基于Python和Scikit-Learn的机器学习探索


Posted in Python onOctober 16, 2017

你好,%用户名%!

我叫Alex,我在机器学习和网络图分析(主要是理论)有所涉猎。我同时在为一家俄罗斯移动运营商开发大数据产品。这是我第一次在网上写文章,不喜勿喷。

现在,很多人想开发高效的算法以及参加机器学习的竞赛。所以他们过来问我:”该如何开始?”。一段时间以前,我在一个俄罗斯联邦政府的下属机构中领导了媒体和社交网络大数据分析工具的开发。我仍然有一些我团队使用过的文档,我乐意与你们分享。前提是读者已经有很好的数学和机器学习方面的知识(我的团队主要由MIPT(莫斯科物理与技术大学)和数据分析学院的毕业生构成)。

这篇文章是对数据科学的简介,这门学科最近太火了。机器学习的竞赛也越来越多(如,Kaggle, TudedIT),而且他们的资金通常很可观。

R和Python是提供给数据科学家的最常用的两种工具。每一个工具都有其优缺点,但Python最近在各个方面都有所胜出(仅为鄙人愚见,虽然我两者都用)。这一切的发生是因为Scikit-Learn库的腾空出世,它包含有完善的文档和丰富的机器学习算法。
请注意,我们将主要在这篇文章中探讨机器学习算法。通常用Pandas包去进行主数据分析会比较好,而且这很容易你自己完成。所以,让我们集中精力在实现上。为了确定性,我们假设有一个特征-对象矩阵作为输入,被存在一个*.csv文件中。

数据加载

首先,数据要被加载到内存中,才能对其操作。Scikit-Learn库在它的实现用使用了NumPy数组,所以我们将用NumPy来加载*.csv文件。让我们从UCI Machine Learning Repository下载其中一个数据集。

import numpy as np
import urllib
# url with dataset
url = “http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data”
# download the file
raw_data = urllib.urlopen(url)
# load the CSV file as a numpy matrix
dataset = np.loadtxt(raw_data, delimiter=“,”)
# separate the data from the target attributes
X = dataset[:,0:7]
y = dataset[:,8]

我们将在下面所有的例子里使用这个数据组,换言之,使用X特征物数组和y目标变量的值。

数据标准化

我们都知道大多数的梯度方法(几乎所有的机器学习算法都基于此)对于数据的缩放很敏感。因此,在运行算法之前,我们应该进行标准化,或所谓的规格化。标准化包括替换所有特征的名义值,让它们每一个的值在0和1之间。而对于规格化,它包括数据的预处理,使得每个特征的值有0和1的离差。Scikit-Learn库已经为其提供了相应的函数。

from sklearn
import metrics
from sklearn.ensemble
import ExtraTreesClassifier
model = ExtraTreesClassifier()
model.fit(X, y)# display the relative importance of each attribute
print(model.feature_importances_)

特征的选取

毫无疑问,解决一个问题最重要的是是恰当选取特征、甚至创造特征的能力。这叫做特征选取和特征工程。虽然特征工程是一个相当有创造性的过程,有时候更多的是靠直觉和专业的知识,但对于特征的选取,已经有很多的算法可供直接使用。如树算法就可以计算特征的信息量。

from sklearn
import metrics
from sklearn.ensemble
import ExtraTreesClassifier
model = ExtraTreesClassifier()
model.fit(X, y)# display the relative importance of each attribute
print(model.feature_importances_)

其他所有的方法都是基于对特征子集的高效搜索,从而找到最好的子集,意味着演化了的模型在这个子集上有最好的质量。递归特征消除算法(RFE)是这些搜索算法的其中之一,Scikit-Learn库同样也有提供。

from sklearn.feature_selection
import RFE
from sklearn.linear_model
import LogisticRegression
model = LogisticRegression()# create the RFE model and select 3 attributes
rfe = RFE(model, 3)
rfe = rfe.fit(X, y)# summarize the selection of the attributes
print(rfe.support_)
print(rfe.ranking_)

算法的开发

正像我说的,Scikit-Learn库已经实现了所有基本机器学习的算法。让我来瞧一瞧它们中的一些。

逻辑回归

大多数情况下被用来解决分类问题(二元分类),但多类的分类(所谓的一对多方法)也适用。这个算法的优点是对于每一个输出的对象都有一个对应类别的概率。

from sklearn
import metrics
from sklearn.linear_model
import LogisticRegression
model = LogisticRegression()
model.fit(X, y)
print(model)# make predictions
expected = y
predicted = model.predict(X)# summarize the fit of the model
print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))

朴素贝叶斯

它也是最有名的机器学习的算法之一,它的主要任务是恢复训练样本的数据分布密度。这个方法通常在多类的分类问题上表现的很好。

from sklearn
import metrics
from sklearn.naive_bayes
import GaussianNB
model = GaussianNB()
model.fit(X, y)
print(model)# make predictions
expected = y
predicted = model.predict(X)# summarize the fit of the model
print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))

k-最近邻

kNN(k-最近邻)方法通常用于一个更复杂分类算法的一部分。例如,我们可以用它的估计值做为一个对象的特征。有时候,一个简单的kNN

from sklearn
import metrics
from sklearn.neighbors
import KNeighborsClassifier# fit a k - nearest neighbor model to the data
model = KNeighborsClassifier()
model.fit(X, y)
print(model)# make predictions
expected = y
predicted = model.predict(X)# summarize the fit of the model
print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))

决策树

分类和回归树(CART)经常被用于这么一类问题,在这类问题中对象有可分类的特征且被用于回归和分类问题。决策树很适用于多类分类。

from sklearn
import metrics
from sklearn.tree
import DecisionTreeClassifier# fit a CART model to the data
model = DecisionTreeClassifier()
model.fit(X, y)
print(model)# make predictions
expected = y
predicted = model.predict(X)# summarize the fit of the model
print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))

支持向量机

SVM(支持向量机)是最流行的机器学习算法之一,它主要用于分类问题。同样也用于逻辑回归,SVM在一对多方法的帮助下可以实现多类分类。

from sklearn import metrics
from sklearn.svm import SVC
# fit a SVM model to the data
model = SVC()
model.fit(X, y)
print(model)
# make predictions
expected = y
predicted = model.predict(X)
# summarize the fit of the model
print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))

除了分类和回归问题,Scikit-Learn还有海量的更复杂的算法,包括了聚类, 以及建立混合算法的实现技术,如Bagging和Boosting。

如何优化算法的参数

在编写高效的算法的过程中最难的步骤之一就是正确参数的选择。一般来说如果有经验的话会容易些,但无论如何,我们都得寻找。幸运的是Scikit-Learn提供了很多函数来帮助解决这个问题。

作为一个例子,我们来看一下规则化参数的选择,在其中不少数值被相继搜索了:

import numpy as np
from sklearn.linear_model
import Ridge
from sklearn.grid_search
import GridSearchCV# prepare a range of alpha values to test
alphas = np.array([1, 0.1, 0.01, 0.001, 0.0001, 0])# create and fit a ridge regression model, testing each alpha
model = Ridge()
grid = GridSearchCV(estimator = model, param_grid = dict(alpha = alphas))
grid.fit(X, y)
print(grid)# summarize the results of the grid search
print(grid.best_score_)
print(grid.best_estimator_.alpha)

有时候随机地从既定的范围内选取一个参数更为高效,估计在这个参数下算法的质量,然后选出最好的。

import numpy as np
from scipy.stats
import uniform as sp_rand
from sklearn.linear_model
import Ridge
from sklearn.grid_search
import RandomizedSearchCV# prepare a uniform distribution to sample
for the alpha parameter
param_grid = {‘
  alpha': sp_rand()
}#
create and fit a ridge regression model, testing random alpha values
model = Ridge()
rsearch = RandomizedSearchCV(estimator = model, param_distributions = param_grid, n_iter = 100)
rsearch.fit(X, y)
print(rsearch)# summarize the results of the random parameter search
print(rsearch.best_score_)
print(rsearch.best_estimator_.alpha)

至此我们已经看了整个使用Scikit-Learn库的过程,除了将结果再输出到一个文件中。这个就作为你的一个练习吧,和R相比Python的一大优点就是它有很棒的文档说明。

总结

以上就是本文关于基于Python和Scikit-Learn的机器学习探索的全部内容,感兴趣的朋友可以参阅:python 排序算法总结及实例详解、Java 蒙特卡洛算法求圆周率近似值实例详解、Java常见数据结构面试题(带答案)以及本站其他相关专题,如有不足之处,欢迎留言指出,小编一定及时回复大家并改正,为广大编程爱好者提供更优质的文章以及更好的帮助,感谢朋友们对本站的支持!

Python 相关文章推荐
Python用Bottle轻量级框架进行Web开发
Jun 08 Python
教你使用python画一朵花送女朋友
Mar 29 Python
python excel使用xlutils类库实现追加写功能的方法
May 02 Python
对Python3.6 IDLE常用快捷键介绍
Jul 16 Python
基于python实现KNN分类算法
Apr 23 Python
Python手绘可视化工具cutecharts使用实例
Dec 05 Python
六种酷炫Python运行进度条效果的实现代码
Jul 17 Python
Python执行时间的几种计算方法
Jul 31 Python
python logging 重复写日志问题解决办法详解
Aug 04 Python
python基于tkinter制作m3u8视频下载工具
Apr 24 Python
pytorch DataLoader的num_workers参数与设置大小详解
May 28 Python
Python中的 No Module named ***问题及解决
Jul 23 Python
python版简单工厂模式
Oct 16 #Python
Python实现扩展内置类型的方法分析
Oct 16 #Python
Python使用文件锁实现进程间同步功能【基于fcntl模块】
Oct 16 #Python
python利用paramiko连接远程服务器执行命令的方法
Oct 16 #Python
基于使用paramiko执行远程linux主机命令(详解)
Oct 16 #Python
python中文件变化监控示例(watchdog)
Oct 16 #Python
python中import reload __import__的区别详解
Oct 16 #Python
You might like
晶体管单管来复再生式收音机
2021/03/02 无线电
初学者入门:细述PHP4的核心Zend
2006/09/05 PHP
PHP反射机制用法实例
2014/08/28 PHP
JS查看对象功能代码
2008/04/25 Javascript
JavaScript中prototype为对象添加属性的误区介绍
2013/10/15 Javascript
利用cookie记住背景颜色示例代码
2013/11/04 Javascript
ExtJS[Desktop]实现图标换行示例代码
2013/11/17 Javascript
JQuery中阻止事件冒泡几种方式及其区别介绍
2014/01/15 Javascript
javascript 回到顶部效果的实现代码
2014/02/17 Javascript
谈谈Jquery中的children find 的区别有哪些
2015/10/19 Javascript
js生成随机数的过程解析
2015/11/24 Javascript
AngularJS select加载数据选中默认值的方法
2018/02/28 Javascript
原生js实现拖拽功能基本思路详解
2018/04/18 Javascript
Vue表单之v-model绑定下拉列表功能
2019/05/14 Javascript
vue移动端模态框(可传参)的实现
2019/11/20 Javascript
element中el-container容器与div布局区分详解
2020/05/13 Javascript
vue+iview实现分页及查询功能
2020/11/17 Vue.js
Python库urllib与urllib2主要区别分析
2014/07/13 Python
详解python多线程、锁、event事件机制的简单使用
2018/04/27 Python
Python通过Manager方式实现多个无关联进程共享数据的实现
2019/11/07 Python
windows中安装Python3.8.0的实现方法
2019/11/19 Python
pytorch逐元素比较tensor大小实例
2020/01/03 Python
python把一个字符串切开的实例方法
2020/09/27 Python
pandas统计重复值次数的方法实现
2021/02/20 Python
html5 worker 实例(一) 为什么测试不到效果
2013/06/24 HTML / CSS
Expedia丹麦:全球领先的旅游网站
2018/03/18 全球购物
质检部岗位职责
2013/11/11 职场文书
聚美优品广告词改编
2014/03/14 职场文书
父母寄语大全
2014/04/12 职场文书
物业公司的岗位任命书
2014/06/06 职场文书
普通党员个人剖析材料
2014/10/08 职场文书
婚前协议书范本两则
2014/10/16 职场文书
义诊活动总结
2015/02/04 职场文书
安全员岗位职责
2015/02/10 职场文书
八月一日观后感
2015/06/10 职场文书
2019年让高校“心动”的自荐信
2019/03/25 职场文书