TensorFlow车牌识别完整版代码(含车牌数据集)


Posted in Python onAugust 05, 2019

在之前发布的一篇博文《MNIST数据集实现车牌识别--初步演示版》中,我们演示了如何使用TensorFlow进行车牌识别,但是,当时采用的数据集是MNIST数字手写体,只能分类0-9共10个数字,无法分类省份简称和字母,局限性较大,无实际意义。

经过图像定位分割处理,博主收集了相关省份简称和26个字母的图片数据集,结合前述博文中贴出的python+TensorFlow代码,实现了完整的车牌识别功能。本着分享精神,在此送上全部代码和车牌数据集。

车牌数据集下载地址(约4000张图片):tf_car_license_dataset_3water.rar

省份简称训练+识别代码(保存文件名为train-license-province.py)(拷贝代码请务必注意python文本缩进,只要有一处缩进错误,就无法得到正确结果,或者出现异常):

#!/usr/bin/python3.5
# -*- coding: utf-8 -*- 
 
import sys
import os
import time
import random
 
import numpy as np
import tensorflow as tf
 
from PIL import Image
 
 
SIZE = 1280
WIDTH = 32
HEIGHT = 40
NUM_CLASSES = 6
iterations = 300
 
SAVER_DIR = "train-saver/province/"
 
PROVINCES = ("京","闽","粤","苏","沪","浙")
nProvinceIndex = 0
 
time_begin = time.time()
 
 
# 定义输入节点,对应于图片像素值矩阵集合和图片标签(即所代表的数字)
x = tf.placeholder(tf.float32, shape=[None, SIZE])
y_ = tf.placeholder(tf.float32, shape=[None, NUM_CLASSES])
 
x_image = tf.reshape(x, [-1, WIDTH, HEIGHT, 1])
 
 
# 定义卷积函数
def conv_layer(inputs, W, b, conv_strides, kernel_size, pool_strides, padding):
  L1_conv = tf.nn.conv2d(inputs, W, strides=conv_strides, padding=padding)
  L1_relu = tf.nn.relu(L1_conv + b)
  return tf.nn.max_pool(L1_relu, ksize=kernel_size, strides=pool_strides, padding='SAME')
 
# 定义全连接层函数
def full_connect(inputs, W, b):
  return tf.nn.relu(tf.matmul(inputs, W) + b)
 
 
if __name__ =='__main__' and sys.argv[1]=='train':
  # 第一次遍历图片目录是为了获取图片总数
  input_count = 0
  for i in range(0,NUM_CLASSES):
    dir = './train_images/training-set/chinese-characters/%s/' % i      # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        input_count += 1
 
  # 定义对应维数和各维长度的数组
  input_images = np.array([[0]*SIZE for i in range(input_count)])
  input_labels = np.array([[0]*NUM_CLASSES for i in range(input_count)])
 
  # 第二次遍历图片目录是为了生成图片数据和标签
  index = 0
  for i in range(0,NUM_CLASSES):
    dir = './train_images/training-set/chinese-characters/%s/' % i     # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        filename = dir + filename
        img = Image.open(filename)
        width = img.size[0]
        height = img.size[1]
        for h in range(0, height):
          for w in range(0, width):
            # 通过这样的处理,使数字的线条变细,有利于提高识别准确率
            if img.getpixel((w, h)) > 230:
              input_images[index][w+h*width] = 0
            else:
              input_images[index][w+h*width] = 1
        input_labels[index][i] = 1
        index += 1
 
  # 第一次遍历图片目录是为了获取图片总数
  val_count = 0
  for i in range(0,NUM_CLASSES):
    dir = './train_images/validation-set/chinese-characters/%s/' % i      # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        val_count += 1
 
  # 定义对应维数和各维长度的数组
  val_images = np.array([[0]*SIZE for i in range(val_count)])
  val_labels = np.array([[0]*NUM_CLASSES for i in range(val_count)])
 
  # 第二次遍历图片目录是为了生成图片数据和标签
  index = 0
  for i in range(0,NUM_CLASSES):
    dir = './train_images/validation-set/chinese-characters/%s/' % i     # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        filename = dir + filename
        img = Image.open(filename)
        width = img.size[0]
        height = img.size[1]
        for h in range(0, height):
          for w in range(0, width):
            # 通过这样的处理,使数字的线条变细,有利于提高识别准确率
            if img.getpixel((w, h)) > 230:
              val_images[index][w+h*width] = 0
            else:
              val_images[index][w+h*width] = 1
        val_labels[index][i] = 1
        index += 1
  
  with tf.Session() as sess:
    # 第一个卷积层
    W_conv1 = tf.Variable(tf.truncated_normal([8, 8, 1, 16], stddev=0.1), name="W_conv1")
    b_conv1 = tf.Variable(tf.constant(0.1, shape=[16]), name="b_conv1")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 2, 2, 1]
    pool_strides = [1, 2, 2, 1]
    L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')
 
    # 第二个卷积层
    W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 16, 32], stddev=0.1), name="W_conv2")
    b_conv2 = tf.Variable(tf.constant(0.1, shape=[32]), name="b_conv2")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 1, 1, 1]
    pool_strides = [1, 1, 1, 1]
    L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')
 
 
    # 全连接层
    W_fc1 = tf.Variable(tf.truncated_normal([16 * 20 * 32, 512], stddev=0.1), name="W_fc1")
    b_fc1 = tf.Variable(tf.constant(0.1, shape=[512]), name="b_fc1")
    h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20*32])
    h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)
 
 
    # dropout
    keep_prob = tf.placeholder(tf.float32)
 
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
 
 
    # readout层
    W_fc2 = tf.Variable(tf.truncated_normal([512, NUM_CLASSES], stddev=0.1), name="W_fc2")
    b_fc2 = tf.Variable(tf.constant(0.1, shape=[NUM_CLASSES]), name="b_fc2")
 
    # 定义优化器和训练op
    y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
    train_step = tf.train.AdamOptimizer((1e-4)).minimize(cross_entropy)
 
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
 
    # 初始化saver
    saver = tf.train.Saver()
 
    sess.run(tf.global_variables_initializer())
 
    time_elapsed = time.time() - time_begin
    print("读取图片文件耗费时间:%d秒" % time_elapsed)
    time_begin = time.time()
 
    print ("一共读取了 %s 个训练图像, %s 个标签" % (input_count, input_count))
 
    # 设置每次训练op的输入个数和迭代次数,这里为了支持任意图片总数,定义了一个余数remainder,譬如,如果每次训练op的输入个数为60,图片总数为150张,则前面两次各输入60张,最后一次输入30张(余数30)
    batch_size = 60
    iterations = iterations
    batches_count = int(input_count / batch_size)
    remainder = input_count % batch_size
    print ("训练数据集分成 %s 批, 前面每批 %s 个数据,最后一批 %s 个数据" % (batches_count+1, batch_size, remainder))
 
    # 执行训练迭代
    for it in range(iterations):
      # 这里的关键是要把输入数组转为np.array
      for n in range(batches_count):
        train_step.run(feed_dict={x: input_images[n*batch_size:(n+1)*batch_size], y_: input_labels[n*batch_size:(n+1)*batch_size], keep_prob: 0.5})
      if remainder > 0:
        start_index = batches_count * batch_size;
        train_step.run(feed_dict={x: input_images[start_index:input_count-1], y_: input_labels[start_index:input_count-1], keep_prob: 0.5})
 
      # 每完成五次迭代,判断准确度是否已达到100%,达到则退出迭代循环
      iterate_accuracy = 0
      if it%5 == 0:
        iterate_accuracy = accuracy.eval(feed_dict={x: val_images, y_: val_labels, keep_prob: 1.0})
        print ('第 %d 次训练迭代: 准确率 %0.5f%%' % (it, iterate_accuracy*100))
        if iterate_accuracy >= 0.9999 and it >= 150:
          break;
 
    print ('完成训练!')
    time_elapsed = time.time() - time_begin
    print ("训练耗费时间:%d秒" % time_elapsed)
    time_begin = time.time()
 
    # 保存训练结果
    if not os.path.exists(SAVER_DIR):
      print ('不存在训练数据保存目录,现在创建保存目录')
      os.makedirs(SAVER_DIR)
    saver_path = saver.save(sess, "%smodel.ckpt"%(SAVER_DIR))
 
 
 
if __name__ =='__main__' and sys.argv[1]=='predict':
  saver = tf.train.import_meta_graph("%smodel.ckpt.meta"%(SAVER_DIR))
  with tf.Session() as sess:
    model_file=tf.train.latest_checkpoint(SAVER_DIR)
    saver.restore(sess, model_file)
 
    # 第一个卷积层
    W_conv1 = sess.graph.get_tensor_by_name("W_conv1:0")
    b_conv1 = sess.graph.get_tensor_by_name("b_conv1:0")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 2, 2, 1]
    pool_strides = [1, 2, 2, 1]
    L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')
 
    # 第二个卷积层
    W_conv2 = sess.graph.get_tensor_by_name("W_conv2:0")
    b_conv2 = sess.graph.get_tensor_by_name("b_conv2:0")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 1, 1, 1]
    pool_strides = [1, 1, 1, 1]
    L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')
 
 
    # 全连接层
    W_fc1 = sess.graph.get_tensor_by_name("W_fc1:0")
    b_fc1 = sess.graph.get_tensor_by_name("b_fc1:0")
    h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20*32])
    h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)
 
 
    # dropout
    keep_prob = tf.placeholder(tf.float32)
 
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
 
 
    # readout层
    W_fc2 = sess.graph.get_tensor_by_name("W_fc2:0")
    b_fc2 = sess.graph.get_tensor_by_name("b_fc2:0")
 
    # 定义优化器和训练op
    conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
 
    for n in range(1,2):
      path = "test_images/%s.bmp" % (n)
      img = Image.open(path)
      width = img.size[0]
      height = img.size[1]
 
      img_data = [[0]*SIZE for i in range(1)]
      for h in range(0, height):
        for w in range(0, width):
          if img.getpixel((w, h)) < 190:
            img_data[0][w+h*width] = 1
          else:
            img_data[0][w+h*width] = 0
      
      result = sess.run(conv, feed_dict = {x: np.array(img_data), keep_prob: 1.0})
      max1 = 0
      max2 = 0
      max3 = 0
      max1_index = 0
      max2_index = 0
      max3_index = 0
      for j in range(NUM_CLASSES):
        if result[0][j] > max1:
          max1 = result[0][j]
          max1_index = j
          continue
        if (result[0][j]>max2) and (result[0][j]<=max1):
          max2 = result[0][j]
          max2_index = j
          continue
        if (result[0][j]>max3) and (result[0][j]<=max2):
          max3 = result[0][j]
          max3_index = j
          continue
      
      nProvinceIndex = max1_index
      print ("概率: [%s %0.2f%%]  [%s %0.2f%%]  [%s %0.2f%%]" % (PROVINCES[max1_index],max1*100, PROVINCES[max2_index],max2*100, PROVINCES[max3_index],max3*100))
      
    print ("省份简称是: %s" % PROVINCES[nProvinceIndex])

城市代号训练+识别代码(保存文件名为train-license-letters.py):

#!/usr/bin/python3.5
# -*- coding: utf-8 -*- 
 
import sys
import os
import time
import random
 
import numpy as np
import tensorflow as tf
 
from PIL import Image
 
 
SIZE = 1280
WIDTH = 32
HEIGHT = 40
NUM_CLASSES = 26
iterations = 500
 
SAVER_DIR = "train-saver/letters/"
 
LETTERS_DIGITS = ("A","B","C","D","E","F","G","H","J","K","L","M","N","P","Q","R","S","T","U","V","W","X","Y","Z","I","O")
license_num = ""
 
time_begin = time.time()
 
 
# 定义输入节点,对应于图片像素值矩阵集合和图片标签(即所代表的数字)
x = tf.placeholder(tf.float32, shape=[None, SIZE])
y_ = tf.placeholder(tf.float32, shape=[None, NUM_CLASSES])
 
x_image = tf.reshape(x, [-1, WIDTH, HEIGHT, 1])
 
 
# 定义卷积函数
def conv_layer(inputs, W, b, conv_strides, kernel_size, pool_strides, padding):
  L1_conv = tf.nn.conv2d(inputs, W, strides=conv_strides, padding=padding)
  L1_relu = tf.nn.relu(L1_conv + b)
  return tf.nn.max_pool(L1_relu, ksize=kernel_size, strides=pool_strides, padding='SAME')
 
# 定义全连接层函数
def full_connect(inputs, W, b):
  return tf.nn.relu(tf.matmul(inputs, W) + b)
 
 
if __name__ =='__main__' and sys.argv[1]=='train':
  # 第一次遍历图片目录是为了获取图片总数
  input_count = 0
  for i in range(0+10,NUM_CLASSES+10):
    dir = './train_images/training-set/letters/%s/' % i      # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        input_count += 1
 
  # 定义对应维数和各维长度的数组
  input_images = np.array([[0]*SIZE for i in range(input_count)])
  input_labels = np.array([[0]*NUM_CLASSES for i in range(input_count)])
 
  # 第二次遍历图片目录是为了生成图片数据和标签
  index = 0
  for i in range(0+10,NUM_CLASSES+10):
    dir = './train_images/training-set/letters/%s/' % i     # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        filename = dir + filename
        img = Image.open(filename)
        width = img.size[0]
        height = img.size[1]
        for h in range(0, height):
          for w in range(0, width):
            # 通过这样的处理,使数字的线条变细,有利于提高识别准确率
            if img.getpixel((w, h)) > 230:
              input_images[index][w+h*width] = 0
            else:
              input_images[index][w+h*width] = 1
        #print ("i=%d, index=%d" % (i, index))
        input_labels[index][i-10] = 1
        index += 1
 
  # 第一次遍历图片目录是为了获取图片总数
  val_count = 0
  for i in range(0+10,NUM_CLASSES+10):
    dir = './train_images/validation-set/%s/' % i      # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        val_count += 1
 
  # 定义对应维数和各维长度的数组
  val_images = np.array([[0]*SIZE for i in range(val_count)])
  val_labels = np.array([[0]*NUM_CLASSES for i in range(val_count)])
 
  # 第二次遍历图片目录是为了生成图片数据和标签
  index = 0
  for i in range(0+10,NUM_CLASSES+10):
    dir = './train_images/validation-set/%s/' % i     # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        filename = dir + filename
        img = Image.open(filename)
        width = img.size[0]
        height = img.size[1]
        for h in range(0, height):
          for w in range(0, width):
            # 通过这样的处理,使数字的线条变细,有利于提高识别准确率
            if img.getpixel((w, h)) > 230:
              val_images[index][w+h*width] = 0
            else:
              val_images[index][w+h*width] = 1
        val_labels[index][i-10] = 1
        index += 1
  
  with tf.Session() as sess:
    # 第一个卷积层
    W_conv1 = tf.Variable(tf.truncated_normal([8, 8, 1, 16], stddev=0.1), name="W_conv1")
    b_conv1 = tf.Variable(tf.constant(0.1, shape=[16]), name="b_conv1")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 2, 2, 1]
    pool_strides = [1, 2, 2, 1]
    L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')
 
    # 第二个卷积层
    W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 16, 32], stddev=0.1), name="W_conv2")
    b_conv2 = tf.Variable(tf.constant(0.1, shape=[32]), name="b_conv2")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 1, 1, 1]
    pool_strides = [1, 1, 1, 1]
    L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')
 
 
    # 全连接层
    W_fc1 = tf.Variable(tf.truncated_normal([16 * 20 * 32, 512], stddev=0.1), name="W_fc1")
    b_fc1 = tf.Variable(tf.constant(0.1, shape=[512]), name="b_fc1")
    h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20*32])
    h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)
 
 
    # dropout
    keep_prob = tf.placeholder(tf.float32)
 
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
 
 
    # readout层
    W_fc2 = tf.Variable(tf.truncated_normal([512, NUM_CLASSES], stddev=0.1), name="W_fc2")
    b_fc2 = tf.Variable(tf.constant(0.1, shape=[NUM_CLASSES]), name="b_fc2")
 
    # 定义优化器和训练op
    y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
    train_step = tf.train.AdamOptimizer((1e-4)).minimize(cross_entropy)
 
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
 
    sess.run(tf.global_variables_initializer())
 
    time_elapsed = time.time() - time_begin
    print("读取图片文件耗费时间:%d秒" % time_elapsed)
    time_begin = time.time()
 
    print ("一共读取了 %s 个训练图像, %s 个标签" % (input_count, input_count))
 
    # 设置每次训练op的输入个数和迭代次数,这里为了支持任意图片总数,定义了一个余数remainder,譬如,如果每次训练op的输入个数为60,图片总数为150张,则前面两次各输入60张,最后一次输入30张(余数30)
    batch_size = 60
    iterations = iterations
    batches_count = int(input_count / batch_size)
    remainder = input_count % batch_size
    print ("训练数据集分成 %s 批, 前面每批 %s 个数据,最后一批 %s 个数据" % (batches_count+1, batch_size, remainder))
 
    # 执行训练迭代
    for it in range(iterations):
      # 这里的关键是要把输入数组转为np.array
      for n in range(batches_count):
        train_step.run(feed_dict={x: input_images[n*batch_size:(n+1)*batch_size], y_: input_labels[n*batch_size:(n+1)*batch_size], keep_prob: 0.5})
      if remainder > 0:
        start_index = batches_count * batch_size;
        train_step.run(feed_dict={x: input_images[start_index:input_count-1], y_: input_labels[start_index:input_count-1], keep_prob: 0.5})
 
      # 每完成五次迭代,判断准确度是否已达到100%,达到则退出迭代循环
      iterate_accuracy = 0
      if it%5 == 0:
        iterate_accuracy = accuracy.eval(feed_dict={x: val_images, y_: val_labels, keep_prob: 1.0})
        print ('第 %d 次训练迭代: 准确率 %0.5f%%' % (it, iterate_accuracy*100))
        if iterate_accuracy >= 0.9999 and it >= iterations:
          break;
 
    print ('完成训练!')
    time_elapsed = time.time() - time_begin
    print ("训练耗费时间:%d秒" % time_elapsed)
    time_begin = time.time()
 
    # 保存训练结果
    if not os.path.exists(SAVER_DIR):
      print ('不存在训练数据保存目录,现在创建保存目录')
      os.makedirs(SAVER_DIR)
    # 初始化saver
    saver = tf.train.Saver()      
    saver_path = saver.save(sess, "%smodel.ckpt"%(SAVER_DIR))
 
 
 
if __name__ =='__main__' and sys.argv[1]=='predict':
  saver = tf.train.import_meta_graph("%smodel.ckpt.meta"%(SAVER_DIR))
  with tf.Session() as sess:
    model_file=tf.train.latest_checkpoint(SAVER_DIR)
    saver.restore(sess, model_file)
 
    # 第一个卷积层
    W_conv1 = sess.graph.get_tensor_by_name("W_conv1:0")
    b_conv1 = sess.graph.get_tensor_by_name("b_conv1:0")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 2, 2, 1]
    pool_strides = [1, 2, 2, 1]
    L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')
 
    # 第二个卷积层
    W_conv2 = sess.graph.get_tensor_by_name("W_conv2:0")
    b_conv2 = sess.graph.get_tensor_by_name("b_conv2:0")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 1, 1, 1]
    pool_strides = [1, 1, 1, 1]
    L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')
 
 
    # 全连接层
    W_fc1 = sess.graph.get_tensor_by_name("W_fc1:0")
    b_fc1 = sess.graph.get_tensor_by_name("b_fc1:0")
    h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20*32])
    h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)
 
 
    # dropout
    keep_prob = tf.placeholder(tf.float32)
 
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
 
 
    # readout层
    W_fc2 = sess.graph.get_tensor_by_name("W_fc2:0")
    b_fc2 = sess.graph.get_tensor_by_name("b_fc2:0")
 
    # 定义优化器和训练op
    conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
 
    for n in range(2,3):
      path = "test_images/%s.bmp" % (n)
      img = Image.open(path)
      width = img.size[0]
      height = img.size[1]
 
      img_data = [[0]*SIZE for i in range(1)]
      for h in range(0, height):
        for w in range(0, width):
          if img.getpixel((w, h)) < 190:
            img_data[0][w+h*width] = 1
          else:
            img_data[0][w+h*width] = 0
      
      result = sess.run(conv, feed_dict = {x: np.array(img_data), keep_prob: 1.0})
      
      max1 = 0
      max2 = 0
      max3 = 0
      max1_index = 0
      max2_index = 0
      max3_index = 0
      for j in range(NUM_CLASSES):
        if result[0][j] > max1:
          max1 = result[0][j]
          max1_index = j
          continue
        if (result[0][j]>max2) and (result[0][j]<=max1):
          max2 = result[0][j]
          max2_index = j
          continue
        if (result[0][j]>max3) and (result[0][j]<=max2):
          max3 = result[0][j]
          max3_index = j
          continue
      
      if n == 3:
        license_num += "-"
      license_num = license_num + LETTERS_DIGITS[max1_index]
      print ("概率: [%s %0.2f%%]  [%s %0.2f%%]  [%s %0.2f%%]" % (LETTERS_DIGITS[max1_index],max1*100, LETTERS_DIGITS[max2_index],max2*100, LETTERS_DIGITS[max3_index],max3*100))
      
    print ("城市代号是: 【%s】" % license_num)

车牌编号训练+识别代码(保存文件名为train-license-digits.py):

#!/usr/bin/python3.5
# -*- coding: utf-8 -*- 
 
import sys
import os
import time
import random
 
import numpy as np
import tensorflow as tf
 
from PIL import Image
 
 
SIZE = 1280
WIDTH = 32
HEIGHT = 40
NUM_CLASSES = 34
iterations = 1000
 
SAVER_DIR = "train-saver/digits/"
 
LETTERS_DIGITS = ("0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F","G","H","J","K","L","M","N","P","Q","R","S","T","U","V","W","X","Y","Z")
license_num = ""
 
time_begin = time.time()
 
 
# 定义输入节点,对应于图片像素值矩阵集合和图片标签(即所代表的数字)
x = tf.placeholder(tf.float32, shape=[None, SIZE])
y_ = tf.placeholder(tf.float32, shape=[None, NUM_CLASSES])
 
x_image = tf.reshape(x, [-1, WIDTH, HEIGHT, 1])
 
 
# 定义卷积函数
def conv_layer(inputs, W, b, conv_strides, kernel_size, pool_strides, padding):
  L1_conv = tf.nn.conv2d(inputs, W, strides=conv_strides, padding=padding)
  L1_relu = tf.nn.relu(L1_conv + b)
  return tf.nn.max_pool(L1_relu, ksize=kernel_size, strides=pool_strides, padding='SAME')
 
# 定义全连接层函数
def full_connect(inputs, W, b):
  return tf.nn.relu(tf.matmul(inputs, W) + b)
 
 
if __name__ =='__main__' and sys.argv[1]=='train':
  # 第一次遍历图片目录是为了获取图片总数
  input_count = 0
  for i in range(0,NUM_CLASSES):
    dir = './train_images/training-set/%s/' % i      # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        input_count += 1
 
  # 定义对应维数和各维长度的数组
  input_images = np.array([[0]*SIZE for i in range(input_count)])
  input_labels = np.array([[0]*NUM_CLASSES for i in range(input_count)])
 
  # 第二次遍历图片目录是为了生成图片数据和标签
  index = 0
  for i in range(0,NUM_CLASSES):
    dir = './train_images/training-set/%s/' % i     # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        filename = dir + filename
        img = Image.open(filename)
        width = img.size[0]
        height = img.size[1]
        for h in range(0, height):
          for w in range(0, width):
            # 通过这样的处理,使数字的线条变细,有利于提高识别准确率
            if img.getpixel((w, h)) > 230:
              input_images[index][w+h*width] = 0
            else:
              input_images[index][w+h*width] = 1
        input_labels[index][i] = 1
        index += 1
 
  # 第一次遍历图片目录是为了获取图片总数
  val_count = 0
  for i in range(0,NUM_CLASSES):
    dir = './train_images/validation-set/%s/' % i      # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        val_count += 1
 
  # 定义对应维数和各维长度的数组
  val_images = np.array([[0]*SIZE for i in range(val_count)])
  val_labels = np.array([[0]*NUM_CLASSES for i in range(val_count)])
 
  # 第二次遍历图片目录是为了生成图片数据和标签
  index = 0
  for i in range(0,NUM_CLASSES):
    dir = './train_images/validation-set/%s/' % i     # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        filename = dir + filename
        img = Image.open(filename)
        width = img.size[0]
        height = img.size[1]
        for h in range(0, height):
          for w in range(0, width):
            # 通过这样的处理,使数字的线条变细,有利于提高识别准确率
            if img.getpixel((w, h)) > 230:
              val_images[index][w+h*width] = 0
            else:
              val_images[index][w+h*width] = 1
        val_labels[index][i] = 1
        index += 1
  
  with tf.Session() as sess:
    # 第一个卷积层
    W_conv1 = tf.Variable(tf.truncated_normal([8, 8, 1, 16], stddev=0.1), name="W_conv1")
    b_conv1 = tf.Variable(tf.constant(0.1, shape=[16]), name="b_conv1")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 2, 2, 1]
    pool_strides = [1, 2, 2, 1]
    L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')
 
    # 第二个卷积层
    W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 16, 32], stddev=0.1), name="W_conv2")
    b_conv2 = tf.Variable(tf.constant(0.1, shape=[32]), name="b_conv2")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 1, 1, 1]
    pool_strides = [1, 1, 1, 1]
    L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')
 
 
    # 全连接层
    W_fc1 = tf.Variable(tf.truncated_normal([16 * 20 * 32, 512], stddev=0.1), name="W_fc1")
    b_fc1 = tf.Variable(tf.constant(0.1, shape=[512]), name="b_fc1")
    h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20*32])
    h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)
 
 
    # dropout
    keep_prob = tf.placeholder(tf.float32)
 
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
 
 
    # readout层
    W_fc2 = tf.Variable(tf.truncated_normal([512, NUM_CLASSES], stddev=0.1), name="W_fc2")
    b_fc2 = tf.Variable(tf.constant(0.1, shape=[NUM_CLASSES]), name="b_fc2")
 
    # 定义优化器和训练op
    y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
    train_step = tf.train.AdamOptimizer((1e-4)).minimize(cross_entropy)
 
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
 
    sess.run(tf.global_variables_initializer())
 
    time_elapsed = time.time() - time_begin
    print("读取图片文件耗费时间:%d秒" % time_elapsed)
    time_begin = time.time()
 
    print ("一共读取了 %s 个训练图像, %s 个标签" % (input_count, input_count))
 
    # 设置每次训练op的输入个数和迭代次数,这里为了支持任意图片总数,定义了一个余数remainder,譬如,如果每次训练op的输入个数为60,图片总数为150张,则前面两次各输入60张,最后一次输入30张(余数30)
    batch_size = 60
    iterations = iterations
    batches_count = int(input_count / batch_size)
    remainder = input_count % batch_size
    print ("训练数据集分成 %s 批, 前面每批 %s 个数据,最后一批 %s 个数据" % (batches_count+1, batch_size, remainder))
 
    # 执行训练迭代
    for it in range(iterations):
      # 这里的关键是要把输入数组转为np.array
      for n in range(batches_count):
        train_step.run(feed_dict={x: input_images[n*batch_size:(n+1)*batch_size], y_: input_labels[n*batch_size:(n+1)*batch_size], keep_prob: 0.5})
      if remainder > 0:
        start_index = batches_count * batch_size;
        train_step.run(feed_dict={x: input_images[start_index:input_count-1], y_: input_labels[start_index:input_count-1], keep_prob: 0.5})
 
      # 每完成五次迭代,判断准确度是否已达到100%,达到则退出迭代循环
      iterate_accuracy = 0
      if it%5 == 0:
        iterate_accuracy = accuracy.eval(feed_dict={x: val_images, y_: val_labels, keep_prob: 1.0})
        print ('第 %d 次训练迭代: 准确率 %0.5f%%' % (it, iterate_accuracy*100))
        if iterate_accuracy >= 0.9999 and it >= iterations:
          break;
 
    print ('完成训练!')
    time_elapsed = time.time() - time_begin
    print ("训练耗费时间:%d秒" % time_elapsed)
    time_begin = time.time()
 
    # 保存训练结果
    if not os.path.exists(SAVER_DIR):
      print ('不存在训练数据保存目录,现在创建保存目录')
      os.makedirs(SAVER_DIR)
    # 初始化saver
    saver = tf.train.Saver()      
    saver_path = saver.save(sess, "%smodel.ckpt"%(SAVER_DIR))
 
 
 
if __name__ =='__main__' and sys.argv[1]=='predict':
  saver = tf.train.import_meta_graph("%smodel.ckpt.meta"%(SAVER_DIR))
  with tf.Session() as sess:
    model_file=tf.train.latest_checkpoint(SAVER_DIR)
    saver.restore(sess, model_file)
 
    # 第一个卷积层
    W_conv1 = sess.graph.get_tensor_by_name("W_conv1:0")
    b_conv1 = sess.graph.get_tensor_by_name("b_conv1:0")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 2, 2, 1]
    pool_strides = [1, 2, 2, 1]
    L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')
 
    # 第二个卷积层
    W_conv2 = sess.graph.get_tensor_by_name("W_conv2:0")
    b_conv2 = sess.graph.get_tensor_by_name("b_conv2:0")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 1, 1, 1]
    pool_strides = [1, 1, 1, 1]
    L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')
 
 
    # 全连接层
    W_fc1 = sess.graph.get_tensor_by_name("W_fc1:0")
    b_fc1 = sess.graph.get_tensor_by_name("b_fc1:0")
    h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20*32])
    h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)
 
 
    # dropout
    keep_prob = tf.placeholder(tf.float32)
 
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
 
 
    # readout层
    W_fc2 = sess.graph.get_tensor_by_name("W_fc2:0")
    b_fc2 = sess.graph.get_tensor_by_name("b_fc2:0")
 
    # 定义优化器和训练op
    conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
 
    for n in range(3,8):
      path = "test_images/%s.bmp" % (n)
      img = Image.open(path)
      width = img.size[0]
      height = img.size[1]
 
      img_data = [[0]*SIZE for i in range(1)]
      for h in range(0, height):
        for w in range(0, width):
          if img.getpixel((w, h)) < 190:
            img_data[0][w+h*width] = 1
          else:
            img_data[0][w+h*width] = 0
      
      result = sess.run(conv, feed_dict = {x: np.array(img_data), keep_prob: 1.0})
      
      max1 = 0
      max2 = 0
      max3 = 0
      max1_index = 0
      max2_index = 0
      max3_index = 0
      for j in range(NUM_CLASSES):
        if result[0][j] > max1:
          max1 = result[0][j]
          max1_index = j
          continue
        if (result[0][j]>max2) and (result[0][j]<=max1):
          max2 = result[0][j]
          max2_index = j
          continue
        if (result[0][j]>max3) and (result[0][j]<=max2):
          max3 = result[0][j]
          max3_index = j
          continue
      
      license_num = license_num + LETTERS_DIGITS[max1_index]
      print ("概率: [%s %0.2f%%]  [%s %0.2f%%]  [%s %0.2f%%]" % (LETTERS_DIGITS[max1_index],max1*100, LETTERS_DIGITS[max2_index],max2*100, LETTERS_DIGITS[max3_index],max3*100))
      
    print ("车牌编号是: 【%s】" % license_num)

保存好上面三个python脚本后,我们首先进行省份简称训练。在运行代码之前,需要先把数据集解压到训练脚本所在目录。然后,在命令行中进入脚本所在目录,输入执行如下命令:

python train-license-province.py train

训练结果如下:

TensorFlow车牌识别完整版代码(含车牌数据集)

然后进行省份简称识别,在命令行输入执行如下命令:

python train-license-province.py predict

TensorFlow车牌识别完整版代码(含车牌数据集)

执行城市代号训练(相当于训练26个字母):

python train-license-letters.py train

TensorFlow车牌识别完整版代码(含车牌数据集)

识别城市代号:

python train-license-letters.py predict

TensorFlow车牌识别完整版代码(含车牌数据集)

执行车牌编号训练(相当于训练24个字母+10个数字,我国交通法规规定车牌编号中不包含字母I和O):

python train-license-digits.py train

TensorFlow车牌识别完整版代码(含车牌数据集)

识别车牌编号:

python train-license-digits.py predict

TensorFlow车牌识别完整版代码(含车牌数据集)

可以看到,在测试图片上,识别准确率很高。识别结果是闽O-1672Q。

下图是测试图片的车牌原图:

TensorFlow车牌识别完整版代码(含车牌数据集)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现数通设备tftp备份配置文件示例
Apr 02 Python
利用Python的Twisted框架实现webshell密码扫描器的教程
Apr 16 Python
python创建和删除目录的方法
Apr 29 Python
Python扫描IP段查看指定端口是否开放的方法
Jun 09 Python
Python面向对象特殊成员
Apr 24 Python
Python探索之ModelForm代码详解
Oct 26 Python
Python中进程和线程的区别详解
Oct 29 Python
pandas 转换成行列表进行读取与Nan处理的方法
Oct 30 Python
Python中的pathlib.Path为什么不继承str详解
Jun 23 Python
Python Django框架模板渲染功能示例
Nov 08 Python
wxpython绘制音频效果
Nov 18 Python
Python如何使用input函数获取输入
Aug 06 Python
TensorFlow基于MNIST数据集实现车牌识别(初步演示版)
Aug 05 #Python
Django应用程序入口WSGIHandler源码解析
Aug 05 #Python
详解如何用TensorFlow训练和识别/分类自定义图片
Aug 05 #Python
详解如何从TensorFlow的mnist数据集导出手写体数字图片
Aug 05 #Python
Python获取时间范围内日期列表和周列表的函数
Aug 05 #Python
Django ORM 查询管理器源码解析
Aug 05 #Python
python实现车牌识别的示例代码
Aug 05 #Python
You might like
ASP和PHP都是可以删除自身的
2007/04/09 PHP
PHP错误和异长常处理总结
2014/03/06 PHP
PHP register_shutdown_function()函数的使用示例
2015/06/23 PHP
WordPress中的shortcode短代码功能使用详解
2016/05/17 PHP
轻松掌握php设计模式之访问者模式
2016/09/23 PHP
PHP5.5安装PHPRedis扩展及连接测试方法
2017/01/22 PHP
yii2局部关闭(开启)csrf的验证的实例代码
2017/07/10 PHP
通过修改referer下载文件的方法
2008/05/11 Javascript
jQuery弹出层插件简化版代码下载
2008/10/16 Javascript
js下获取div中的数据的原理分析
2010/04/07 Javascript
javascript 实现简单的table排序及table操作练习
2012/12/28 Javascript
JavaScript判断DIV内容是否为空的方法
2016/01/29 Javascript
js表单处理中单选、多选、选择框值的获取及表单的序列化
2016/03/08 Javascript
jquery中绑定事件的异同
2017/02/28 Javascript
nodejs超出最大的调用栈错误问题
2017/12/27 NodeJs
浅析vue中常见循环遍历指令的使用 v-for
2018/04/18 Javascript
微信小程序实现跑马灯效果完整代码(附效果图)
2018/05/30 Javascript
Vue中使用ElementUI使用第三方图标库iconfont的示例
2018/10/11 Javascript
13 个npm 快速开发技巧(推荐)
2019/07/04 Javascript
中级前端工程师必须要掌握的27个JavaScript 技巧(干货总结)
2019/09/23 Javascript
快速解决Vue、element-ui的resetFields()方法重置表单无效的问题
2020/08/12 Javascript
python中的reduce内建函数使用方法指南
2014/08/31 Python
python+requests+unittest API接口测试实例(详解)
2017/06/10 Python
python实现发送邮件功能代码
2017/12/14 Python
pandas 快速处理 date_time 日期格式方法
2018/11/12 Python
Python3.5面向对象程序设计之类的继承和多态详解
2019/04/24 Python
Spring Cloud Feign高级应用实例详解
2019/12/10 Python
对python pandas中 inplace 参数的理解
2020/06/27 Python
python实现发送带附件的邮件代码分享
2020/09/22 Python
Vichy薇姿加拿大官网:法国药妆,全球专业敏感肌护肤领先品牌
2018/07/11 全球购物
中考冲刺决心书
2014/03/11 职场文书
护士演讲稿优秀范文
2014/04/30 职场文书
2015年银行员工工作总结
2015/04/24 职场文书
房产遗嘱范本
2015/08/06 职场文书
jQuery实现影院选座订座效果
2021/04/13 jQuery
Python Pandas数据分析之iloc和loc的用法详解
2021/11/11 Python