python实现信号时域统计特征提取代码


Posted in Python onFebruary 26, 2020

1.实验数据需求

为了对采集的压力实验数据做特征工程,需要对信号进行时域的统计特征提取,包含了均值、均方根、偏度、峭度、波形因子、波峰因子、脉冲因子、峭度因子等,现用python对其进行实现。

2.python实现

其中的输入参数含义:

① data:实验数据的DataFrame

② p1:所截取实验信号的起始采样点位置

③ p2:所截取实验信号的终止采样点位置

from pandas import Series
import math
pstf_list=[]
def psfeatureTime(data,p1,p2):
 #均值
 df_mean=data[p1:p2].mean()
 #方差
 df_var=data[p1:p2].var()
 #标准差
 df_std=data[p1:p2].std()
 #均方根
 df_rms=math.sqrt(pow(df_mean,2) + pow(df_std,2))
 #偏度
 df_skew=data[p1:p2].skew()
 #峭度
 df_kurt=data[p1:p2].kurt()
 sum=0
 for i in range(p1,p2):
  sum+=math.sqrt(abs(data[i]))
 #波形因子
 df_boxing=df_rms / (abs(data[p1:p2]).mean())
 #峰值因子
 df_fengzhi=(max(data[p1:p2])) / df_rms
 #脉冲因子
 df_maichong=(max(data[p1:p2])) / (abs(data[p1:p2]).mean())
 #裕度因子
 df_yudu=(max(data[p1:p2])) / pow((sum/(p2-p1)),2)
 featuretime_list = [df_mean,df_rms,df_skew,df_kurt,df_boxing,df_fengzhi,df_maichong,df_yudu]
 return featuretime_list

3.结果与说明

python实现信号时域统计特征提取代码

补充拓展:python数据结构与算法--回溯算法详解

回溯算法:一种优先搜索算法(试探法);按优条件向前搜索,以达目标;当试探到某步,发现原来选择并不好(走不通),就退回重新选择。

回溯算法的一般步骤:1:定义问题的解空间(搜索中动态生成);2:确定易搜索的解空间结构(一般为树形结构或图);3:以深度优先的方式搜索解空间,搜索中用剪枝函数避免无效搜索。

剪枝函数:1:用约束函数在扩展节点处减去不满足约束条件的子树;2:用限界函数减去不能得到最优解的子树。

回溯法:实战

1:电话号码的字母组合

方法:回溯(适用于组合问题)

class Solution:
 def letterCombination(self,digits):
  
  phone={'2': ['a', 'b', 'c'],
     '3': ['d', 'e', 'f'],
     '4': ['g', 'h', 'i'],
     
     '5': ['j', 'k', 'l'],
     '6': ['m', 'n', 'o'],
     '7': ['p', 'q', 'r', 's'],
     '8': ['t', 'u', 'v'],
     '9': ['w', 'x', 'y', 'z']}
  
  res=[]#存放组合结果
  def backtrack(combination,next_digits):#回溯函数
   #combination目前已经产生的组合,next_digits:输入的下一个字符
   if len(next_digits)==0: #递归出口
    res.append(combination)
   else:
    for i in phone[next_digits[0]]:
     backtrack(combination+i,next_digits[1:]) #递归实现回溯
  if digits:
   backtrack('',digits) #初始化
  return res

2:全排列

输入: [1,2,3]

输出:

[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]

class Solution:
 def permute(self,nums):
  
  res=[] #存放组合结果
  size=len(nums)
  
  def backtrack(combination,nums):
   #combination目前已经产生的组合,nums为剩下的数组
   #递归出口
   #递归的结束一定 要有return
   if len(combination)==size:
    res.append(combination) 
    return #注意
   for i in range(len(nums)):
     backtrack(combination+[nums[i]],nums[:i]+nums[i+1:]) #递归回溯
  
  backtrack([],nums)
  return res
    
if __name__=='__main__':
 nums = [1,2,3]
 solution=Solution()
 print(solution.permute(nums))

3:数字组合

输入: candidates = [2,3,6,7], target = 7,

所求解集为:

[
[7],
[2,2,3]
]

class Solution:
 def combinationArray(self,candidates,target):
  
  candidates.sort()
  res=[] #存放组合结果
  size=len(candidates)
  
  def backtrack(combination,cur_sum,j):
   #combination目前已经产生的组合,cur_sum当前计算和,j用于控制求和的查找范围起点
   #递归出口
   if cur_sum>target:
    return 
   if cur_sum==target:
    res.append(combination)
   for i in range(j,size): #j避免重复
    if cur_sum+candidates[i]>target: #约束函数(剪)
     break
    j=i
    backtrack(combination+[candidates[i]],cur_sum+candidates[i],j)#递归回溯
    
  backtrack([],0,0)
  return res
if __name__=='__main__':
 candidates = [2,3,6,7]
 target = 7
 solution=Solution()
 print(solution.combinationArray(candidates,target))

4:

N皇后问题

class Solution: 
 def solveNqueen(self,n):
  
  res=[] #存放结果组合,对于N皇后问题,这里存放的是其放在每一行对应的列下标  
  def backtrack(combination):
    if len(combination)==n:
     res.append(combination)
     return
    for j in range(n):
     if combination:
      #排除当前行,列和对应的两个对角线。
      if j not in combination and j!=combination[-1]+1 and j!=combination[-1]-1:#约束条件
       backtrack(combination+[j]) #递归回溯
      else:
       continue 
     else:
     backtrack(combination+[j])     
             
  backtrack([]) #回溯初始化
  
  #转化为需要的格式
  output=[["." * k + "Q" + "." * (n - k - 1) for k in i] for i in res] #列表生成器
  return output
  
if __name__=='__main__':
 n=4
 solution=Solution()
 print(solution.solveNqueen(n))

5:子集

[1,2,3]的子集[[], [1], [1, 2], [1, 2, 3], [1, 3], [2], [2, 3], [3]]

class Solution(object):
 def subsets(self, nums):
  """
  :type nums: List[int]
  :rtype: List[List[int]]
  """
  res=[]#存放组合结果
  size=len(nums)
  
  def backtrack(combination,nums):
   #combination目前已经产生的组合,nums为剩下的数组
   if len(combination)<=size:
    res.append(combination)
   #递归出口
   #递归的结束一定 要有return
   if len(combination)==size:
    return 
   
   for i in range(len(nums)):
    backtrack(combination+[nums[i]],nums[i+1:]) #递归回溯
   
  backtrack([],nums)
  return res
 
if __name__=='__main__':
 nums=[1,2,3]
 solution=Solution()
 print(solution.subsets(nums))

6:

字母大小写的全排列

给定一个字符串S,通过将字符串S中的每个字母转变大小写,我们可以获得一个新的字符串。返回所有可能得到的字符串集合。

输入: S = "a1b2"

输出: ["a1b2", "a1B2", "A1b2", "A1B2"]

class Solution:
 def letterpermute(self,S):
  
  res=[]
  size=len(S)
  
  def backtrack(combination,S):
   
   if len(combination)==size:
    res.append(''.join(combination))
    return 
   
   for i in range(len(S)):
    if "a"<=S[i]<= "z" or "A"<=S[i]<= "Z":
     for j in range(2):
      if j==0:
       backtrack(combination+[S[i].lower()],S[i+1:])
      if j==1:
       backtrack(combination+[S[i].upper()],S[i+1:])
      
    else:
     backtrack(combination+[S[i]],S[i+1:])
     
     
  backtrack([],S)
  return res   
 
if __name__=='__main__':
 S=[i for i in "1B2"]
 solution=Solution()
 print(solution.letterpermute(S))

7:生成括号

括号生成:给出 n 代表生成括号的对数,请你写出一个函数,使其能够生成所有可能的并且有效的括号组合。

例如,给出 n = 3,生成结果为:

[
"((()))",
"(()())",
"(())()",
"()(())",
"()()()"
]

class Solution:
 def generateParenthesis(self,n):
  
  res=[] #存放组合结果
  def backtrack(combination,left,right):
   #combination目前已经产生的组合
   if len(combination)==2*n: #递归出口
    res.append(combination)
   #对于有效的括号,左边先出
   if left<n:
    backtrack(combination+'(',left+1,right)#递归实现回溯
   if right<left:
    backtrack(combination+')',left,right+1)#递归实现回溯
     
  backtrack('',0,0) #初始化
  return res 
if __name__=='__main__':
 n=3
 solution=Solution()
 print(solution.generateParenthesis(n))

以上这篇python实现信号时域统计特征提取代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现按行切分文本文件的方法
Apr 18 Python
Python使用cx_Oracle模块操作Oracle数据库详解
May 07 Python
python 请求服务器的实现代码(http请求和https请求)
May 25 Python
Python把对应格式的csv文件转换成字典类型存储脚本的方法
Feb 12 Python
12个Python程序员面试必备问题与答案(小结)
Jun 24 Python
Python 异常处理Ⅳ过程图解
Oct 18 Python
浅谈Python type的使用
Nov 19 Python
PyCharm 2020 激活到 2100 年的教程
Mar 25 Python
Python3 ID3决策树判断申请贷款是否成功的实现代码
May 21 Python
Python 在局部变量域中执行代码
Aug 07 Python
Python 操作 MySQL数据库
Sep 18 Python
基于Python 函数和方法的区别说明
Mar 24 Python
Python 基于FIR实现Hilbert滤波器求信号包络详解
Feb 26 #Python
python实现逆滤波与维纳滤波示例
Feb 26 #Python
Python全面分析系统的时域特性和频率域特性
Feb 26 #Python
解决pycharm每次打开项目都需要配置解释器和安装库问题
Feb 26 #Python
Python中os模块功能与用法详解
Feb 26 #Python
Python中sys模块功能与用法实例详解
Feb 26 #Python
Python线程threading模块用法详解
Feb 26 #Python
You might like
无限级别菜单的实现
2006/10/09 PHP
ubuntu10.04配置 nginx+php-fpm模式的详解
2013/06/03 PHP
PHP之header函数详解
2021/03/02 PHP
Angular 中 select指令用法详解
2016/09/29 Javascript
jQuery.cookie.js使用方法及相关参数解释
2017/03/06 Javascript
JavaScript实现简单精致的图片左右无缝滚动效果
2017/03/16 Javascript
JS实现的按钮点击颜色切换功能示例
2017/10/19 Javascript
JS 仿支付宝input文本输入框放大组件的实例
2017/11/14 Javascript
使用mock.js随机数据和使用express输出json接口的实现方法
2018/01/07 Javascript
Vue组件化开发思考
2018/02/02 Javascript
小程序自定义日历效果
2018/12/29 Javascript
jQuery实现表格的增、删、改操作示例
2019/01/27 jQuery
vue中各种通信传值方式总结
2019/02/14 Javascript
webpack-mvc 传统多页面组件化开发详解
2019/05/07 Javascript
小程序云开发如何实现图片上传及发表文字
2019/05/17 Javascript
解决Vue中使用keepAlive不缓存问题
2020/08/04 Javascript
[01:05]主宰至宝剑心之遗
2017/03/16 DOTA
[10:21]DOTA2-DPC中国联赛 正赛 PSG.LGD vs Aster 选手采访
2021/03/11 DOTA
Python日期操作学习笔记
2008/10/07 Python
基于python(urlparse)模板的使用方法总结
2017/10/13 Python
Python制作豆瓣图片的爬虫
2017/12/28 Python
python使用tcp实现局域网内文件传输
2020/03/20 Python
使用python无账号无限制获取企查查信息的实例代码
2020/04/17 Python
pandas中read_csv、rolling、expanding用法详解
2020/04/21 Python
Django REST Swagger实现指定api参数
2020/07/07 Python
软件设计的目标是什么
2016/12/04 面试题
涉外文秘个人求职的自我评价
2013/10/07 职场文书
2014医学院领导干部四风对照检查材料思想汇报
2014/09/16 职场文书
行政执法作风整顿剖析材料
2014/10/11 职场文书
六查六看自查报告
2014/10/14 职场文书
银行稽核岗位职责
2015/04/13 职场文书
全陪导游词开场白
2015/05/29 职场文书
员工离职证明范本
2015/06/12 职场文书
2015年秋季运动会加油稿
2015/07/22 职场文书
Python 实现定积分与二重定积分的操作
2021/05/26 Python
总结Python使用过程中的bug
2021/06/18 Python