python实现信号时域统计特征提取代码


Posted in Python onFebruary 26, 2020

1.实验数据需求

为了对采集的压力实验数据做特征工程,需要对信号进行时域的统计特征提取,包含了均值、均方根、偏度、峭度、波形因子、波峰因子、脉冲因子、峭度因子等,现用python对其进行实现。

2.python实现

其中的输入参数含义:

① data:实验数据的DataFrame

② p1:所截取实验信号的起始采样点位置

③ p2:所截取实验信号的终止采样点位置

from pandas import Series
import math
pstf_list=[]
def psfeatureTime(data,p1,p2):
 #均值
 df_mean=data[p1:p2].mean()
 #方差
 df_var=data[p1:p2].var()
 #标准差
 df_std=data[p1:p2].std()
 #均方根
 df_rms=math.sqrt(pow(df_mean,2) + pow(df_std,2))
 #偏度
 df_skew=data[p1:p2].skew()
 #峭度
 df_kurt=data[p1:p2].kurt()
 sum=0
 for i in range(p1,p2):
  sum+=math.sqrt(abs(data[i]))
 #波形因子
 df_boxing=df_rms / (abs(data[p1:p2]).mean())
 #峰值因子
 df_fengzhi=(max(data[p1:p2])) / df_rms
 #脉冲因子
 df_maichong=(max(data[p1:p2])) / (abs(data[p1:p2]).mean())
 #裕度因子
 df_yudu=(max(data[p1:p2])) / pow((sum/(p2-p1)),2)
 featuretime_list = [df_mean,df_rms,df_skew,df_kurt,df_boxing,df_fengzhi,df_maichong,df_yudu]
 return featuretime_list

3.结果与说明

python实现信号时域统计特征提取代码

补充拓展:python数据结构与算法--回溯算法详解

回溯算法:一种优先搜索算法(试探法);按优条件向前搜索,以达目标;当试探到某步,发现原来选择并不好(走不通),就退回重新选择。

回溯算法的一般步骤:1:定义问题的解空间(搜索中动态生成);2:确定易搜索的解空间结构(一般为树形结构或图);3:以深度优先的方式搜索解空间,搜索中用剪枝函数避免无效搜索。

剪枝函数:1:用约束函数在扩展节点处减去不满足约束条件的子树;2:用限界函数减去不能得到最优解的子树。

回溯法:实战

1:电话号码的字母组合

方法:回溯(适用于组合问题)

class Solution:
 def letterCombination(self,digits):
  
  phone={'2': ['a', 'b', 'c'],
     '3': ['d', 'e', 'f'],
     '4': ['g', 'h', 'i'],
     
     '5': ['j', 'k', 'l'],
     '6': ['m', 'n', 'o'],
     '7': ['p', 'q', 'r', 's'],
     '8': ['t', 'u', 'v'],
     '9': ['w', 'x', 'y', 'z']}
  
  res=[]#存放组合结果
  def backtrack(combination,next_digits):#回溯函数
   #combination目前已经产生的组合,next_digits:输入的下一个字符
   if len(next_digits)==0: #递归出口
    res.append(combination)
   else:
    for i in phone[next_digits[0]]:
     backtrack(combination+i,next_digits[1:]) #递归实现回溯
  if digits:
   backtrack('',digits) #初始化
  return res

2:全排列

输入: [1,2,3]

输出:

[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]

class Solution:
 def permute(self,nums):
  
  res=[] #存放组合结果
  size=len(nums)
  
  def backtrack(combination,nums):
   #combination目前已经产生的组合,nums为剩下的数组
   #递归出口
   #递归的结束一定 要有return
   if len(combination)==size:
    res.append(combination) 
    return #注意
   for i in range(len(nums)):
     backtrack(combination+[nums[i]],nums[:i]+nums[i+1:]) #递归回溯
  
  backtrack([],nums)
  return res
    
if __name__=='__main__':
 nums = [1,2,3]
 solution=Solution()
 print(solution.permute(nums))

3:数字组合

输入: candidates = [2,3,6,7], target = 7,

所求解集为:

[
[7],
[2,2,3]
]

class Solution:
 def combinationArray(self,candidates,target):
  
  candidates.sort()
  res=[] #存放组合结果
  size=len(candidates)
  
  def backtrack(combination,cur_sum,j):
   #combination目前已经产生的组合,cur_sum当前计算和,j用于控制求和的查找范围起点
   #递归出口
   if cur_sum>target:
    return 
   if cur_sum==target:
    res.append(combination)
   for i in range(j,size): #j避免重复
    if cur_sum+candidates[i]>target: #约束函数(剪)
     break
    j=i
    backtrack(combination+[candidates[i]],cur_sum+candidates[i],j)#递归回溯
    
  backtrack([],0,0)
  return res
if __name__=='__main__':
 candidates = [2,3,6,7]
 target = 7
 solution=Solution()
 print(solution.combinationArray(candidates,target))

4:

N皇后问题

class Solution: 
 def solveNqueen(self,n):
  
  res=[] #存放结果组合,对于N皇后问题,这里存放的是其放在每一行对应的列下标  
  def backtrack(combination):
    if len(combination)==n:
     res.append(combination)
     return
    for j in range(n):
     if combination:
      #排除当前行,列和对应的两个对角线。
      if j not in combination and j!=combination[-1]+1 and j!=combination[-1]-1:#约束条件
       backtrack(combination+[j]) #递归回溯
      else:
       continue 
     else:
     backtrack(combination+[j])     
             
  backtrack([]) #回溯初始化
  
  #转化为需要的格式
  output=[["." * k + "Q" + "." * (n - k - 1) for k in i] for i in res] #列表生成器
  return output
  
if __name__=='__main__':
 n=4
 solution=Solution()
 print(solution.solveNqueen(n))

5:子集

[1,2,3]的子集[[], [1], [1, 2], [1, 2, 3], [1, 3], [2], [2, 3], [3]]

class Solution(object):
 def subsets(self, nums):
  """
  :type nums: List[int]
  :rtype: List[List[int]]
  """
  res=[]#存放组合结果
  size=len(nums)
  
  def backtrack(combination,nums):
   #combination目前已经产生的组合,nums为剩下的数组
   if len(combination)<=size:
    res.append(combination)
   #递归出口
   #递归的结束一定 要有return
   if len(combination)==size:
    return 
   
   for i in range(len(nums)):
    backtrack(combination+[nums[i]],nums[i+1:]) #递归回溯
   
  backtrack([],nums)
  return res
 
if __name__=='__main__':
 nums=[1,2,3]
 solution=Solution()
 print(solution.subsets(nums))

6:

字母大小写的全排列

给定一个字符串S,通过将字符串S中的每个字母转变大小写,我们可以获得一个新的字符串。返回所有可能得到的字符串集合。

输入: S = "a1b2"

输出: ["a1b2", "a1B2", "A1b2", "A1B2"]

class Solution:
 def letterpermute(self,S):
  
  res=[]
  size=len(S)
  
  def backtrack(combination,S):
   
   if len(combination)==size:
    res.append(''.join(combination))
    return 
   
   for i in range(len(S)):
    if "a"<=S[i]<= "z" or "A"<=S[i]<= "Z":
     for j in range(2):
      if j==0:
       backtrack(combination+[S[i].lower()],S[i+1:])
      if j==1:
       backtrack(combination+[S[i].upper()],S[i+1:])
      
    else:
     backtrack(combination+[S[i]],S[i+1:])
     
     
  backtrack([],S)
  return res   
 
if __name__=='__main__':
 S=[i for i in "1B2"]
 solution=Solution()
 print(solution.letterpermute(S))

7:生成括号

括号生成:给出 n 代表生成括号的对数,请你写出一个函数,使其能够生成所有可能的并且有效的括号组合。

例如,给出 n = 3,生成结果为:

[
"((()))",
"(()())",
"(())()",
"()(())",
"()()()"
]

class Solution:
 def generateParenthesis(self,n):
  
  res=[] #存放组合结果
  def backtrack(combination,left,right):
   #combination目前已经产生的组合
   if len(combination)==2*n: #递归出口
    res.append(combination)
   #对于有效的括号,左边先出
   if left<n:
    backtrack(combination+'(',left+1,right)#递归实现回溯
   if right<left:
    backtrack(combination+')',left,right+1)#递归实现回溯
     
  backtrack('',0,0) #初始化
  return res 
if __name__=='__main__':
 n=3
 solution=Solution()
 print(solution.generateParenthesis(n))

以上这篇python实现信号时域统计特征提取代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
用实例详解Python中的Django框架中prefetch_related()函数对数据库查询的优化
Apr 01 Python
Python pickle模块用法实例
Apr 14 Python
python爬虫获取京东手机图片的图文教程
Dec 29 Python
Python 调用PIL库失败的解决方法
Jan 08 Python
pandas DataFrame索引行列的实现
Jun 04 Python
django项目环境搭建及在虚拟机本地创建django项目的教程
Aug 02 Python
Python使用百度api做人脸对比的方法
Aug 28 Python
keras实现多种分类网络的方式
Jun 11 Python
Python数据可视化图实现过程详解
Jun 12 Python
Python调用OpenCV实现图像平滑代码实例
Jun 19 Python
python使用matplotlib绘制图片时x轴的刻度处理
Aug 30 Python
如何利用python实现列表嵌套字典取值
Jun 10 Python
Python 基于FIR实现Hilbert滤波器求信号包络详解
Feb 26 #Python
python实现逆滤波与维纳滤波示例
Feb 26 #Python
Python全面分析系统的时域特性和频率域特性
Feb 26 #Python
解决pycharm每次打开项目都需要配置解释器和安装库问题
Feb 26 #Python
Python中os模块功能与用法详解
Feb 26 #Python
Python中sys模块功能与用法实例详解
Feb 26 #Python
Python线程threading模块用法详解
Feb 26 #Python
You might like
php的header和asp中的redirect比较
2006/10/09 PHP
PHPMailer安装方法及简单实例
2008/11/25 PHP
PHP实现的XML操作类【XML Library】
2016/12/29 PHP
Yii2实现增删改查后留在当前页的方法详解
2017/01/13 PHP
PHP实现更改hosts文件的方法示例
2017/08/08 PHP
详解Laravel设置多态关系模型别名的方式
2019/10/17 PHP
JavaScript弹簧振子超简洁版 完全符合能量守恒,胡克定理
2009/10/25 Javascript
javascript基本类型详解
2014/11/28 Javascript
详解百度百科目录导航树小插件
2017/01/08 Javascript
基于JavaScript实现窗口拖动效果
2017/01/18 Javascript
javascript自执行函数
2017/02/10 Javascript
JS实现鼠标按下拖拽效果
2020/07/23 Javascript
VsCode里的Vue模板的实现
2020/08/12 Javascript
[46:47]2014 DOTA2国际邀请赛中国区预选赛 DT VS HGT
2014/05/22 DOTA
[09:33]2015国际邀请赛第四日TOP10
2015/08/08 DOTA
python使用点操作符访问字典(dict)数据的方法
2015/03/16 Python
Windows下使Python2.x版本的解释器与3.x共存的方法
2015/10/25 Python
Python 反转字符串(reverse)的方法小结
2018/02/20 Python
Python3实现的简单验证码识别功能示例
2018/05/02 Python
python中copy()与deepcopy()的区别小结
2018/08/03 Python
对python:threading.Thread类的使用方法详解
2019/01/31 Python
python中时间模块的基本使用教程
2019/05/14 Python
python对数组进行排序,并输出排序后对应的索引值方式
2020/02/28 Python
django表单中的按钮获取数据的实例分析
2020/07/31 Python
Python定时任务框架APScheduler原理及常用代码
2020/10/05 Python
加拿大知名的国际儿童品牌:Hatley
2016/11/09 全球购物
AP澳洲中文网:澳洲正品直邮,包税收件无忧
2019/07/12 全球购物
C++面试题:关于链表和指针
2013/06/05 面试题
大学生的四年学习自我评价
2013/12/13 职场文书
安全大检查实施方案
2014/02/22 职场文书
美德少年事迹材料500字
2014/08/19 职场文书
工作自我评价范文
2015/03/05 职场文书
保研导师推荐信
2015/03/25 职场文书
工程技术员岗位职责
2015/04/11 职场文书
2015年生活老师工作总结
2015/05/27 职场文书
Pandas 数据编码的十种方法
2022/04/20 Python