python实现信号时域统计特征提取代码


Posted in Python onFebruary 26, 2020

1.实验数据需求

为了对采集的压力实验数据做特征工程,需要对信号进行时域的统计特征提取,包含了均值、均方根、偏度、峭度、波形因子、波峰因子、脉冲因子、峭度因子等,现用python对其进行实现。

2.python实现

其中的输入参数含义:

① data:实验数据的DataFrame

② p1:所截取实验信号的起始采样点位置

③ p2:所截取实验信号的终止采样点位置

from pandas import Series
import math
pstf_list=[]
def psfeatureTime(data,p1,p2):
 #均值
 df_mean=data[p1:p2].mean()
 #方差
 df_var=data[p1:p2].var()
 #标准差
 df_std=data[p1:p2].std()
 #均方根
 df_rms=math.sqrt(pow(df_mean,2) + pow(df_std,2))
 #偏度
 df_skew=data[p1:p2].skew()
 #峭度
 df_kurt=data[p1:p2].kurt()
 sum=0
 for i in range(p1,p2):
  sum+=math.sqrt(abs(data[i]))
 #波形因子
 df_boxing=df_rms / (abs(data[p1:p2]).mean())
 #峰值因子
 df_fengzhi=(max(data[p1:p2])) / df_rms
 #脉冲因子
 df_maichong=(max(data[p1:p2])) / (abs(data[p1:p2]).mean())
 #裕度因子
 df_yudu=(max(data[p1:p2])) / pow((sum/(p2-p1)),2)
 featuretime_list = [df_mean,df_rms,df_skew,df_kurt,df_boxing,df_fengzhi,df_maichong,df_yudu]
 return featuretime_list

3.结果与说明

python实现信号时域统计特征提取代码

补充拓展:python数据结构与算法--回溯算法详解

回溯算法:一种优先搜索算法(试探法);按优条件向前搜索,以达目标;当试探到某步,发现原来选择并不好(走不通),就退回重新选择。

回溯算法的一般步骤:1:定义问题的解空间(搜索中动态生成);2:确定易搜索的解空间结构(一般为树形结构或图);3:以深度优先的方式搜索解空间,搜索中用剪枝函数避免无效搜索。

剪枝函数:1:用约束函数在扩展节点处减去不满足约束条件的子树;2:用限界函数减去不能得到最优解的子树。

回溯法:实战

1:电话号码的字母组合

方法:回溯(适用于组合问题)

class Solution:
 def letterCombination(self,digits):
  
  phone={'2': ['a', 'b', 'c'],
     '3': ['d', 'e', 'f'],
     '4': ['g', 'h', 'i'],
     
     '5': ['j', 'k', 'l'],
     '6': ['m', 'n', 'o'],
     '7': ['p', 'q', 'r', 's'],
     '8': ['t', 'u', 'v'],
     '9': ['w', 'x', 'y', 'z']}
  
  res=[]#存放组合结果
  def backtrack(combination,next_digits):#回溯函数
   #combination目前已经产生的组合,next_digits:输入的下一个字符
   if len(next_digits)==0: #递归出口
    res.append(combination)
   else:
    for i in phone[next_digits[0]]:
     backtrack(combination+i,next_digits[1:]) #递归实现回溯
  if digits:
   backtrack('',digits) #初始化
  return res

2:全排列

输入: [1,2,3]

输出:

[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]

class Solution:
 def permute(self,nums):
  
  res=[] #存放组合结果
  size=len(nums)
  
  def backtrack(combination,nums):
   #combination目前已经产生的组合,nums为剩下的数组
   #递归出口
   #递归的结束一定 要有return
   if len(combination)==size:
    res.append(combination) 
    return #注意
   for i in range(len(nums)):
     backtrack(combination+[nums[i]],nums[:i]+nums[i+1:]) #递归回溯
  
  backtrack([],nums)
  return res
    
if __name__=='__main__':
 nums = [1,2,3]
 solution=Solution()
 print(solution.permute(nums))

3:数字组合

输入: candidates = [2,3,6,7], target = 7,

所求解集为:

[
[7],
[2,2,3]
]

class Solution:
 def combinationArray(self,candidates,target):
  
  candidates.sort()
  res=[] #存放组合结果
  size=len(candidates)
  
  def backtrack(combination,cur_sum,j):
   #combination目前已经产生的组合,cur_sum当前计算和,j用于控制求和的查找范围起点
   #递归出口
   if cur_sum>target:
    return 
   if cur_sum==target:
    res.append(combination)
   for i in range(j,size): #j避免重复
    if cur_sum+candidates[i]>target: #约束函数(剪)
     break
    j=i
    backtrack(combination+[candidates[i]],cur_sum+candidates[i],j)#递归回溯
    
  backtrack([],0,0)
  return res
if __name__=='__main__':
 candidates = [2,3,6,7]
 target = 7
 solution=Solution()
 print(solution.combinationArray(candidates,target))

4:

N皇后问题

class Solution: 
 def solveNqueen(self,n):
  
  res=[] #存放结果组合,对于N皇后问题,这里存放的是其放在每一行对应的列下标  
  def backtrack(combination):
    if len(combination)==n:
     res.append(combination)
     return
    for j in range(n):
     if combination:
      #排除当前行,列和对应的两个对角线。
      if j not in combination and j!=combination[-1]+1 and j!=combination[-1]-1:#约束条件
       backtrack(combination+[j]) #递归回溯
      else:
       continue 
     else:
     backtrack(combination+[j])     
             
  backtrack([]) #回溯初始化
  
  #转化为需要的格式
  output=[["." * k + "Q" + "." * (n - k - 1) for k in i] for i in res] #列表生成器
  return output
  
if __name__=='__main__':
 n=4
 solution=Solution()
 print(solution.solveNqueen(n))

5:子集

[1,2,3]的子集[[], [1], [1, 2], [1, 2, 3], [1, 3], [2], [2, 3], [3]]

class Solution(object):
 def subsets(self, nums):
  """
  :type nums: List[int]
  :rtype: List[List[int]]
  """
  res=[]#存放组合结果
  size=len(nums)
  
  def backtrack(combination,nums):
   #combination目前已经产生的组合,nums为剩下的数组
   if len(combination)<=size:
    res.append(combination)
   #递归出口
   #递归的结束一定 要有return
   if len(combination)==size:
    return 
   
   for i in range(len(nums)):
    backtrack(combination+[nums[i]],nums[i+1:]) #递归回溯
   
  backtrack([],nums)
  return res
 
if __name__=='__main__':
 nums=[1,2,3]
 solution=Solution()
 print(solution.subsets(nums))

6:

字母大小写的全排列

给定一个字符串S,通过将字符串S中的每个字母转变大小写,我们可以获得一个新的字符串。返回所有可能得到的字符串集合。

输入: S = "a1b2"

输出: ["a1b2", "a1B2", "A1b2", "A1B2"]

class Solution:
 def letterpermute(self,S):
  
  res=[]
  size=len(S)
  
  def backtrack(combination,S):
   
   if len(combination)==size:
    res.append(''.join(combination))
    return 
   
   for i in range(len(S)):
    if "a"<=S[i]<= "z" or "A"<=S[i]<= "Z":
     for j in range(2):
      if j==0:
       backtrack(combination+[S[i].lower()],S[i+1:])
      if j==1:
       backtrack(combination+[S[i].upper()],S[i+1:])
      
    else:
     backtrack(combination+[S[i]],S[i+1:])
     
     
  backtrack([],S)
  return res   
 
if __name__=='__main__':
 S=[i for i in "1B2"]
 solution=Solution()
 print(solution.letterpermute(S))

7:生成括号

括号生成:给出 n 代表生成括号的对数,请你写出一个函数,使其能够生成所有可能的并且有效的括号组合。

例如,给出 n = 3,生成结果为:

[
"((()))",
"(()())",
"(())()",
"()(())",
"()()()"
]

class Solution:
 def generateParenthesis(self,n):
  
  res=[] #存放组合结果
  def backtrack(combination,left,right):
   #combination目前已经产生的组合
   if len(combination)==2*n: #递归出口
    res.append(combination)
   #对于有效的括号,左边先出
   if left<n:
    backtrack(combination+'(',left+1,right)#递归实现回溯
   if right<left:
    backtrack(combination+')',left,right+1)#递归实现回溯
     
  backtrack('',0,0) #初始化
  return res 
if __name__=='__main__':
 n=3
 solution=Solution()
 print(solution.generateParenthesis(n))

以上这篇python实现信号时域统计特征提取代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python函数返回多个值的示例方法
Dec 04 Python
python定时器使用示例分享
Feb 16 Python
python取代netcat过程分析
Feb 10 Python
python去重,一个由dict组成的list的去重示例
Jan 21 Python
Python使用post及get方式提交数据的实例
Jan 24 Python
Python使用lambda表达式对字典排序操作示例
Jul 25 Python
python numpy数组中的复制知识解析
Feb 03 Python
Python3-异步进程回调函数(callback())介绍
May 02 Python
python访问hdfs的操作
Jun 06 Python
matplotlib bar()实现多组数据并列柱状图通用简便创建方法
Feb 24 Python
OpenCV绘制圆端矩形的示例代码
Aug 30 Python
C3 线性化算法与 MRO之Python中的多继承
Oct 05 Python
Python 基于FIR实现Hilbert滤波器求信号包络详解
Feb 26 #Python
python实现逆滤波与维纳滤波示例
Feb 26 #Python
Python全面分析系统的时域特性和频率域特性
Feb 26 #Python
解决pycharm每次打开项目都需要配置解释器和安装库问题
Feb 26 #Python
Python中os模块功能与用法详解
Feb 26 #Python
Python中sys模块功能与用法实例详解
Feb 26 #Python
Python线程threading模块用法详解
Feb 26 #Python
You might like
PHP中创建并处理图象
2006/10/09 PHP
php面向对象全攻略 (六)__set() __get() __isset() __unset()的用法
2009/09/30 PHP
PHP下打开URL地址的几种方法小结
2010/05/16 PHP
PHP中通过HTTP_USER_AGENT判断是否为手机移动终端的函数代码
2013/02/14 PHP
Javascript 类与静态类的实现(续)
2010/04/02 Javascript
指定位置如果有图片显示图片,无图片显示广告的JS
2010/06/05 Javascript
分享一道笔试题[有n个直线最多可以把一个平面分成多少个部分]
2012/10/12 Javascript
js+HTML5实现视频截图的方法
2015/06/16 Javascript
JS模态窗口返回值兼容问题的完美解决方法
2016/05/28 Javascript
浅谈js中子页面父页面方法 变量相互调用
2016/08/04 Javascript
同步文本框内容JS代码实现
2016/08/04 Javascript
ES6学习之变量的解构赋值
2017/02/12 Javascript
JavaScript中this的用法及this在不同应用场景的作用解析
2017/04/13 Javascript
react-router实现跳转传值的方法示例
2017/05/27 Javascript
vue的安装及element组件的安装方法
2018/03/09 Javascript
npm 常用命令详解(小结)
2019/01/17 Javascript
使用vue-router在Vue页面之间传递数据的方法
2019/07/15 Javascript
Vue实现导航栏的显示开关控制
2019/11/01 Javascript
使用nodeJS中的fs模块对文件及目录进行读写,删除,追加,等操作详解
2020/02/06 NodeJs
使用AutoJs实现微信抢红包的代码
2020/12/31 Javascript
vue组件是如何解析及渲染的?
2021/01/13 Vue.js
Python2.7基于淘宝接口获取IP地址所在地理位置的方法【测试可用】
2017/06/07 Python
TF-IDF算法解析与Python实现方法详解
2017/11/16 Python
python中abs&amp;map&amp;reduce简介
2018/02/20 Python
python计算两个地址之间的距离方法
2018/06/09 Python
Python 一键获取百度网盘提取码的方法
2019/08/01 Python
AP澳洲中文网:澳洲正品直邮,包税收件无忧
2019/07/12 全球购物
The North Face官方旗舰店:美国著名户外品牌
2020/09/28 全球购物
Final类有什么特点
2012/04/25 面试题
JSP&Servlet技术面试题
2015/05/21 面试题
租赁意向书范本
2014/04/01 职场文书
《猴子种果树》教学反思
2014/04/26 职场文书
副总经理任命书
2014/06/05 职场文书
幼儿园家长工作总结2015
2015/04/25 职场文书
校园文化艺术节开幕词
2016/03/04 职场文书
Django migrate报错的解决方案
2021/05/20 Python