教你在 Java 中实现 Dijkstra 最短路算法的方法


Posted in Java/Android onApril 08, 2022

定义

最短路问题的定义为:

教你在 Java 中实现 Dijkstra 最短路算法的方法

下图左侧是一幅带权有向图,以顶点 0 为起点到各个顶点的最短路径形成的最短路径树如下图右侧所示:

教你在 Java 中实现 Dijkstra 最短路算法的方法

带权有向图的实现

在实现最短路算法之前需要先实现带权有向图。在上一篇博客 《如何在 Java 中实现最小生成树算法》 中我们实现了带权无向图,只需一点修改就能实现带权有向图。

带权有向边

首先应该实现带权有向图中的边 DirectedEdge,这个类有三个成员变量:指出边的顶点 v、边指向的顶点 w 和边的权重 weight。代码如下所示:

package com.zhiyiyo.graph;
/**
 * 带权有向边
 */
public class DirectedEdge {
    int v, w;
    double weight;
    public DirectedEdge(int v, int w, double weight) {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }
    public int from() {
        return v;
    public int to() {
        return w;
    public double getWeight() {
        return weight;
    @Override
    public String toString() {
        return String.format("%d->%d(%.2f)", v, w, weight);
}

带权有向图

带权有向图的实现非常简单,只需将带权无向图使用的 Edge 类换成 DirectedEdge 类,并作出少许调整即可:

package com.zhiyiyo.graph;
import com.zhiyiyo.collection.stack.LinkStack;
import com.zhiyiyo.collection.stack.Stack;
public class WeightedDigraph {
    private final int V;
    protected int E;
    protected LinkStack<DirectedEdge>[] adj;
    public WeightedDigraph(int V) {
        this.V = V;
        adj = (LinkStack<DirectedEdge>[]) new LinkStack[V];
        for (int i = 0; i < V; i++) {
            adj[i] = new LinkStack<>();
        }
    }
    public int V() {
        return V;
    }
    public int E() {
        return E;
    }
    public void addEdge(DirectedEdge edge) {
        adj[edge.from()].push(edge);
        E++;
    }
    public Iterable<DirectedEdge> adj(int v) {
        return adj[v];
    }
    public Iterable<DirectedEdge> edges() {
        Stack<DirectedEdge> edges = new LinkStack<>();
        for (int v = 0; v < V; ++v) {
            for (DirectedEdge edge : adj(v)) {
                edges.push(edge);
            }
        }
        return edges;
    }
}

最短路算法

API

最短路算法应该支持起始点 \(v_s\) 到任意顶点 \(v_t\) 的最短距离和最短路径的查询:

package com.zhiyiyo.graph;
import com.zhiyiyo.collection.stack.LinkStack;
import com.zhiyiyo.collection.stack.Stack;
public class WeightedDigraph {
    private final int V;
    protected int E;
    protected LinkStack<DirectedEdge>[] adj;
    public WeightedDigraph(int V) {
        this.V = V;
        adj = (LinkStack<DirectedEdge>[]) new LinkStack[V];
        for (int i = 0; i < V; i++) {
            adj[i] = new LinkStack<>();
        }
    }
    public int V() {
        return V;
    public int E() {
        return E;
    public void addEdge(DirectedEdge edge) {
        adj[edge.from()].push(edge);
        E++;
    public Iterable<DirectedEdge> adj(int v) {
        return adj[v];
    public Iterable<DirectedEdge> edges() {
        Stack<DirectedEdge> edges = new LinkStack<>();
        for (int v = 0; v < V; ++v) {
            for (DirectedEdge edge : adj(v)) {
                edges.push(edge);
            }
        return edges;
}

Dijkstra 算法

我们可以使用一个距离数组 distTo[] 来保存起始点 \(v_s\) 到其余顶点 \(v_t\) 的最短路径,且 distTo[] 数组满足以下条件:

教你在 Java 中实现 Dijkstra 最短路算法的方法

可以使用 Double.POSITIVE_INFINITY 来表示无穷大,有了这个数组之后我们可以实现 ShortestPath 前两个方法:

package com.zhiyiyo.graph;
public class DijkstraSP implements ShortestPath {
    private double[] distTo;
    @Override
    public double distTo(int v) {
        return distTo[v];
    }
    public boolean hasPathTo(int v) {
        return distTo[v] < Double.POSITIVE_INFINITY;
}

为了实现保存 \(v_s\) 到 \(v_t\) 的最短路径,可以使用一个边数组 edgeTo[],其中 edgeTo[v] = e_wv 表示要想到达 \(v_t\),需要先经过顶点 \(v_w\),接着从 edgeTo[w]获取到达 \(v_w\) 之前需要到达的上一个节点,重复上述步骤直到发现 edgeTo[i] = null,这时候就说明我们回到了 \(v_s\)。 获取最短路径的代码如下所示:

@Override
public Iterable<DirectedEdge> pathTo(int v) {
    if (!hasPathTo(v)) return null;
    Stack<DirectedEdge> path = new LinkStack<>();
    for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()]) {
        path.push(e);
    }
    return path;
}

算法流程

虽然我们已经实现了上述接口,但是如何得到 distTo[]edgeTo[] 还是个问题,这就需要用到 Dijkstra 算法了。算法的思想是这样的:

  • 初始化 distTo[] 使得除了 distTo[s] = 0 外,其余的元素都为 Double.POSITIVE_INFINITY。同时初始化 edgeTo[] 的每个元素都是 null
  • 将顶点 s 的所有相邻顶点 \(v_j\) 加入集合 \(V'\) 中,设置 distTo[j] = l_sj 即初始化最短距离为邻边的权重;
  • 从 \(V'\) 中取出距离最短即 distTo[m] 最小的顶点 \(v_m\),遍历 \(v_m\) 的所有邻边 \((v_m, v_w)\),如果有 \(l_{mw}+l_{sw}<l_{sw}\),就说明从 \(v_s\) 走到 \(v_m\) 再一步走到 \(v_w\) 距离最短,我们就去更新 distTo[m],同时将 \(v_w\) 添加到 \(V'\) 中(如果 \(v_w\) 不在的话);

重复上述过程直到 \(V'\) 变为空,我们就已经找到了所有 \(v_s\) 可达的顶点的最短路径。

上述过程中有个地方会影响算法的性能,就是如何从 \(V'\) 中取出最小距离对应的顶点 \(v_m\)。如果直接遍历 \(V'\) 最坏情况下时间复杂度为 \(O(|V|)\),如果换成最小索引优先队列则可以将时间复杂度降至 \(O(\log|V|)\)。

最小索引优先队列

上一篇博客 《如何在 Java 中实现最小生成树算法》 中介绍了最小堆的使用,最小堆可以在对数时间内取出数据集合中的最小值,对应到最短路算法中就是最短路径。但是有一个问题,就是我们想要的是最短路径对应的那个顶点 \(v_m\),只使用最小堆是做不到这一点的。如何能将最小堆中的距离值和顶点进行绑定呢?这就要用到索引优先队列。

索引优先队列的 API 如下所示,可以看到每个元素 item 都和一个索引 k 进行绑定,我们可以通过索引 k 读写优先队列中的元素。想象一下堆中的所有元素放在一个数组 pq 中,索引优先队列可以做到在对数时间内取出 pq 的最小值。

package com.zhiyiyo.collection.queue;
/**
 * 索引优先队列
 */
public interface IndexPriorQueue<K extends Comparable<K>> {
    /**
     * 向堆中插入一个元素
     *
     * @param k 元素的索引
     * @param item 插入的元素
     */
    void insert(int k, K item);
     * 修改堆中指定索引的元素值
     * @param item 新的元素值
    void change(int k, K item);
     * 向堆中插入或修改元素
    void set(int k, K item);
     * 堆是否包含索引为 k 的元素
     * @param k 索引
     * @return 是否包含
    boolean contains(int k);
     * 弹出堆顶的元素并返回其索引
     * @return 堆顶元素的索引
    int pop();
     * 弹出堆中索引为 k 为元素
     * @return 索引对应的元素
    K delete(int k);
     * 获取堆中索引为 k 的元素,如果 k 不存在则返回 null
     * @return 索引为 k 的元素
    K get(int k);
     * 获取堆中的元素个数
    int size();
     * 堆是否为空
    boolean isEmpty();
}

实现索引优先队列比优先队列麻烦一点,因为需要维护每个元素的索引。之前我们是将元素按照完全二叉树的存放顺序进行存储,现在可以换成索引,而元素只需根据索引值 k 放在数组 keys[k] 处即可。只有索引数组 indexes[] 和元素数组 keys[] 还不够,如果我们想实现 contains(int k) 方法,目前只能遍历一下 indexes[],看看 k 在不在里面,时间复杂度是 \(O(|V|)\)。何不多维护一个数组 nodeIndexes[],使得它满足下述关系:

教你在 Java 中实现 Dijkstra 最短路算法的方法

如果能在 nodeIndexes[k] 不是 -1,就说明索引 \(k\) 对应的元素存在与堆中,且索引 k 在 indexes[] 中的位置为 \(d\),即有下述等式成立:

教你在 Java 中实现 Dijkstra 最短路算法的方法

有了这三个数组之后我们就可以实现最小索引优先队列了:

package com.zhiyiyo.collection.queue;
import java.util.Arrays;
import java.util.NoSuchElementException;
/**
 * 最小索引优先队列
 */
public class IndexMinPriorQueue<K extends Comparable<K>> implements IndexPriorQueue<K> {
    private K[] keys;           // 元素
    private int[] indexes;      // 元素的索引,按照最小堆的顺序摆放
    private int[] nodeIndexes;  // 元素的索引在完全二叉树中的编号
    private int N;
    public IndexMinPriorQueue(int maxSize) {
        keys = (K[]) new Comparable[maxSize + 1];
        indexes = new int[maxSize + 1];
        nodeIndexes = new int[maxSize + 1];
        Arrays.fill(nodeIndexes, -1);
    }
    @Override
    public void insert(int k, K item) {
        keys[k] = item;
        indexes[++N] = k;
        nodeIndexes[k] = N;
        swim(N);
    public void change(int k, K item) {
        validateIndex(k);
        swim(nodeIndexes[k]);
        sink(nodeIndexes[k]);
    public void set(int k, K item) {
        if (!contains(k)) {
            insert(k, item);
        } else {
            change(k, item);
        }
    public boolean contains(int k) {
        return nodeIndexes[k] != -1;
    public int pop() {
        int k = indexes[1];
        delete(k);
        return k;
    public K delete(int k) {
        K item = keys[k];
        // 交换之后 nodeIndexes[k] 发生变化,必须先保存为局部变量
        int nodeIndex = nodeIndexes[k];
        swap(nodeIndex, N--);
        // 必须有上浮的操作,交换后的元素可能比上面的元素更小
        swim(nodeIndex);
        sink(nodeIndex);
        keys[k] = null;
        nodeIndexes[k] = -1;
        return item;
    public K get(int k) {
        return contains(k) ? keys[k] : null;
    public K min() {
        return keys[indexes[1]];
    /**
     * 获取最小的元素对应的索引
     */
    public int minIndex() {
        return indexes[1];
    public int size() {
        return N;
    public boolean isEmpty() {
        return N == 0;
     * 元素上浮
     *
     * @param k 元素的索引
    private void swim(int k) {
        while (k > 1 && less(k, k / 2)) {
            swap(k, k / 2);
            k /= 2;
     * 元素下沉
    private void sink(int k) {
        while (2 * k <= N) {
            int j = 2 * k;
            // 检查是否有两个子节点
            if (j < N && less(j + 1, j)) j++;
            if (less(k, j)) break;
            swap(k, j);
            k = j;
     * 交换完全二叉树中编号为 a 和 b 的节点
     * @param a 索引 a
     * @param b 索引 b
    private void swap(int a, int b) {
        int k1 = indexes[a], k2 = indexes[b];
        nodeIndexes[k2] = a;
        nodeIndexes[k1] = b;
        indexes[a] = k2;
        indexes[b] = k1;
    private boolean less(int a, int b) {
        return keys[indexes[a]].compareTo(keys[indexes[b]]) < 0;
    private void validateIndex(int k) {
            throw new NoSuchElementException("索引" + k + "不在优先队列中");
}

注意对比最小堆和最小索引堆的 swap(int a, int b) 方法以及 less(int a, int b) 方法,在交换堆中的元素时使用的依据是元素的大小,交换之后无需调整 keys[],而是交换 nodeIndexes[]indexes[] 中的元素。

实现算法

通过上述的分析,实现 Dijkstra 算法就很简单了,时间复杂度为 \(O(|E|\log |V|)\):

package com.zhiyiyo.graph;
import com.zhiyiyo.collection.queue.IndexMinPriorQueue;
import com.zhiyiyo.collection.stack.LinkStack;
import com.zhiyiyo.collection.stack.Stack;
import java.util.Arrays;
public class DijkstraSP implements ShortestPath {
    private double[] distTo;
    private DirectedEdge[] edgeTo;
    private IndexMinPriorQueue<Double> pq;
    private int s;
    public DijkstraSP(WeightedDigraph graph, int s) {
        pq = new IndexMinPriorQueue<>(graph.V());
        edgeTo = new DirectedEdge[graph.V()];
        
        // 初始化距离
        distTo = new double[graph.V()];
        Arrays.fill(distTo, Double.POSITIVE_INFINITY);
        distTo[s] = 0;
        visit(graph, s);
        while (!pq.isEmpty()) {
            visit(graph, pq.pop());
        }
    }
    private void visit(WeightedDigraph graph, int v) {
        for (DirectedEdge edge : graph.adj(v)) {
            int w = edge.to();
            if (distTo[w] > distTo[v] + edge.getWeight()) {
                distTo[w] = distTo[v] + edge.getWeight();
                edgeTo[w] = edge;
                pq.set(w, distTo[w]);
            }
    // 省略已实现的方法 ...
}

后记

Dijkstra 算法还能继续优化,将最小索引堆换成斐波那契堆之后时间复杂度为 \(O(|E|+|V|\log |V|)\),这里就不写了(因为还没学到斐波那契堆),以上~~

到此这篇关于教你在 Java 中实现 Dijkstra 最短路算法的方法的文章就介绍到这了,更多相关Java实现 Dijkstra 最短路算法内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Java/Android 相关文章推荐
新手入门Jvm-- JVM对象创建与内存分配机制
Jun 18 Java/Android
Java多条件判断场景中规则执行器的设计
Jun 26 Java/Android
Java实现二维数组和稀疏数组之间的转换
Jun 27 Java/Android
Sleuth+logback 设置traceid 及自定义信息方式
Jul 26 Java/Android
SpringBoot+VUE实现数据表格的实战
Aug 02 Java/Android
正则表达式拆分url实例代码
Feb 24 Java/Android
Java8利用Stream对列表进行去除重复的方法详解
Apr 14 Java/Android
Java Spring Boot 正确读取配置文件中的属性的值
Apr 20 Java/Android
Android开发 使用文件储存的方式保存QQ密码
Apr 24 Java/Android
Jmerte 分布式压测及分布式压测配置
Apr 30 Java/Android
IDEA中sout快捷键无效问题的解决方法
Jul 23 Java/Android
Java中的Kafka为什么性能这么快及4大核心详析
Sep 23 Java/Android
Java 垃圾回收超详细讲解记忆集和卡表
Java 常见的限流算法详细分析并实现
Java 超详细讲解ThreadLocal类的使用
Java 通过手写分布式雪花SnowFlake生成ID方法详解
Java详细解析==和equals的区别
Apr 07 #Java/Android
Java 超详细讲解hashCode方法
Apr 07 #Java/Android
Java 关于String字符串原理上的问题
Apr 07 #Java/Android
You might like
用mysql内存表来代替php session的类
2009/02/01 PHP
thinkPHP5框架自定义验证器实现方法分析
2018/06/11 PHP
php生成微信红包数组的方法
2019/09/05 PHP
style、 currentStyle、 runtimeStyle区别分析
2010/08/01 Javascript
javascript陷阱 一不小心你就中招了(字符运算)
2013/11/10 Javascript
jQuery向上遍历DOM树之parents(),parent(),closest()之间的区别
2013/12/02 Javascript
jQuery中empty()方法用法实例
2015/01/16 Javascript
Javascript递归打印Document层次关系实例分析
2015/05/15 Javascript
JS+CSS实现的简单折叠展开多级菜单效果
2015/09/12 Javascript
js读取并解析JSON类型数据的方法
2015/11/14 Javascript
bootstrap-treeview自定义双击事件实现方法
2016/01/09 Javascript
纯JavaScript代码实现文本比较工具
2016/02/17 Javascript
jQuery 3 中的新增功能汇总介绍
2016/06/12 Javascript
socket.io学习教程之基础介绍(一)
2017/04/29 Javascript
React Native使用百度Echarts显示图表的示例代码
2017/11/07 Javascript
vuex的简单使用教程
2018/02/02 Javascript
Angular7创建项目、组件、服务以及服务的使用
2019/02/19 Javascript
Vue实现鼠标经过文字显示悬浮框效果的示例代码
2020/10/14 Javascript
[02:50]2014DOTA2 TI预选赛预选赛 大神专访第一弹!
2014/05/21 DOTA
python进阶教程之词典、字典、dict
2014/08/29 Python
python实现每次处理一个字符的三种方法
2014/10/09 Python
Python实现的数据结构与算法之队列详解
2015/04/22 Python
Python实现的飞速中文网小说下载脚本
2015/04/23 Python
Python实现扣除个人税后的工资计算器示例
2018/03/26 Python
简单实现python数独游戏
2018/03/30 Python
python 移除字符串尾部的数字方法
2018/07/17 Python
Flask框架学习笔记之表单基础介绍与表单提交方式
2019/08/12 Python
xadmin使用formfield_for_dbfield函数过滤下拉表单实例
2020/04/07 Python
Python中常见的数制转换有哪些
2020/05/27 Python
Python包和模块的分发详细介绍
2020/06/19 Python
python3环境搭建过程(利用Anaconda+pycharm)完整版
2020/08/19 Python
吉列剃须刀美国官网:Gillette美国
2018/07/13 全球购物
美国办公用品折扣网站:Shoplet.com
2019/11/24 全球购物
经营目标责任书
2015/05/08 职场文书
Python中文分词库jieba(结巴分词)详细使用介绍
2022/04/07 Python
MyBatis核心源码深度剖析SQL语句执行过程
2022/05/20 Java/Android