Python实现遗传算法(二进制编码)求函数最优值方式


Posted in Python onFebruary 11, 2020

目标函数

Python实现遗传算法(二进制编码)求函数最优值方式

编码方式

本程序采用的是二进制编码精确到小数点后五位,经过计算可知对于 Python实现遗传算法(二进制编码)求函数最优值方式 其编码长度为18,对于 Python实现遗传算法(二进制编码)求函数最优值方式 其编码长度为15,因此每个基于的长度为33。

参数设置

Python实现遗传算法(二进制编码)求函数最优值方式

算法步骤

设计的程序主要分为以下步骤:1、参数设置;2、种群初始化;3、用轮盘赌方法选择其中一半较好的个体作为父代;4、交叉和变异;5、更新最优解;6、对最有个体进行自学习操作;7结果输出。其算法流程图为:

Python实现遗传算法(二进制编码)求函数最优值方式

算法结果

由程序输出可知其最终优化结果为38.85029, Python实现遗传算法(二进制编码)求函数最优值方式

输出基因编码为[1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1]。

代码

import numpy as np
import random
import math
import copy

class Ind():
 def __init__(self):
  self.fitness = 0
  self.x = np.zeros(33)
  self.place = 0
  self.x1 = 0
  self.x2 = 0

def Cal_fit(x, upper, lower): #计算适应度值函数
 Temp1 = 0
 for i in range(18):
  Temp1 += x[i] * math.pow(2, i)
 Temp2 = 0
 for i in range(18, 33, 1):
  Temp2 += math.pow(2, i - 18) * x[i]
 x1 = lower[0] + Temp1 * (upper[0] - lower[0])/(math.pow(2, 18) - 1)
 x2 = lower[1] + Temp2 * (upper[1] - lower[1])/(math.pow(2, 15) - 1)
 if x1 > upper[0]:
  x1 = random.uniform(lower[0], upper[0])
 if x2 > upper[1]:
  x2 = random.uniform(lower[1], upper[1])
 return 21.5 + x1 * math.sin(4 * math.pi * (x1)) + x2 * math.sin(20 * math.pi * x2)
def Init(G, upper, lower, Pop): #初始化函数
 for i in range(Pop):
  for j in range(33):
   G[i].x[j] = random.randint(0, 1)
  G[i].fitness = Cal_fit(G[i].x, upper, lower)
  G[i].place = i
def Find_Best(G, Pop):
 Temp = copy.deepcopy(G[0])
 for i in range(1, Pop, 1):
  if G[i].fitness > Temp.fitness:
   Temp = copy.deepcopy(G[i])
 return Temp

def Selection(G, Gparent, Pop, Ppool): #选择函数
 fit_sum = np.zeros(Pop)
 fit_sum[0] = G[0].fitness
 for i in range(1, Pop, 1):
  fit_sum[i] = G[i].fitness + fit_sum[i - 1]
 fit_sum = fit_sum/fit_sum.max()
 for i in range(Ppool):
  rate = random.random()
  Gparent[i] = copy.deepcopy(G[np.where(fit_sum > rate)[0][0]])

def Cross_and_Mutation(Gparent, Gchild, Pc, Pm, upper, lower, Pop, Ppool): #交叉和变异
 for i in range(Ppool):
  place = random.sample([_ for _ in range(Ppool)], 2)
  parent1 = copy.deepcopy(Gparent[place[0]])
  parent2 = copy.deepcopy(Gparent[place[1]])
  parent3 = copy.deepcopy(parent2)
  if random.random() < Pc:
   num = random.sample([_ for _ in range(1, 32, 1)], 2)
   num.sort()
   if random.random() < 0.5:
    for j in range(num[0], num[1], 1):
     parent2.x[j] = parent1.x[j]
   else:
    for j in range(0, num[0], 1):
     parent2.x[j] = parent1.x[j]
    for j in range(num[1], 33, 1):
     parent2.x[j] = parent1.x[j]
   num = random.sample([_ for _ in range(1, 32, 1)], 2)
   num.sort()
   num.sort()
   if random.random() < 0.5:
    for j in range(num[0], num[1], 1):
     parent1.x[j] = parent3.x[j]
   else:
    for j in range(0, num[0], 1):
     parent1.x[j] = parent3.x[j]
    for j in range(num[1], 33, 1):
     parent1.x[j] = parent3.x[j]
  for j in range(33):
   if random.random() < Pm:
    parent1.x[j] = (parent1.x[j] + 1) % 2
   if random.random() < Pm:
    parent2.x[j] = (parent2.x[j] + 1) % 2

  parent1.fitness = Cal_fit(parent1.x, upper, lower)
  parent2.fitness = Cal_fit(parent2.x, upper, lower)
  Gchild[2 * i] = copy.deepcopy(parent1)
  Gchild[2 * i + 1] = copy.deepcopy(parent2)

def Choose_next(G, Gchild, Gsum, Pop): #选择下一代函数
 for i in range(Pop):
  Gsum[i] = copy.deepcopy(G[i])
  Gsum[2 * i + 1] = copy.deepcopy(Gchild[i])
 Gsum = sorted(Gsum, key = lambda x: x.fitness, reverse = True)
 for i in range(Pop):
  G[i] = copy.deepcopy(Gsum[i])
  G[i].place = i

def Decode(x):   #解码函数
 Temp1 = 0
 for i in range(18):
  Temp1 += x[i] * math.pow(2, i)
 Temp2 = 0
 for i in range(18, 33, 1):
  Temp2 += math.pow(2, i - 18) * x[i]
 x1 = lower[0] + Temp1 * (upper[0] - lower[0]) / (math.pow(2, 18) - 1)
 x2 = lower[1] + Temp2 * (upper[1] - lower[1]) / (math.pow(2, 15) - 1)
 if x1 > upper[0]:
  x1 = random.uniform(lower[0], upper[0])
 if x2 > upper[1]:
  x2 = random.uniform(lower[1], upper[1])
 return x1, x2

def Self_Learn(Best, upper, lower, sPm, sLearn): #自学习操作
 num = 0
 Temp = copy.deepcopy(Best)
 while True:
  num += 1
  for j in range(33):
   if random.random() < sPm:
    Temp.x[j] = (Temp.x[j] + 1)%2
  Temp.fitness = Cal_fit(Temp.x, upper, lower)
  if Temp.fitness > Best.fitness:
   Best = copy.deepcopy(Temp)
   num = 0
  if num > sLearn:
   break
 return Best

if __name__ == '__main__':
 upper = [12.1, 5.8]
 lower = [-3, 4.1]
 Pop = 100
 Ppool = 50
 G_max = 300
 Pc = 0.8
 Pm = 0.1
 sPm = 0.05
 sLearn = 20
 G = np.array([Ind() for _ in range(Pop)])
 Gparent = np.array([Ind() for _ in range(Ppool)])
 Gchild = np.array([Ind() for _ in range(Pop)])
 Gsum = np.array([Ind() for _ in range(Pop * 2)])
 Init(G, upper, lower, Pop)  #初始化
 Best = Find_Best(G, Pop)
 for k in range(G_max):
  Selection(G, Gparent, Pop, Ppool)  #使用轮盘赌方法选择其中50%为父代
  Cross_and_Mutation(Gparent, Gchild, Pc, Pm, upper, lower, Pop, Ppool) #交叉和变异生成子代
  Choose_next(G, Gchild, Gsum, Pop)  #选择出父代和子代中较优秀的个体
  Cbest = Find_Best(G, Pop)
  if Best.fitness < Cbest.fitness:
   Best = copy.deepcopy(Cbest)  #跟新最优解
  else:
   G[Cbest.place] = copy.deepcopy(Best)
  Best = Self_Learn(Best, upper, lower, sPm, sLearn)
  print(Best.fitness)
 x1, x2 = Decode(Best.x)
 print(Best.x)
 print([x1, x2])

以上这篇Python实现遗传算法(二进制编码)求函数最优值方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Django框架下在URLconf中指定视图缓存的方法
Jul 23 Python
python常见排序算法基础教程
Apr 13 Python
python之PyMongo使用总结
May 26 Python
Django与JS交互的示例代码
Aug 23 Python
NumPy 数组使用大全
Apr 25 Python
如何通过python的fabric包完成代码上传部署
Jul 29 Python
python隐藏类中属性的3种实现方法
Dec 19 Python
Pytorch数据拼接与拆分操作实现图解
Apr 30 Python
使用tensorflow实现VGG网络,训练mnist数据集方式
May 26 Python
opencv 阈值分割的具体使用
Jul 08 Python
如何完美的建立一个python项目
Oct 09 Python
python 检测图片是否有马赛克
Dec 01 Python
python加密解密库cryptography使用openSSL生成的密匙加密解密
Feb 11 #Python
如何通过python实现全排列
Feb 11 #Python
Python3加密解密库Crypto的RSA加解密和签名/验签实现方法实例
Feb 11 #Python
python 遗传算法求函数极值的实现代码
Feb 11 #Python
在django中使用apscheduler 执行计划任务的实现方法
Feb 11 #Python
django在保存图像的同时压缩图像示例代码详解
Feb 11 #Python
Python中包的用法及安装
Feb 11 #Python
You might like
discuz论坛 用户登录 后台程序代码
2008/11/27 PHP
php的urlencode()URL编码函数浅析
2011/08/09 PHP
基于php 随机数的深入理解
2013/06/05 PHP
检查用户名是否已在mysql中存在的php写法
2014/01/20 PHP
PHP会话操作之cookie用法分析
2016/09/28 PHP
PHP使用pdo连接access数据库并循环显示数据操作示例
2018/06/05 PHP
JAVASCRIPT style 中visibility和display之间的区别
2010/01/22 Javascript
JS特权方法定义作用以及与公有方法的区别
2013/03/18 Javascript
input 输入框获得/失去焦点时隐藏/显示文字(jquery版)
2013/04/02 Javascript
javascript从定义到执行 你不知道的那些事
2016/01/04 Javascript
EasyUI布局 高度自适应
2016/06/04 Javascript
jQuery插件FusionCharts绘制的2D条状图效果【附demo源码】
2017/05/13 jQuery
深入理解Vue官方文档梳理之全局API
2017/11/22 Javascript
Vue源码解读之Component组件注册的实现
2018/08/24 Javascript
解决vue-cli脚手架打包后vendor文件过大的问题
2018/09/27 Javascript
Nuxt.js 数据双向绑定的实现
2019/02/17 Javascript
JavaScript实现五子棋游戏的方法详解
2019/07/08 Javascript
Python实现并行抓取整站40万条房价数据(可更换抓取城市)
2016/12/14 Python
pyhton中__pycache__文件夹的产生与作用详解
2019/11/24 Python
Pandas 解决dataframe的一列进行向下顺移问题
2019/12/27 Python
Python定时器线程池原理详解
2020/02/26 Python
Mac中PyCharm配置Anaconda环境的方法
2020/03/04 Python
pandas创建DataFrame的7种方法小结
2020/06/14 Python
python模拟点击玩游戏的实例讲解
2020/11/26 Python
Python实现京东抢秒杀功能
2021/01/25 Python
商务英语毕业生自荐信范文
2013/11/08 职场文书
党校培训思想汇报
2014/01/03 职场文书
大学毕业感言100字
2014/02/03 职场文书
《学会合作》教学反思
2014/04/12 职场文书
房屋买卖委托书格式范本格式
2014/10/13 职场文书
工伤私了协议书范本
2014/11/24 职场文书
滴水洞导游词
2015/02/10 职场文书
追讨欠款律师函
2015/05/27 职场文书
妈妈再爱我一次观后感
2015/06/08 职场文书
详解php中流行的rpc框架
2021/05/29 PHP
Python 数据可视化工具 Pyecharts 安装及应用
2022/04/20 Python