浅谈matplotlib中FigureCanvasXAgg的用法


Posted in Python onJune 16, 2020

背景知识:

FigureCanvasXAgg就是一个渲染器,渲染器的工作就是drawing,执行绘图的这个动作。渲染器是使物体显示在屏幕上

主要内容:

将一个figure渲染的canvas变为一个Qt widgets,figure显示的过程是需要管理器(manager),需要FigureCanvasBase来管理。报错信息'FigureCanvasQTAgg' object has no attribute 'manager'

将一个navigation toolbar渲染成Qt widgets

使用用户事件来实时更新matplotlib plot

matplotlib针对GUI设计了两层结构概念:canvas,renderer。

下面我将以默认自带的后端 tkAgg:from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg as FigureCanvas为例,为大家讲解画布与渲染器的知识。

一. canvas(画布)

对应抽象的类:FigureCanvasBase and FigureManagerBase

作用:

保存对图像的引用

更新图像通过对画布的引用

定义运行注册的事件方法

将本地工具箱事件转为matplotlib事件抽象框架

定义绘制渲染图片的方法

停止和开始nono-GUI事件循环

1. 追寻matplotlib.figure.Figure.show( )

以下引自matplotlib.figure.Figure.show( ) 源码和注释:

#matplotlib.figure.Figure.show( )
def show(self, warn=True):
 """
 If using a GUI backend with pyplot, display the figure window.

 If the figure was not created using
 :func:`~matplotlib.pyplot.figure`, it will lack a
 :class:`~matplotlib.backend_bases.FigureManagerBase`, and
 will raise an AttributeError.

 Parameters
 ----------
 warm : bool
  If ``True``, issue warning when called on a non-GUI backend

 Notes
 -----
 For non-GUI backends, this does nothing, in which case a warning will
 be issued if *warn* is ``True`` (default).
 """
 try:
  manager = getattr(self.canvas, 'manager')
 except AttributeError as err:
  raise AttributeError("%s\n"
        "Figure.show works only "
        "for figures managed by pyplot, normally "
        "created by pyplot.figure()." % err)

 if manager is not None:
  try:
   manager.show()
   return
  except NonGuiException:
   pass

它是通过manager.show()来实现画图的动作的。

2. 追寻plt.show()

而在==plt.show( )==的源码中我们可以查到:

#plt.show()
from matplotlib.backends import pylab_setup
_show = pylab_setup()
def show(*args, **kw):

 global _show
 return _show(*args, **kw)

而我们继续查找就得到了,这是在backends包的__init__.py模块里的代码,代码说了一大堆,无非就是说它返回了四个对象:backend_mod, new_figure_manager, draw_if_interactive, show。而show就是show = getattr(backend_mod, 'show', do_nothing_show)得到的其中backend_mod就是要导入模块的绝对路径,之后验证的show就是matplotlib.backends.backend_tkagg._BackendTkAgg,继续追寻之后我们得到class _BackendTkAgg(_BackendTk): FigureCanvas = FigureCanvasTkAgg,之后我们用help函数得到

show(block=None) method of builtins.type instance
 Show all figures.
 
 `show` blocks by calling `mainloop` if *block* is ``True``, or if it
 is ``None`` and we are neither in IPython's ``%pylab`` mode, nor in
 `interactive` mode.

我们继续刨根,寻找从FigureCanvas开始的类的关系和其方法,类的继承结构关系如下图

浅谈matplotlib中FigureCanvasXAgg的用法

然后终于在FigureCnavasTk类的声明中找到了这样的一句声明:

show = cbook.deprecated("2.2", name="FigureCanvasTk.show",
       alternative="FigureCanvasTk.draw")(
        lambda self: self.draw())

也就是说show归根结底是backend里的一个FigureCanvasTk.draw()的一个变形 !

pylab_setup代码如下:

def pylab_setup(name=None):
 '''return new_figure_manager, draw_if_interactive and show for pyplot

 This provides the backend-specific functions that are used by
 pyplot to abstract away the difference between interactive backends.

 Parameters
 ----------
 name : str, optional
  The name of the backend to use. If `None`, falls back to
  ``matplotlib.get_backend()`` (which return :rc:`backend`).

 '''
 # Import the requested backend into a generic module object
 if name is None:
  # validates, to match all_backends
  name = matplotlib.get_backend()
 if name.startswith('module://'):
  backend_name = name[9:]
 else:
  backend_name = 'backend_' + name
  backend_name = backend_name.lower() # until we banish mixed case
  backend_name = 'matplotlib.backends.%s' % backend_name.lower()

 # the last argument is specifies whether to use absolute or relative
 # imports. 0 means only perform absolute imports.
 #得到模块的绝对路径backend_mod,然后通过绝对路径加.就可以调用各个抽象类
 #<module 'matplotlib.backends.backend_tkagg' from 'D:\\Python36\\lib\\site-packages\\matplotlib\\backends\\backend_tkagg.py'>默认实验的!
 backend_mod = __import__(backend_name, globals(), locals(),
        [backend_name], 0)

 # Things we pull in from all backends
 new_figure_manager = backend_mod.new_figure_manager

 # image backends like pdf, agg or svg do not need to do anything
 # for "show" or "draw_if_interactive", so if they are not defined
 # by the backend, just do nothing
 def do_nothing_show(*args, **kwargs):
  frame = inspect.currentframe()
  fname = frame.f_back.f_code.co_filename
  if fname in ('<stdin>', '<ipython console>'):
   warnings.warn("""
Your currently selected backend, '%s' does not support show().
Please select a GUI backend in your matplotlibrc file ('%s')
or with matplotlib.use()""" %
       (name, matplotlib.matplotlib_fname()))

 def do_nothing(*args, **kwargs):
  pass

 backend_version = getattr(backend_mod, 'backend_version', 'unknown')

 show = getattr(backend_mod, 'show', do_nothing_show)

 draw_if_interactive = getattr(backend_mod, 'draw_if_interactive',
         do_nothing)

 _log.debug('backend %s version %s', name, backend_version)

 # need to keep a global reference to the backend for compatibility
 # reasons. See https://github.com/matplotlib/matplotlib/issues/6092
 global backend
 backend = name
 return backend_mod, new_figure_manager, draw_if_interactive, show

3. 追寻plt.figure()

我们创建的这个figure必须有manager,否则则会报错,如果是plt.figure初始化的,plt.figure( )源码如下:

plt.figure()示例

def figure():

 figManager = _pylab_helpers.Gcf.get_fig_manager(num)

 figManager = new_figure_manager(num,figsize=figsize,dpi=dpi,facecolor=facecolor,edgecolor=edgecolor,frameon=frameon,FigureClass=FigureClass,**kwargs)
 ......
 ......
 return figManager.canvas.figure

4. 追寻matplotlib.figure.Figure()

而在matplotlib.figure.Figure() 中,其初始化函数__init__(),并没有默认生成manager这个属性,所以在调用show的时候,就会报错!如上其show函数定义的那样

def __init__(self,
     figsize=None, # defaults to rc figure.figsize
     dpi=None, # defaults to rc figure.dpi
     facecolor=None, # defaults to rc figure.facecolor
     edgecolor=None, # defaults to rc figure.edgecolor
     linewidth=0.0, # the default linewidth of the frame
     frameon=None, # whether or not to draw the figure frame
     subplotpars=None, # default to rc
     tight_layout=None, # default to rc figure.autolayout
     constrained_layout=None, # default to rc
           #figure.constrained_layout.use
     ):
  """
  Parameters
  ----------
  figsize : 2-tuple of floats
   ``(width, height)`` tuple in inches

  dpi : float
   Dots per inch

  facecolor
   The figure patch facecolor; defaults to rc ``figure.facecolor``

  edgecolor
   The figure patch edge color; defaults to rc ``figure.edgecolor``

  linewidth : float
   The figure patch edge linewidth; the default linewidth of the frame

  frameon : bool
   If ``False``, suppress drawing the figure frame

  subplotpars : :class:`SubplotParams`
   Subplot parameters, defaults to rc

  tight_layout : bool
   If ``False`` use *subplotpars*; if ``True`` adjust subplot
   parameters using `.tight_layout` with default padding.
   When providing a dict containing the keys
   ``pad``, ``w_pad``, ``h_pad``, and ``rect``, the default
   `.tight_layout` paddings will be overridden.
   Defaults to rc ``figure.autolayout``.

  constrained_layout : bool
   If ``True`` use constrained layout to adjust positioning of plot
   elements. Like ``tight_layout``, but designed to be more
   flexible. See
   :doc:`/tutorials/intermediate/constrainedlayout_guide`
   for examples. (Note: does not work with :meth:`.subplot` or
   :meth:`.subplot2grid`.)
   Defaults to rc ``figure.constrained_layout.use``.
  """
  Artist.__init__(self)
  # remove the non-figure artist _axes property
  # as it makes no sense for a figure to be _in_ an axes
  # this is used by the property methods in the artist base class
  # which are over-ridden in this class
  del self._axes
  self.callbacks = cbook.CallbackRegistry()

  if figsize is None:
   figsize = rcParams['figure.figsize']
  if dpi is None:
   dpi = rcParams['figure.dpi']
  if facecolor is None:
   facecolor = rcParams['figure.facecolor']
  if edgecolor is None:
   edgecolor = rcParams['figure.edgecolor']
  if frameon is None:
   frameon = rcParams['figure.frameon']

  if not np.isfinite(figsize).all():
   raise ValueError('figure size must be finite not '
        '{}'.format(figsize))
  self.bbox_inches = Bbox.from_bounds(0, 0, *figsize)

  self.dpi_scale_trans = Affine2D().scale(dpi, dpi)
  # do not use property as it will trigger
  self._dpi = dpi
  self.bbox = TransformedBbox(self.bbox_inches, self.dpi_scale_trans)

  self.frameon = frameon

  self.transFigure = BboxTransformTo(self.bbox)

  self.patch = Rectangle(
   xy=(0, 0), width=1, height=1,
   facecolor=facecolor, edgecolor=edgecolor, linewidth=linewidth)
  self._set_artist_props(self.patch)
  self.patch.set_aa(False)

  self._hold = rcParams['axes.hold']
  if self._hold is None:
   self._hold = True

  self.canvas = None
  self._suptitle = None

  if subplotpars is None:
   subplotpars = SubplotParams()

  self.subplotpars = subplotpars
  # constrained_layout:
  self._layoutbox = None
  # set in set_constrained_layout_pads()
  self.set_constrained_layout(constrained_layout)

  self.set_tight_layout(tight_layout)

  self._axstack = AxesStack() # track all figure axes and current axes
  self.clf()
  self._cachedRenderer = None

  # groupers to keep track of x and y labels we want to align.
  # see self.align_xlabels and self.align_ylabels and
  # axis._get_tick_boxes_siblings
  self._align_xlabel_grp = cbook.Grouper()
  self._align_ylabel_grp = cbook.Grouper()

综上所述,我们通过matplotlib.figure.Figure()来创建得到的fig,并不具备manager的属性,而通过plt.figure()创建的fig,就默认创建了manager。

二 . renderer(渲染器),默认是tkagg

对应抽象的类:RendererBase and GraphicsContextBase

作用:

- 很多渲染操作都传递给一个额外的抽象:GraphicsContextBase,它为处理颜色、线条样式、起始样式、混合属性和反混叠选项等的代码提供了一个干净的分离。

Qt & matplotlib示例代码

#import modules from Matplotlib
from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.backends.backend_qt4agg import NavigationToolbar2QTAgg as NavigationToolbar
import matplotlib.pyplot as plt
#import random module to generate set
import random

class Window(QtGui.QDialog):
	def __init__(self, parent=None):
		super(Window, self).__init__(parent)
		#init figure and canvas
		self.figure = plt.figure()
		self.canvas = FigureCanvas(self.figure)
		#init nav toolbar
		self.toolbar = NavigationToolbar(self.canvas, self)
		# Add plot button
		self.button = QtGui.QPushButton('Plot')
		# connect button to custom slot (see later)
		self.button.clicked.connect(self.plot)
		# set the layout
		layout = QtGui.QVBoxLayout()
		layout.addWidget(self.toolbar)
		layout.addWidget(self.canvas)
		layout.addWidget(self.button)
		self.setLayout(layout)
	### our custom slot
	def plot(self):
		# random data
		data = [random.random() for i in range(25)]
		# create an axis
		ax = self.figure.add_subplot(1,1,1)
		# discards the old graph
		ax.hold(False)
		# plot data
		ax.plot(data, '*­')
		# refresh canvas
		self.canvas.draw()

三. Problems(GUI画3D不能旋转)

一个Axes3D创建callback函数给画布上的图形实现旋转特性。如果说先给图形(figure)增加axes或者其他配件的时候,在之后将图形附加到画布的时候,之前添加的axes的callback函数可能不能够接收消息事件,也就没办法在绘出的GUI实现旋转的性能。

所以应该先将图形附加到画布上,然后再对图形增加axes和其他的配件。

FigureCanvas(figure,canvas)

figure:需要附加的图形(添加者),canvas提供渲染功能的对象(承载者)

每一次你调用FigureCanvas()的时候,你都是将图形附加到新画布上(这不是你所看到的的那个canvas),于是 the call-backs函数将不会被射击(接收事件信号),因为他们正在监听一个你看不到的canvas。

四 . 附录

浅谈matplotlib中FigureCanvasXAgg的用法

以上这篇浅谈matplotlib中FigureCanvasXAgg的用法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
用Python写的图片蜘蛛人代码
Aug 27 Python
基python实现多线程网页爬虫
Sep 06 Python
Python学习笔记整理3之输入输出、python eval函数
Dec 14 Python
使用Python简单的实现树莓派的WEB控制
Feb 18 Python
python编写简单爬虫资料汇总
Mar 22 Python
python实时分析日志的一个小脚本分享
May 07 Python
Python3计算三角形的面积代码
Dec 18 Python
python多进程读图提取特征存npy
May 21 Python
python爬虫豆瓣网的模拟登录实现
Aug 21 Python
python实现在多维数组中挑选符合条件的全部元素
Nov 26 Python
Win10下安装并使用tensorflow-gpu1.8.0+python3.6全过程分析(显卡MX250+CUDA9.0+cudnn)
Feb 17 Python
Python 实现绘制子图及子图刻度的变换等问题
May 31 Python
利用Python实现Excel的文件间的数据匹配功能
Jun 16 #Python
Pytorch 使用CNN图像分类的实现
Jun 16 #Python
利用python中的matplotlib打印混淆矩阵实例
Jun 16 #Python
Python SMTP配置参数并发送邮件
Jun 16 #Python
基于matplotlib中ion()和ioff()的使用详解
Jun 16 #Python
Python数据相关系数矩阵和热力图轻松实现教程
Jun 16 #Python
matplotlib.pyplot.matshow 矩阵可视化实例
Jun 16 #Python
You might like
Yii框架调试心得--在页面输出执行sql语句
2014/12/25 PHP
php二维码生成以及下载实现
2017/09/28 PHP
PHP面向对象程序设计模拟一般面向对象语言中的方法重载(overload)示例
2019/06/13 PHP
jquery text()要注意啦
2009/10/30 Javascript
JQuery报错Uncaught TypeError: Illegal invocation的处理方法
2015/03/13 Javascript
JS实现的仿东京商城菜单、仿Win右键菜单及仿淘宝TAB特效合集
2015/09/28 Javascript
跨域请求的完美解决方法(JSONP, CORS)
2016/06/12 Javascript
Vue.js每天必学之构造器与生命周期
2016/09/05 Javascript
理解AngularJs篇:30分钟快速掌握AngularJs
2016/12/23 Javascript
Html5 js实现手风琴效果
2020/04/17 Javascript
深入理解Nodejs Global 模块
2017/06/03 NodeJs
jquery插件canvaspercent.js实现百分比圆饼效果
2017/07/18 jQuery
Python IDE PyCharm的基本快捷键和配置简介
2015/11/04 Python
python脚本实现数据导出excel格式的简单方法(推荐)
2016/12/30 Python
Python数据结构与算法之图的广度优先与深度优先搜索算法示例
2017/12/14 Python
OpenCV-Python实现轮廓检测实例分析
2018/01/05 Python
python 实现将txt文件多行合并为一行并将中间的空格去掉方法
2018/12/20 Python
Python开发之Nginx+uWSGI+virtualenv多项目部署教程
2019/05/13 Python
Django密码系统实现过程详解
2019/07/19 Python
pycharm进入时每次都是insert模式的解决方式
2021/02/05 Python
Javascript 高级手势使用介绍
2013/04/21 HTML / CSS
HTML5的语法变化介绍
2013/08/13 HTML / CSS
互联网创业计划书的书写步骤
2014/01/28 职场文书
工伤事故赔偿协议书
2014/04/15 职场文书
青年志愿者活动总结
2014/04/26 职场文书
汉语言文学专业求职信
2014/06/19 职场文书
总经理助理岗位职责范本
2014/07/20 职场文书
最美护士演讲稿
2014/08/27 职场文书
2015年销售内勤工作总结
2015/04/27 职场文书
2015年党小组工作总结
2015/05/26 职场文书
2019年自助餐厅创业计划书模板
2019/08/22 职场文书
CocosCreator入门教程之网络通信
2021/04/16 Javascript
能让Python提速超40倍的神器Cython详解
2021/06/24 Python
关于python中模块和重载的问题
2021/11/02 Python
Java 超详细讲解数据结构中的堆的应用
2022/04/02 Java/Android
什么是Python装饰器?如何定义和使用?
2022/04/11 Python