教你在 Java 中实现 Dijkstra 最短路算法的方法


Posted in Java/Android onApril 08, 2022

定义

最短路问题的定义为:

教你在 Java 中实现 Dijkstra 最短路算法的方法

下图左侧是一幅带权有向图,以顶点 0 为起点到各个顶点的最短路径形成的最短路径树如下图右侧所示:

教你在 Java 中实现 Dijkstra 最短路算法的方法

带权有向图的实现

在实现最短路算法之前需要先实现带权有向图。在上一篇博客 《如何在 Java 中实现最小生成树算法》 中我们实现了带权无向图,只需一点修改就能实现带权有向图。

带权有向边

首先应该实现带权有向图中的边 DirectedEdge,这个类有三个成员变量:指出边的顶点 v、边指向的顶点 w 和边的权重 weight。代码如下所示:

package com.zhiyiyo.graph;
/**
 * 带权有向边
 */
public class DirectedEdge {
    int v, w;
    double weight;
    public DirectedEdge(int v, int w, double weight) {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }
    public int from() {
        return v;
    public int to() {
        return w;
    public double getWeight() {
        return weight;
    @Override
    public String toString() {
        return String.format("%d->%d(%.2f)", v, w, weight);
}

带权有向图

带权有向图的实现非常简单,只需将带权无向图使用的 Edge 类换成 DirectedEdge 类,并作出少许调整即可:

package com.zhiyiyo.graph;
import com.zhiyiyo.collection.stack.LinkStack;
import com.zhiyiyo.collection.stack.Stack;
public class WeightedDigraph {
    private final int V;
    protected int E;
    protected LinkStack<DirectedEdge>[] adj;
    public WeightedDigraph(int V) {
        this.V = V;
        adj = (LinkStack<DirectedEdge>[]) new LinkStack[V];
        for (int i = 0; i < V; i++) {
            adj[i] = new LinkStack<>();
        }
    }
    public int V() {
        return V;
    }
    public int E() {
        return E;
    }
    public void addEdge(DirectedEdge edge) {
        adj[edge.from()].push(edge);
        E++;
    }
    public Iterable<DirectedEdge> adj(int v) {
        return adj[v];
    }
    public Iterable<DirectedEdge> edges() {
        Stack<DirectedEdge> edges = new LinkStack<>();
        for (int v = 0; v < V; ++v) {
            for (DirectedEdge edge : adj(v)) {
                edges.push(edge);
            }
        }
        return edges;
    }
}

最短路算法

API

最短路算法应该支持起始点 \(v_s\) 到任意顶点 \(v_t\) 的最短距离和最短路径的查询:

package com.zhiyiyo.graph;
import com.zhiyiyo.collection.stack.LinkStack;
import com.zhiyiyo.collection.stack.Stack;
public class WeightedDigraph {
    private final int V;
    protected int E;
    protected LinkStack<DirectedEdge>[] adj;
    public WeightedDigraph(int V) {
        this.V = V;
        adj = (LinkStack<DirectedEdge>[]) new LinkStack[V];
        for (int i = 0; i < V; i++) {
            adj[i] = new LinkStack<>();
        }
    }
    public int V() {
        return V;
    public int E() {
        return E;
    public void addEdge(DirectedEdge edge) {
        adj[edge.from()].push(edge);
        E++;
    public Iterable<DirectedEdge> adj(int v) {
        return adj[v];
    public Iterable<DirectedEdge> edges() {
        Stack<DirectedEdge> edges = new LinkStack<>();
        for (int v = 0; v < V; ++v) {
            for (DirectedEdge edge : adj(v)) {
                edges.push(edge);
            }
        return edges;
}

Dijkstra 算法

我们可以使用一个距离数组 distTo[] 来保存起始点 \(v_s\) 到其余顶点 \(v_t\) 的最短路径,且 distTo[] 数组满足以下条件:

教你在 Java 中实现 Dijkstra 最短路算法的方法

可以使用 Double.POSITIVE_INFINITY 来表示无穷大,有了这个数组之后我们可以实现 ShortestPath 前两个方法:

package com.zhiyiyo.graph;
public class DijkstraSP implements ShortestPath {
    private double[] distTo;
    @Override
    public double distTo(int v) {
        return distTo[v];
    }
    public boolean hasPathTo(int v) {
        return distTo[v] < Double.POSITIVE_INFINITY;
}

为了实现保存 \(v_s\) 到 \(v_t\) 的最短路径,可以使用一个边数组 edgeTo[],其中 edgeTo[v] = e_wv 表示要想到达 \(v_t\),需要先经过顶点 \(v_w\),接着从 edgeTo[w]获取到达 \(v_w\) 之前需要到达的上一个节点,重复上述步骤直到发现 edgeTo[i] = null,这时候就说明我们回到了 \(v_s\)。 获取最短路径的代码如下所示:

@Override
public Iterable<DirectedEdge> pathTo(int v) {
    if (!hasPathTo(v)) return null;
    Stack<DirectedEdge> path = new LinkStack<>();
    for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()]) {
        path.push(e);
    }
    return path;
}

算法流程

虽然我们已经实现了上述接口,但是如何得到 distTo[]edgeTo[] 还是个问题,这就需要用到 Dijkstra 算法了。算法的思想是这样的:

  • 初始化 distTo[] 使得除了 distTo[s] = 0 外,其余的元素都为 Double.POSITIVE_INFINITY。同时初始化 edgeTo[] 的每个元素都是 null
  • 将顶点 s 的所有相邻顶点 \(v_j\) 加入集合 \(V'\) 中,设置 distTo[j] = l_sj 即初始化最短距离为邻边的权重;
  • 从 \(V'\) 中取出距离最短即 distTo[m] 最小的顶点 \(v_m\),遍历 \(v_m\) 的所有邻边 \((v_m, v_w)\),如果有 \(l_{mw}+l_{sw}<l_{sw}\),就说明从 \(v_s\) 走到 \(v_m\) 再一步走到 \(v_w\) 距离最短,我们就去更新 distTo[m],同时将 \(v_w\) 添加到 \(V'\) 中(如果 \(v_w\) 不在的话);

重复上述过程直到 \(V'\) 变为空,我们就已经找到了所有 \(v_s\) 可达的顶点的最短路径。

上述过程中有个地方会影响算法的性能,就是如何从 \(V'\) 中取出最小距离对应的顶点 \(v_m\)。如果直接遍历 \(V'\) 最坏情况下时间复杂度为 \(O(|V|)\),如果换成最小索引优先队列则可以将时间复杂度降至 \(O(\log|V|)\)。

最小索引优先队列

上一篇博客 《如何在 Java 中实现最小生成树算法》 中介绍了最小堆的使用,最小堆可以在对数时间内取出数据集合中的最小值,对应到最短路算法中就是最短路径。但是有一个问题,就是我们想要的是最短路径对应的那个顶点 \(v_m\),只使用最小堆是做不到这一点的。如何能将最小堆中的距离值和顶点进行绑定呢?这就要用到索引优先队列。

索引优先队列的 API 如下所示,可以看到每个元素 item 都和一个索引 k 进行绑定,我们可以通过索引 k 读写优先队列中的元素。想象一下堆中的所有元素放在一个数组 pq 中,索引优先队列可以做到在对数时间内取出 pq 的最小值。

package com.zhiyiyo.collection.queue;
/**
 * 索引优先队列
 */
public interface IndexPriorQueue<K extends Comparable<K>> {
    /**
     * 向堆中插入一个元素
     *
     * @param k 元素的索引
     * @param item 插入的元素
     */
    void insert(int k, K item);
     * 修改堆中指定索引的元素值
     * @param item 新的元素值
    void change(int k, K item);
     * 向堆中插入或修改元素
    void set(int k, K item);
     * 堆是否包含索引为 k 的元素
     * @param k 索引
     * @return 是否包含
    boolean contains(int k);
     * 弹出堆顶的元素并返回其索引
     * @return 堆顶元素的索引
    int pop();
     * 弹出堆中索引为 k 为元素
     * @return 索引对应的元素
    K delete(int k);
     * 获取堆中索引为 k 的元素,如果 k 不存在则返回 null
     * @return 索引为 k 的元素
    K get(int k);
     * 获取堆中的元素个数
    int size();
     * 堆是否为空
    boolean isEmpty();
}

实现索引优先队列比优先队列麻烦一点,因为需要维护每个元素的索引。之前我们是将元素按照完全二叉树的存放顺序进行存储,现在可以换成索引,而元素只需根据索引值 k 放在数组 keys[k] 处即可。只有索引数组 indexes[] 和元素数组 keys[] 还不够,如果我们想实现 contains(int k) 方法,目前只能遍历一下 indexes[],看看 k 在不在里面,时间复杂度是 \(O(|V|)\)。何不多维护一个数组 nodeIndexes[],使得它满足下述关系:

教你在 Java 中实现 Dijkstra 最短路算法的方法

如果能在 nodeIndexes[k] 不是 -1,就说明索引 \(k\) 对应的元素存在与堆中,且索引 k 在 indexes[] 中的位置为 \(d\),即有下述等式成立:

教你在 Java 中实现 Dijkstra 最短路算法的方法

有了这三个数组之后我们就可以实现最小索引优先队列了:

package com.zhiyiyo.collection.queue;
import java.util.Arrays;
import java.util.NoSuchElementException;
/**
 * 最小索引优先队列
 */
public class IndexMinPriorQueue<K extends Comparable<K>> implements IndexPriorQueue<K> {
    private K[] keys;           // 元素
    private int[] indexes;      // 元素的索引,按照最小堆的顺序摆放
    private int[] nodeIndexes;  // 元素的索引在完全二叉树中的编号
    private int N;
    public IndexMinPriorQueue(int maxSize) {
        keys = (K[]) new Comparable[maxSize + 1];
        indexes = new int[maxSize + 1];
        nodeIndexes = new int[maxSize + 1];
        Arrays.fill(nodeIndexes, -1);
    }
    @Override
    public void insert(int k, K item) {
        keys[k] = item;
        indexes[++N] = k;
        nodeIndexes[k] = N;
        swim(N);
    public void change(int k, K item) {
        validateIndex(k);
        swim(nodeIndexes[k]);
        sink(nodeIndexes[k]);
    public void set(int k, K item) {
        if (!contains(k)) {
            insert(k, item);
        } else {
            change(k, item);
        }
    public boolean contains(int k) {
        return nodeIndexes[k] != -1;
    public int pop() {
        int k = indexes[1];
        delete(k);
        return k;
    public K delete(int k) {
        K item = keys[k];
        // 交换之后 nodeIndexes[k] 发生变化,必须先保存为局部变量
        int nodeIndex = nodeIndexes[k];
        swap(nodeIndex, N--);
        // 必须有上浮的操作,交换后的元素可能比上面的元素更小
        swim(nodeIndex);
        sink(nodeIndex);
        keys[k] = null;
        nodeIndexes[k] = -1;
        return item;
    public K get(int k) {
        return contains(k) ? keys[k] : null;
    public K min() {
        return keys[indexes[1]];
    /**
     * 获取最小的元素对应的索引
     */
    public int minIndex() {
        return indexes[1];
    public int size() {
        return N;
    public boolean isEmpty() {
        return N == 0;
     * 元素上浮
     *
     * @param k 元素的索引
    private void swim(int k) {
        while (k > 1 && less(k, k / 2)) {
            swap(k, k / 2);
            k /= 2;
     * 元素下沉
    private void sink(int k) {
        while (2 * k <= N) {
            int j = 2 * k;
            // 检查是否有两个子节点
            if (j < N && less(j + 1, j)) j++;
            if (less(k, j)) break;
            swap(k, j);
            k = j;
     * 交换完全二叉树中编号为 a 和 b 的节点
     * @param a 索引 a
     * @param b 索引 b
    private void swap(int a, int b) {
        int k1 = indexes[a], k2 = indexes[b];
        nodeIndexes[k2] = a;
        nodeIndexes[k1] = b;
        indexes[a] = k2;
        indexes[b] = k1;
    private boolean less(int a, int b) {
        return keys[indexes[a]].compareTo(keys[indexes[b]]) < 0;
    private void validateIndex(int k) {
            throw new NoSuchElementException("索引" + k + "不在优先队列中");
}

注意对比最小堆和最小索引堆的 swap(int a, int b) 方法以及 less(int a, int b) 方法,在交换堆中的元素时使用的依据是元素的大小,交换之后无需调整 keys[],而是交换 nodeIndexes[]indexes[] 中的元素。

实现算法

通过上述的分析,实现 Dijkstra 算法就很简单了,时间复杂度为 \(O(|E|\log |V|)\):

package com.zhiyiyo.graph;
import com.zhiyiyo.collection.queue.IndexMinPriorQueue;
import com.zhiyiyo.collection.stack.LinkStack;
import com.zhiyiyo.collection.stack.Stack;
import java.util.Arrays;
public class DijkstraSP implements ShortestPath {
    private double[] distTo;
    private DirectedEdge[] edgeTo;
    private IndexMinPriorQueue<Double> pq;
    private int s;
    public DijkstraSP(WeightedDigraph graph, int s) {
        pq = new IndexMinPriorQueue<>(graph.V());
        edgeTo = new DirectedEdge[graph.V()];
        
        // 初始化距离
        distTo = new double[graph.V()];
        Arrays.fill(distTo, Double.POSITIVE_INFINITY);
        distTo[s] = 0;
        visit(graph, s);
        while (!pq.isEmpty()) {
            visit(graph, pq.pop());
        }
    }
    private void visit(WeightedDigraph graph, int v) {
        for (DirectedEdge edge : graph.adj(v)) {
            int w = edge.to();
            if (distTo[w] > distTo[v] + edge.getWeight()) {
                distTo[w] = distTo[v] + edge.getWeight();
                edgeTo[w] = edge;
                pq.set(w, distTo[w]);
            }
    // 省略已实现的方法 ...
}

后记

Dijkstra 算法还能继续优化,将最小索引堆换成斐波那契堆之后时间复杂度为 \(O(|E|+|V|\log |V|)\),这里就不写了(因为还没学到斐波那契堆),以上~~

到此这篇关于教你在 Java 中实现 Dijkstra 最短路算法的方法的文章就介绍到这了,更多相关Java实现 Dijkstra 最短路算法内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Java/Android 相关文章推荐
为什么在foreach循环中JAVA集合不能添加或删除元素
Jun 11 Java/Android
SpringBoot工程下使用OpenFeign的坑及解决
Jul 02 Java/Android
Lombok的详细使用及优缺点总结
Jul 15 Java/Android
java如何实现socket连接方法封装
Sep 25 Java/Android
关于@OnetoMany关系映射的排序问题,使用注解@OrderBy
Dec 06 Java/Android
Dubbo+zookeeper搭配分布式服务的过程详解
Apr 03 Java/Android
引用计数法和root搜索算法以及JVM中判定对象需要回收的方法
Apr 19 Java/Android
springboot读取resources下文件的方式详解
Jun 21 Java/Android
利用Java连接Hadoop进行编程
Jun 28 Java/Android
Java实现字符串转为驼峰格式的方法详解
Jul 07 Java/Android
Java实现超大Excel文件解析(XSSF,SXSSF,easyExcel)
Jul 15 Java/Android
httpclient调用远程接口的方法
Aug 14 Java/Android
Java 垃圾回收超详细讲解记忆集和卡表
Java 常见的限流算法详细分析并实现
Java 超详细讲解ThreadLocal类的使用
Java 通过手写分布式雪花SnowFlake生成ID方法详解
Java详细解析==和equals的区别
Apr 07 #Java/Android
Java 超详细讲解hashCode方法
Apr 07 #Java/Android
Java 关于String字符串原理上的问题
Apr 07 #Java/Android
You might like
基于Zend的Captcha机制的应用
2013/05/02 PHP
php处理单文件、多文件上传代码分享
2016/08/24 PHP
PHP中Cookie的使用详解(简单易懂)
2017/04/28 PHP
php设计模式之工厂模式用法经典实例分析
2019/09/20 PHP
详解PHP中curl_multi并发的实现
2020/06/08 PHP
js Date自定义函数 延迟脚本执行
2010/03/10 Javascript
心扬JS分页函数代码
2010/09/10 Javascript
js日期插件dateHelp获取本月、三个月、今年的日期
2016/03/07 Javascript
纯js三维数组实现三级联动效果
2017/02/07 Javascript
微信小程序 页面跳转如何实现传值
2017/04/05 Javascript
使用 NodeJS+Express 开发服务端的简单介绍
2017/04/07 NodeJs
基于vue.js路由参数的实例讲解——简单易懂
2017/09/07 Javascript
node.js学习之事件模块Events的使用示例
2017/09/28 Javascript
基于ssm框架实现layui分页效果
2019/07/27 Javascript
关于angular浏览器兼容性问题的解决方案
2020/07/26 Javascript
在Vue中获取自定义属性方法:data-id的实例
2020/09/09 Javascript
在Vue里如何把网页的数据导出到Excel的方法
2020/09/30 Javascript
Python3.6 Schedule模块定时任务(实例讲解)
2017/11/09 Python
Python对列表去重的多种方法(四种方法)
2017/12/05 Python
如何用Python合并lmdb文件
2018/07/02 Python
python: 判断tuple、list、dict是否为空的方法
2018/10/22 Python
Django-Rest-Framework 权限管理源码浅析(小结)
2018/11/12 Python
Python之使用adb shell命令启动应用的方法详解
2019/01/07 Python
Python爬虫实现使用beautifulSoup4爬取名言网功能案例
2019/09/15 Python
Python将字典转换为XML的方法
2020/08/01 Python
西班牙国家航空官方网站:Iberia
2017/11/16 全球购物
英国奢侈品概念店:Base Blu
2019/05/16 全球购物
澳大利亚在线批发商:Simply Wholesale
2021/02/24 全球购物
创业计划书中包含的9个方面
2013/12/26 职场文书
3.12植树节活动总结2014
2014/03/13 职场文书
锦旗标语大全
2014/06/23 职场文书
2014年消防工作总结
2014/11/21 职场文书
设备技术员岗位职责
2015/04/11 职场文书
Ruby处理CSV数据方法详解
2022/04/18 Ruby
Sql Server 行数据的某列值想作为字段列显示的方法
2022/04/20 SQL Server
在ubuntu下安装go开发环境的全过程
2022/08/05 Golang