chrom == [] and
%    rtn_type == 1 (or []) return boundaries
%    rtn_type == 2 return title
%    rtn_type == 3 return value of global minimum
%
% Output parameters:
% ObjVal - Column vector containing the objective values of the
%    individuals in the current population.
%    if called with Chrom == [], then ObjVal contains
%    rtn_type == 1, matrix with the boundaries of the function
%    rtn_type == 2, text for the title of the graphic output
%    rtn_type == 3, value of global minimum
% Author:  YQ_younger

function ObjVal = objfun(Chrom,rtn_type);

% Dimension of objective function
 Dim = 2; 
% Compute population parameters
 [Nind,Nvar] = size(Chrom);
% Check size of Chrom and do the appropriate thing
 % if Chrom is [], then define size of boundary-matrix and values
 if Nind == 0
  % return text of title for graphic output
  if rtn_type == 2
   ObjVal = ['DE JONG function 1-' int2str(Dim)];
  % return value of global minimum
  elseif rtn_type == 3
   ObjVal = 0;
  % define size of boundary-matrix and values
  else 
   % lower and upper bound, identical for all n variables  
   ObjVal = 1*[-5; 5];
   ObjVal = ObjVal(1:2,ones(Dim,1));
  end
 % if Dim variables, compute values of function
 elseif Nvar == Dim
  % function 1, sum of xi^2 for i = 1:Dim (Dim=30)
  % n = Dim, -5 <= xi <= 5
  % global minimum at (xi)=(0) ; fmin=0
  ObjVal = sum((Chrom .* Chrom)')';
  % ObjVal = diag(Chrom * Chrom'); % both lines produce the same
 % otherwise error, wrong format of Chrom
 else
  error('size of matrix Chrom is not correct for function evaluation');
 end 
% End of function

注释:
种群表示和初始化函数 bs2rv:
二进制串到实值的转换
Phen=bs2rv(Chrom,FieldD) FieldD=[len, lb, ub, code, scale, lbin, ubin]
code(i)=1为标准的二进制编码,code(i)=0为格雷编码
scale(i)=0为算术刻度,scale(i)=1为对数刻度
函数 crtbp:
创建初始种群
[Chrom,Lind,BaseV]=crtbp(Nind,Lind)

[Chrom,Lind,BaseV]=crtbp(Nind,BaseV)
[Chrom,Lind,BaseV]=crtbp(Nind,Lind,BaseV)

Nind指定种群中个体的数量,Lind指定个体的长度
函数 crtrp:
创建实值原始种群
Chrom=crtrp(Nind,FieldDR)

适应度计算函数 ranking:
基于排序的适应度分配(此函数是从最小化方向对个体进行排序的)
FitV=ranking(ObjV)
FitV=ranking(ObjV, RFun)
FitV=ranking(ObjV, RFun, SUBPOP)
Rfun(1)线性排序标量在[1 2]间为,非线性排序在[1 length(ObjV)-2]
Rfun(2)指定排序方法,0为线性排序,1为非线性排序
SUBPOP指明ObjV中子种群的数量,默认为1

选择高级函数 select:
从种群中选择个体
SelCh=select(SEL_F, Chrom, FitnV)
SelCh=select(SEL_F, Chrom, FitnV, GGAP)
SelCh=select(SEL_F, Chrom, FitnV, GGAP, SUBPOP)

SEL_F是一字符串,为一低级选择函数名,如rws或sus
GGAP指出了代沟,默认为1;也可大于1,允许子代数多于父代的数量
rws: 轮盘赌选择
NewChrIx=rws(FitnV, Nsel) 使用轮盘赌选择从一个种群中选择Nsel个个体
NewChrIx 是为育种选择的个体的索引值
sus:
随机遍历抽样
NewChrIx=sus(FitnV, Nsel)

交叉高级函数 recombin:
重组个体
NewChrom=recombin(REC_F, Chrom)
NewChrom=recombin(REC_F, Chrom, RecOpt)
NewChrom=recombin(REC_F, Chrom, RecOpt, SUBPOP)
REC_F是包含低级重组函数名的字符串,例如recdis,recint,reclin,xovdp, xovdprs, xovmp, xovsh, xovshrs, xovsp, xovsprs
recdis:
离散重组
NewChrom=recdis(OldChorm)
recint:
中间重组
NewChrom=recint(OldChorm)
reclin:
线性重组
NewChrom=reclin(OldChorm)
xovdp:

两点交叉

NewChrom=xovdp(OldChrom, XOVR)

XOVR为交叉概率, 默认为0.7
Xovdprs:
减少代理的两点交叉
NewChrom=xovdprs(OldChrom, XOVR)
Xovmp:

多点交叉

NewChrom=xovmp(OldChrom, XOVR, Npt, Rs)

Npt指明交叉点数, 0 洗牌交叉;1 单点交叉;2 两点交叉;
默认为0

Rs指明使用减少代理, 0 不减少代理;1 减少代理;
默认为0
Xovsh:

洗牌交叉

NewChrom=xovsh(OldChrom, XOVR)
Xovshrs:
减少代理的洗牌交叉
NewChrom=xovshrs(OldChrom, XOVR)
Xovsp:
单点交叉
NewChrom=xovsp(OldChrom, XOVR)
Xovsprs:
减少代理的单点交叉
NewChrom=xovsprs(OldChrom, XOVR)

变异高级函数 mutate:
个体的变异
NewChorm=mutate(MUT_F, OldChorm, FieldDR) NewChorm=mutate(MUT_F, OldChorm, FieldDR, MutOpt) NewChorm=mutate(MUT_F, OldChorm, FieldDR, MutOpt, SUBPOP) MUT_F为包含低级变异函数的字符串,例如mut, mutbga, recmut
mut:
离散变异算子
NewChrom=mut(OldChorm, Pm) NewChrom=mut(OldChorm, Pm, BaseV)
Pm为变异概率,默认为Pm=0.7/Lind
mutbga:
实值种群的变异(遗传算法育种器的变异算子) NewChrom=mutbga(OldChorm, FieldDR)
NewChrom=mubga(OldChorm, FieidDR, MutOpt)
MutOpt(1)是在[ 0 1]间的重组概率的标量,默认为1
MutOpt(2)是在[0 1]间的压缩重组范围的标量,默认为1(不压缩)
recmut:
具有突变特征的线性重组
NewChrom=recmut(OldChorm, FieldDR)
NewChrom=recmut(OldChorm, FieidDR, MutOpt)

重插入函数 reins:
重插入子群到种群
Chorm=reins(Chorm, SelCh)
Chorm=reins(Chorm, SelCh, SUBPOP)
Chorm=reins(Chorm, SelCh, SUBPOP, InsOpt, ObjVch)
[Chorm, ObjVch]=reins(Chorm, SelCh, SUBPOP, InsOpt, ObjVch, ObjVSel)
InsOpt(1)指明用子代代替父代的选择方法,0为均匀选择,1为基于适应度的选择,默认为0
InsOpt(2)指明在[0 1]间每个子种群中重插入的子代个体在整个子种群的中个体的比率,默认为1

ObjVch包含Chorm中个体的目标值,对基于适应度的重插入是必需的
ObjVSel包含Selch中个体的目标值,如子代数量大于重插入种群的子代数量是必需的

其他函数矩阵复试函数 rep:
MatOut=rep(MatIn, REPN)
REPN为复制次数

以上这篇使用遗传算法求二元函数的最小值就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
九步学会Python装饰器
May 09 Python
Python文件及目录操作实例详解
Jun 04 Python
Python编程实现两个文件夹里文件的对比功能示例【包含内容的对比】
Jun 20 Python
anaconda如何查看并管理python环境
Jul 05 Python
Python实现的统计文章单词次数功能示例
Jul 08 Python
基于Django ORM、一对一、一对多、多对多的全面讲解
Jul 26 Python
PyCharm搭建Spark开发环境的实现步骤
Sep 05 Python
Python多线程模块Threading用法示例小结
Nov 09 Python
Python实现初始化不同的变量类型为空值
Jun 02 Python
python Socket网络编程实现C/S模式和P2P
Jun 22 Python
Python Selenium模块安装使用教程详解
Jul 09 Python
Python制作运行进度条的实现效果(代码运行不无聊)
Feb 24 Python
Python for循环搭配else常见问题解决
Feb 11 #Python
Python获取二维数组的行列数的2种方法
Feb 11 #Python
使用Puppeteer爬取微信文章的实现
Feb 11 #Python
Python实现遗传算法(二进制编码)求函数最优值方式
Feb 11 #Python
python加密解密库cryptography使用openSSL生成的密匙加密解密
Feb 11 #Python
如何通过python实现全排列
Feb 11 #Python
Python3加密解密库Crypto的RSA加解密和签名/验签实现方法实例
Feb 11 #Python
You might like
3款值得推荐的微信开发开源框架
2014/10/28 PHP
如何使用纯PHP实现定时器任务(Timer)
2015/07/31 PHP
Zend Framework框架路由机制代码分析
2016/03/22 PHP
Laravel框架实现多个视图共享相同数据的方法详解
2019/07/09 PHP
javascript新手语法小结
2008/06/15 Javascript
JavaScript RegExp方法获取地址栏参数(面向对象)
2009/03/10 Javascript
动态加载script文件的两种方法
2013/08/15 Javascript
jquery 操作两个select实现值之间的互相传递
2014/03/07 Javascript
javascript发送短信验证码实现代码
2015/11/12 Javascript
JS判断数组那点事
2017/10/10 Javascript
Vue学习之组件用法实例详解
2020/01/06 Javascript
JS面向对象编程基础篇(三) 继承操作实例详解
2020/03/03 Javascript
python实现查询苹果手机维修进度
2015/03/16 Python
利用Python实现Windows定时关机功能
2017/03/21 Python
Python 高级专用类方法的实例详解
2017/09/11 Python
python验证码识别的示例代码
2017/09/21 Python
Python之Scrapy爬虫框架安装及简单使用详解
2017/12/22 Python
利用python将json数据转换为csv格式的方法
2018/03/22 Python
Python使用tkinter库实现文本显示用户输入功能示例
2018/05/30 Python
详解flask入门模板引擎
2018/07/18 Python
python 实现UTC时间加减的方法
2018/12/31 Python
Python解析json代码实例解析
2019/11/25 Python
python3 图片 4通道转成3通道 1通道转成3通道 图片压缩实例
2019/12/03 Python
使用python写一个自动浏览文章的脚本实例
2019/12/05 Python
python实现tail -f 功能
2020/01/17 Python
TensorFlow实现自定义Op方式
2020/02/04 Python
Vilebrequin美国官方网上商店:法国豪华泳装品牌
2020/02/22 全球购物
财务部岗位职责
2013/11/19 职场文书
会计专业应届生自荐信
2014/02/07 职场文书
合作投资意向书
2014/04/01 职场文书
校长竞聘演讲稿
2014/05/16 职场文书
个人遵守党的政治纪律情况对照检查材料思想汇报
2014/09/25 职场文书
领导个人查摆剖析材料
2014/10/29 职场文书
开展党的群众路线教育实践活动工作总结
2014/11/05 职场文书
交通事故协议书范本
2016/03/19 职场文书
创业开店,这样方式更合理
2019/08/26 职场文书