Posted in Python onMarch 01, 2021
题目:
汉诺塔给出最优解,如果对汉诺塔的定义有不了解,请翻看数据结构教材。
除了最基本的之外,还有一题,给定一个数组,arr=[2,3,1,2,3],其含义是这是一个有5个圆盘的汉诺塔,每一个数字代表这个圆盘所在的位置,1代表左边的柱子,2代表中间,3代表右边。给出这个序列代表了汉诺塔移动的第几步,如果该步骤是错误的,则返回-1,所谓错误,是指该步骤不是最简便的得到汉诺塔序列的操作步骤。
分析:
1、 算法当然还是递归解了,即把n个汉诺塔盘子分解成 n - 1 个盘子的移动和一个底层盘子的移动,这样一来,问题就成了一连串的递归,然后就可以逐步求解了。
当然了,汉诺塔还有进阶问题,此处先不讨论,随后补上吧。
2、 这个步骤的循环是从最右边开始的,考察最大的圆盘,因为数组的索引值越大,其圆盘的半径越大。
这样一来,如果最大的圆盘的值为3,说明已经移动到位了,如果为1,说明还没有开始移动底层圆盘,如果为2,说明圆盘移动到了中间,表示移动错误,因为根本不需要移动到中间,这个步骤是多余的。
代码:
#!usr/bin/python2.7 # -*- coding=utf8 -*- # @Time : 18-1-3 下午9:52 # @Author : Cecil Charlie class Hanoi(object): """ 汉诺塔问题,给定三个盘子,用计算机计算出来将所有的盘子从左移动到右的所有的操作。 """ def __init__(self): self.place = ["left", "middle", "right"] self.num = 0 # 表示所有操作的总次数 def hanoi(self, n): """ 给定一个n,即汉诺塔的盘子数量,返回所有的从左移动到右侧的具体操作步数 :param n: 盘子数 :return: 具体操作 """ self.num = 0 if n > 0: self.__move(n, "left", "middle", "right") def __move(self, n, start, mid, end): if n == 1: print "move from " + start + " to " + end self.num += 1 else: self.__move(n-1, start, end, mid) self.__move(1, start, mid, end) self.__move(n-1, mid, start, end) def step(self, arr): """ 求解针对arr的圆盘,所对应的最优解到底是第几步。解题的核心在于从右向左考察圆盘到底在不在3位置,如果在,则说明已经移动成功了; 如果在中间,说明移动出现了错误,因为不需要移动到中间,如果还在左边,则仍需要考虑。 :param arr: 列表中每一项表示该项的圆盘在哪个柱子上,取值包括1,2,3。1表示左,2表示中,3表示右,索引值越大,表示的圆盘的半径越大。 :return: 属于最优解的第几步 """ if arr is None: return -1 for i in xrange(len(arr) - 1): if arr[i] != 1 and arr[i] != 2 and arr[i] != 3: return -1 return self.__process(arr, len(arr)-1, 1, 2, 3) def __process(self, arr, i, start, mid, end): """ 具体操作得到arr属于第几步 :param arr: 圆盘对应的位置数组列表 :param i: 考察arr圆盘的第几个,最大值是 len(arr)-1 :return: 返回步数,如果给出的arr的位置不是移动的最优解,则返回 -1。 """ if i == -1: return 0 if arr[i] != start and arr[i] != end: return -1 if arr[i] == start: return self.__process(arr, i-1, start, end, mid) # 说明其值还未过半,直接找之前的就好 else: # 说明步数已经过半了。 count = self.__process(arr, i-1, mid, start, end) if count == -1: return -1 return (i * 2) + count h = Hanoi() h.hanoi(4) print h.num print h.step([3,3,2,1])
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。
python实现汉诺塔算法
- Author -
冬日新雨声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@