浅谈TensorFlow中读取图像数据的三种方式


Posted in Python onJune 30, 2020

 本文面对三种常常遇到的情况,总结三种读取数据的方式,分别用于处理单张图片、大量图片,和TFRecorder读取方式。并且还补充了功能相近的tf函数。

1、处理单张图片

我们训练完模型之后,常常要用图片测试,有的时候,我们并不需要对很多图像做测试,可能就是几张甚至一张。这种情况下没有必要用队列机制。

import tensorflow as tf
import matplotlib.pyplot as plt

def read_image(file_name):
 img = tf.read_file(filename=file_name)  # 默认读取格式为uint8
 print("img 的类型是",type(img));
 img = tf.image.decode_jpeg(img,channels=0) # channels 为1得到的是灰度图,为0则按照图片格式来读
 return img

def main( ):
 with tf.device("/cpu:0"):

  # img_path是文件所在地址包括文件名称,地址用相对地址或者绝对地址都行 
   img_path='./1.jpg'
   img=read_image(img_path)
   with tf.Session() as sess:
   image_numpy=sess.run(img)
   print(image_numpy)
   print(image_numpy.dtype)
   print(image_numpy.shape)
   plt.imshow(image_numpy)
   plt.show()

if __name__=="__main__":
 main()

"""

输出结果为:

img 的类型是 <class 'tensorflow.python.framework.ops.Tensor'>
[[[196 219 209]
  [196 219 209]
  [196 219 209]
  ...

 [[ 71 106  42]
  [ 59  89  39]
  [ 34  63  19]
  ...
  [ 21  52  46]
  [ 15  45  43]
  [ 22  50  53]]]
uint8
(675, 1200, 3)
"""

 

和tf.read_file用法相似的函数还有tf.gfile.FastGFile  tf.gfile.GFile,只是要指定读取方式是'r' 还是'rb' 。

2、需要读取大量图像用于训练

这种情况就需要使用Tensorflow队列机制。首先是获得每张图片的路径,把他们都放进一个list里面,然后用string_input_producer创建队列,再用tf.WholeFileReader读取。具体请看下例:

def get_image_batch(data_file,batch_size):
 data_names=[os.path.join(data_file,k) for k in os.listdir(data_file)]
 
 #这个num_epochs函数在整个Graph是local Variable,所以在sess.run全局变量的时候也要加上局部变量。 
 filenames_queue=tf.train.string_input_producer(data_names,num_epochs=50,shuffle=True,capacity=512)
 reader=tf.WholeFileReader()
 _,img_bytes=reader.read(filenames_queue)
 image=tf.image.decode_png(img_bytes,channels=1) #读取的是什么格式,就decode什么格式
 #解码成单通道的,并且获得的结果的shape是[?, ?,1],也就是Graph不知道图像的大小,需要set_shape
 image.set_shape([180,180,1]) #set到原本已知图像的大小。或者直接通过tf.image.resize_images,tf.reshape()
 image=tf.image.convert_image_dtype(image,tf.float32)
 #预处理 下面的一句代码可以换成自己想使用的预处理方式
 #image=tf.divide(image,255.0) 
 return tf.train.batch([image],batch_size)

这里的date_file是指文件夹所在的路径,不包括文件名。第一句是遍历指定目录下的文件名称,存放到一个list中。当然这个做法有很多种方法,比如glob.glob,或者tf.train.match_filename_once

全部代码如下:

import tensorflow as tf
import os
def read_image(data_file,batch_size):
 data_names=[os.path.join(data_file,k) for k in os.listdir(data_file)]
 filenames_queue=tf.train.string_input_producer(data_names,num_epochs=5,shuffle=True,capacity=30)
 reader=tf.WholeFileReader()
 _,img_bytes=reader.read(filenames_queue)
 image=tf.image.decode_jpeg(img_bytes,channels=1)
 image=tf.image.resize_images(image,(180,180))

 image=tf.image.convert_image_dtype(image,tf.float32)
 return tf.train.batch([image],batch_size)

def main( ):
 img_path=r'F:\dataSet\WIDER\WIDER_train\images\6--Funeral' #本地的一个数据集目录,有足够的图像
 img=read_image(img_path,batch_size=10)
 image=img[0] #取出每个batch的第一个数据
 print(image)
 init=[tf.global_variables_initializer(),tf.local_variables_initializer()]
 with tf.Session() as sess:
  sess.run(init)
  coord = tf.train.Coordinator()
  threads = tf.train.start_queue_runners(sess=sess,coord=coord)
  try:
   while not coord.should_stop():
    print(image.shape)
  except tf.errors.OutOfRangeError:
   print('read done')
  finally:
   coord.request_stop()
  coord.join(threads)


if __name__=="__main__":
 main()

"""

输出如下:

(180, 180, 1)
(180, 180, 1)
(180, 180, 1)
(180, 180, 1)
(180, 180, 1)
"""

这段代码可以说写的很是规整了。注意到init里面有对local变量的初始化,并且因为用到了队列,当然要告诉电脑什么时候队列开始, tf.train.Coordinator 和 tf.train.start_queue_runners 就是两个管理队列的类,用法如程序所示。

与 tf.train.string_input_producer相似的函数是 tf.train.slice_input_producer。 tf.train.slice_input_producer和tf.train.string_input_producer的第一个参数形式不一样。等有时间再做一个二者比较的博客

 3、对TFRecorder解码获得图像数据

其实这块和上一种方式差不多的,更重要的是怎么生成TFRecorder文件,这一部分我会补充到另一篇博客上。

仍然使用 tf.train.string_input_producer。

import tensorflow as tf
import matplotlib.pyplot as plt
import os
import cv2
import numpy as np
import glob

def read_image(data_file,batch_size):
 files_path=glob.glob(data_file)
 queue=tf.train.string_input_producer(files_path,num_epochs=None)
 reader = tf.TFRecordReader()
 print(queue)
 _, serialized_example = reader.read(queue)
 features = tf.parse_single_example(
  serialized_example,
  features={
   'image_raw': tf.FixedLenFeature([], tf.string),
   'label_raw': tf.FixedLenFeature([], tf.string),
  })
 image = tf.decode_raw(features['image_raw'], tf.uint8)
 image = tf.cast(image, tf.float32)
 image.set_shape((12*12*3))
 label = tf.decode_raw(features['label_raw'], tf.float32)
 label.set_shape((2))
 # 预处理部分省略,大家可以自己根据需要添加
 return tf.train.batch([image,label],batch_size=batch_size,num_threads=4,capacity=5*batch_size)

def main( ):
 img_path=r'F:\python\MTCNN_by_myself\prepare_data\pnet*.tfrecords' #本地的几个tf文件
 img,label=read_image(img_path,batch_size=10)
 image=img[0]
 init=[tf.global_variables_initializer(),tf.local_variables_initializer()]
 with tf.Session() as sess:
  sess.run(init)
  coord = tf.train.Coordinator()
  threads = tf.train.start_queue_runners(sess=sess,coord=coord)
  try:
   while not coord.should_stop():
    print(image.shape)
  except tf.errors.OutOfRangeError:
   print('read done')
  finally:
   coord.request_stop()
  coord.join(threads)


if __name__=="__main__":
 main()

在read_image函数中,先使用glob函数获得了存放tfrecord文件的列表,然后根据TFRecord文件是如何存的就如何parse,再set_shape;这里有必要提醒下parse的方式。我们看到这里用的是tf.decode_raw ,因为做TFRecord是将图像数据string化了,数据是串行的,丢失了空间结果。从features中取出image和label的数据,这时就要用 tf.decode_raw  解码,得到的结果当然也是串行的了,所以set_shape 成一个串行的,再reshape。这种方式是取决于你的编码TFRecord方式的。

再举一种例子:

reader=tf.TFRecordReader()
_,serialized_example=reader.read(file_name_queue)
features = tf.parse_single_example(serialized_example, features={
 'data': tf.FixedLenFeature([256,256], tf.float32), ###
 'label': tf.FixedLenFeature([], tf.int64),
 'id': tf.FixedLenFeature([], tf.int64)
})
img = features['data']
label =features['label']
id = features['id']

这个时候就不需要任何解码了。因为做TFRecord的方式就是直接把图像数据append进去了。

参考链接:

https://blog.csdn.net/qq_34914551/article/details/86286184

到此这篇关于浅谈TensorFlow中读取图像数据的三种方式的文章就介绍到这了,更多相关TensorFlow 读取图像数据内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
c++生成dll使用python调用dll的方法
Jan 20 Python
Python中有趣在__call__函数
Jun 21 Python
python 实现删除文件或文件夹实例详解
Dec 04 Python
Python实现的简单模板引擎功能示例
Sep 02 Python
python爬虫爬取快手视频多线程下载功能
Feb 28 Python
python实现决策树ID3算法的示例代码
May 30 Python
python中pip的安装与使用教程
Aug 10 Python
Python 运行 shell 获取输出结果的实例
Jan 07 Python
基于Numpy.convolve使用Python实现滑动平均滤波的思路详解
May 16 Python
pywinauto自动化操作记事本
Aug 26 Python
详解一种用django_cache实现分布式锁的方式
Sep 01 Python
python os.path.isfile 的使用误区详解
Nov 29 Python
python中 _、__、__xx__()区别及使用场景
Jun 30 #Python
Django实现内容缓存实例方法
Jun 30 #Python
Pytorch 卷积中的 Input Shape用法
Jun 29 #Python
Python闭包装饰器使用方法汇总
Jun 29 #Python
使用已经得到的keras模型识别自己手写的数字方式
Jun 29 #Python
Python接口测试环境搭建过程详解
Jun 29 #Python
python字典的值可以修改吗
Jun 29 #Python
You might like
一条久听不愿放下的DIY森海MX500,三言两语话神奇
2021/03/02 无线电
Mysql的GROUP_CONCAT()函数使用方法
2008/03/28 PHP
phpMyAdmin 链接表的附加功能尚未激活的问题
2010/08/01 PHP
在smarty中调用php内置函数的方法
2013/02/07 PHP
PHP之短标签开启设置
2013/06/17 PHP
PHP实现判断数组是一维、二维或几维的方法
2017/02/06 PHP
CSS中一些@规则的用法小结
2021/03/09 HTML / CSS
Javascript和HTML5利用canvas构建Web五子棋游戏实现算法
2013/07/17 Javascript
JS父页面与子页面相互传值方法
2014/03/05 Javascript
jQuery 删除/替换DOM元素的几种方式
2014/05/20 Javascript
javascript内置对象操作详解
2015/02/04 Javascript
分享9个最好用的JavaScript开发工具和代码编辑器
2015/03/24 Javascript
谷歌Chrome浏览器扩展程序开发小记
2016/01/06 Javascript
简单的JS时钟实例讲解
2016/01/13 Javascript
javascript的几种继承方法介绍
2016/03/22 Javascript
Jquery给当前页或者跳转后页面的导航栏添加选中后样式的实例
2016/12/08 Javascript
使用javascript做在线算法编程
2018/05/25 Javascript
axios的拦截请求与响应方法
2018/08/11 Javascript
Nuxt.js之自动路由原理的实现方法
2018/11/21 Javascript
详解Vue一个案例引发「内容分发slot」的最全总结
2018/12/02 Javascript
JS温故而知新之变量提升和时间死区
2019/01/27 Javascript
vue基础之v-bind属性、class和style用法分析
2019/03/11 Javascript
JS+canvas五子棋人机对战实现步骤详解
2020/06/04 Javascript
详解React路由传参方法汇总记录
2020/11/29 Javascript
详解Vue的七种传值方式
2021/02/08 Vue.js
[47:39]2018DOTA2亚洲邀请赛 3.31 小组赛 A组 LGD vs OPTIC
2018/03/31 DOTA
[01:04:05]VG vs Newbee 2018国际邀请赛小组赛BO2 第一场 8.17
2018/08/20 DOTA
python完成FizzBuzzWhizz问题(拉勾网面试题)示例
2014/05/05 Python
python将excel转换为csv的代码方法总结
2019/07/03 Python
Python生成器实现简单&quot;生产者消费者&quot;模型代码实例
2020/03/27 Python
2014两会优秀的心得体会范文
2014/03/17 职场文书
网站客服岗位职责
2014/04/05 职场文书
详细的本科生职业生涯规划范文
2014/09/16 职场文书
武侯祠导游词
2015/02/04 职场文书
2015年学校总务处工作总结
2015/05/19 职场文书
同事去世追悼词
2015/06/23 职场文书