TensorFlow车牌识别完整版代码(含车牌数据集)


Posted in Python onAugust 05, 2019

在之前发布的一篇博文《MNIST数据集实现车牌识别--初步演示版》中,我们演示了如何使用TensorFlow进行车牌识别,但是,当时采用的数据集是MNIST数字手写体,只能分类0-9共10个数字,无法分类省份简称和字母,局限性较大,无实际意义。

经过图像定位分割处理,博主收集了相关省份简称和26个字母的图片数据集,结合前述博文中贴出的python+TensorFlow代码,实现了完整的车牌识别功能。本着分享精神,在此送上全部代码和车牌数据集。

车牌数据集下载地址(约4000张图片):tf_car_license_dataset_3water.rar

省份简称训练+识别代码(保存文件名为train-license-province.py)(拷贝代码请务必注意python文本缩进,只要有一处缩进错误,就无法得到正确结果,或者出现异常):

#!/usr/bin/python3.5
# -*- coding: utf-8 -*- 
 
import sys
import os
import time
import random
 
import numpy as np
import tensorflow as tf
 
from PIL import Image
 
 
SIZE = 1280
WIDTH = 32
HEIGHT = 40
NUM_CLASSES = 6
iterations = 300
 
SAVER_DIR = "train-saver/province/"
 
PROVINCES = ("京","闽","粤","苏","沪","浙")
nProvinceIndex = 0
 
time_begin = time.time()
 
 
# 定义输入节点,对应于图片像素值矩阵集合和图片标签(即所代表的数字)
x = tf.placeholder(tf.float32, shape=[None, SIZE])
y_ = tf.placeholder(tf.float32, shape=[None, NUM_CLASSES])
 
x_image = tf.reshape(x, [-1, WIDTH, HEIGHT, 1])
 
 
# 定义卷积函数
def conv_layer(inputs, W, b, conv_strides, kernel_size, pool_strides, padding):
  L1_conv = tf.nn.conv2d(inputs, W, strides=conv_strides, padding=padding)
  L1_relu = tf.nn.relu(L1_conv + b)
  return tf.nn.max_pool(L1_relu, ksize=kernel_size, strides=pool_strides, padding='SAME')
 
# 定义全连接层函数
def full_connect(inputs, W, b):
  return tf.nn.relu(tf.matmul(inputs, W) + b)
 
 
if __name__ =='__main__' and sys.argv[1]=='train':
  # 第一次遍历图片目录是为了获取图片总数
  input_count = 0
  for i in range(0,NUM_CLASSES):
    dir = './train_images/training-set/chinese-characters/%s/' % i      # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        input_count += 1
 
  # 定义对应维数和各维长度的数组
  input_images = np.array([[0]*SIZE for i in range(input_count)])
  input_labels = np.array([[0]*NUM_CLASSES for i in range(input_count)])
 
  # 第二次遍历图片目录是为了生成图片数据和标签
  index = 0
  for i in range(0,NUM_CLASSES):
    dir = './train_images/training-set/chinese-characters/%s/' % i     # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        filename = dir + filename
        img = Image.open(filename)
        width = img.size[0]
        height = img.size[1]
        for h in range(0, height):
          for w in range(0, width):
            # 通过这样的处理,使数字的线条变细,有利于提高识别准确率
            if img.getpixel((w, h)) > 230:
              input_images[index][w+h*width] = 0
            else:
              input_images[index][w+h*width] = 1
        input_labels[index][i] = 1
        index += 1
 
  # 第一次遍历图片目录是为了获取图片总数
  val_count = 0
  for i in range(0,NUM_CLASSES):
    dir = './train_images/validation-set/chinese-characters/%s/' % i      # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        val_count += 1
 
  # 定义对应维数和各维长度的数组
  val_images = np.array([[0]*SIZE for i in range(val_count)])
  val_labels = np.array([[0]*NUM_CLASSES for i in range(val_count)])
 
  # 第二次遍历图片目录是为了生成图片数据和标签
  index = 0
  for i in range(0,NUM_CLASSES):
    dir = './train_images/validation-set/chinese-characters/%s/' % i     # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        filename = dir + filename
        img = Image.open(filename)
        width = img.size[0]
        height = img.size[1]
        for h in range(0, height):
          for w in range(0, width):
            # 通过这样的处理,使数字的线条变细,有利于提高识别准确率
            if img.getpixel((w, h)) > 230:
              val_images[index][w+h*width] = 0
            else:
              val_images[index][w+h*width] = 1
        val_labels[index][i] = 1
        index += 1
  
  with tf.Session() as sess:
    # 第一个卷积层
    W_conv1 = tf.Variable(tf.truncated_normal([8, 8, 1, 16], stddev=0.1), name="W_conv1")
    b_conv1 = tf.Variable(tf.constant(0.1, shape=[16]), name="b_conv1")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 2, 2, 1]
    pool_strides = [1, 2, 2, 1]
    L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')
 
    # 第二个卷积层
    W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 16, 32], stddev=0.1), name="W_conv2")
    b_conv2 = tf.Variable(tf.constant(0.1, shape=[32]), name="b_conv2")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 1, 1, 1]
    pool_strides = [1, 1, 1, 1]
    L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')
 
 
    # 全连接层
    W_fc1 = tf.Variable(tf.truncated_normal([16 * 20 * 32, 512], stddev=0.1), name="W_fc1")
    b_fc1 = tf.Variable(tf.constant(0.1, shape=[512]), name="b_fc1")
    h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20*32])
    h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)
 
 
    # dropout
    keep_prob = tf.placeholder(tf.float32)
 
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
 
 
    # readout层
    W_fc2 = tf.Variable(tf.truncated_normal([512, NUM_CLASSES], stddev=0.1), name="W_fc2")
    b_fc2 = tf.Variable(tf.constant(0.1, shape=[NUM_CLASSES]), name="b_fc2")
 
    # 定义优化器和训练op
    y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
    train_step = tf.train.AdamOptimizer((1e-4)).minimize(cross_entropy)
 
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
 
    # 初始化saver
    saver = tf.train.Saver()
 
    sess.run(tf.global_variables_initializer())
 
    time_elapsed = time.time() - time_begin
    print("读取图片文件耗费时间:%d秒" % time_elapsed)
    time_begin = time.time()
 
    print ("一共读取了 %s 个训练图像, %s 个标签" % (input_count, input_count))
 
    # 设置每次训练op的输入个数和迭代次数,这里为了支持任意图片总数,定义了一个余数remainder,譬如,如果每次训练op的输入个数为60,图片总数为150张,则前面两次各输入60张,最后一次输入30张(余数30)
    batch_size = 60
    iterations = iterations
    batches_count = int(input_count / batch_size)
    remainder = input_count % batch_size
    print ("训练数据集分成 %s 批, 前面每批 %s 个数据,最后一批 %s 个数据" % (batches_count+1, batch_size, remainder))
 
    # 执行训练迭代
    for it in range(iterations):
      # 这里的关键是要把输入数组转为np.array
      for n in range(batches_count):
        train_step.run(feed_dict={x: input_images[n*batch_size:(n+1)*batch_size], y_: input_labels[n*batch_size:(n+1)*batch_size], keep_prob: 0.5})
      if remainder > 0:
        start_index = batches_count * batch_size;
        train_step.run(feed_dict={x: input_images[start_index:input_count-1], y_: input_labels[start_index:input_count-1], keep_prob: 0.5})
 
      # 每完成五次迭代,判断准确度是否已达到100%,达到则退出迭代循环
      iterate_accuracy = 0
      if it%5 == 0:
        iterate_accuracy = accuracy.eval(feed_dict={x: val_images, y_: val_labels, keep_prob: 1.0})
        print ('第 %d 次训练迭代: 准确率 %0.5f%%' % (it, iterate_accuracy*100))
        if iterate_accuracy >= 0.9999 and it >= 150:
          break;
 
    print ('完成训练!')
    time_elapsed = time.time() - time_begin
    print ("训练耗费时间:%d秒" % time_elapsed)
    time_begin = time.time()
 
    # 保存训练结果
    if not os.path.exists(SAVER_DIR):
      print ('不存在训练数据保存目录,现在创建保存目录')
      os.makedirs(SAVER_DIR)
    saver_path = saver.save(sess, "%smodel.ckpt"%(SAVER_DIR))
 
 
 
if __name__ =='__main__' and sys.argv[1]=='predict':
  saver = tf.train.import_meta_graph("%smodel.ckpt.meta"%(SAVER_DIR))
  with tf.Session() as sess:
    model_file=tf.train.latest_checkpoint(SAVER_DIR)
    saver.restore(sess, model_file)
 
    # 第一个卷积层
    W_conv1 = sess.graph.get_tensor_by_name("W_conv1:0")
    b_conv1 = sess.graph.get_tensor_by_name("b_conv1:0")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 2, 2, 1]
    pool_strides = [1, 2, 2, 1]
    L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')
 
    # 第二个卷积层
    W_conv2 = sess.graph.get_tensor_by_name("W_conv2:0")
    b_conv2 = sess.graph.get_tensor_by_name("b_conv2:0")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 1, 1, 1]
    pool_strides = [1, 1, 1, 1]
    L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')
 
 
    # 全连接层
    W_fc1 = sess.graph.get_tensor_by_name("W_fc1:0")
    b_fc1 = sess.graph.get_tensor_by_name("b_fc1:0")
    h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20*32])
    h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)
 
 
    # dropout
    keep_prob = tf.placeholder(tf.float32)
 
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
 
 
    # readout层
    W_fc2 = sess.graph.get_tensor_by_name("W_fc2:0")
    b_fc2 = sess.graph.get_tensor_by_name("b_fc2:0")
 
    # 定义优化器和训练op
    conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
 
    for n in range(1,2):
      path = "test_images/%s.bmp" % (n)
      img = Image.open(path)
      width = img.size[0]
      height = img.size[1]
 
      img_data = [[0]*SIZE for i in range(1)]
      for h in range(0, height):
        for w in range(0, width):
          if img.getpixel((w, h)) < 190:
            img_data[0][w+h*width] = 1
          else:
            img_data[0][w+h*width] = 0
      
      result = sess.run(conv, feed_dict = {x: np.array(img_data), keep_prob: 1.0})
      max1 = 0
      max2 = 0
      max3 = 0
      max1_index = 0
      max2_index = 0
      max3_index = 0
      for j in range(NUM_CLASSES):
        if result[0][j] > max1:
          max1 = result[0][j]
          max1_index = j
          continue
        if (result[0][j]>max2) and (result[0][j]<=max1):
          max2 = result[0][j]
          max2_index = j
          continue
        if (result[0][j]>max3) and (result[0][j]<=max2):
          max3 = result[0][j]
          max3_index = j
          continue
      
      nProvinceIndex = max1_index
      print ("概率: [%s %0.2f%%]  [%s %0.2f%%]  [%s %0.2f%%]" % (PROVINCES[max1_index],max1*100, PROVINCES[max2_index],max2*100, PROVINCES[max3_index],max3*100))
      
    print ("省份简称是: %s" % PROVINCES[nProvinceIndex])

城市代号训练+识别代码(保存文件名为train-license-letters.py):

#!/usr/bin/python3.5
# -*- coding: utf-8 -*- 
 
import sys
import os
import time
import random
 
import numpy as np
import tensorflow as tf
 
from PIL import Image
 
 
SIZE = 1280
WIDTH = 32
HEIGHT = 40
NUM_CLASSES = 26
iterations = 500
 
SAVER_DIR = "train-saver/letters/"
 
LETTERS_DIGITS = ("A","B","C","D","E","F","G","H","J","K","L","M","N","P","Q","R","S","T","U","V","W","X","Y","Z","I","O")
license_num = ""
 
time_begin = time.time()
 
 
# 定义输入节点,对应于图片像素值矩阵集合和图片标签(即所代表的数字)
x = tf.placeholder(tf.float32, shape=[None, SIZE])
y_ = tf.placeholder(tf.float32, shape=[None, NUM_CLASSES])
 
x_image = tf.reshape(x, [-1, WIDTH, HEIGHT, 1])
 
 
# 定义卷积函数
def conv_layer(inputs, W, b, conv_strides, kernel_size, pool_strides, padding):
  L1_conv = tf.nn.conv2d(inputs, W, strides=conv_strides, padding=padding)
  L1_relu = tf.nn.relu(L1_conv + b)
  return tf.nn.max_pool(L1_relu, ksize=kernel_size, strides=pool_strides, padding='SAME')
 
# 定义全连接层函数
def full_connect(inputs, W, b):
  return tf.nn.relu(tf.matmul(inputs, W) + b)
 
 
if __name__ =='__main__' and sys.argv[1]=='train':
  # 第一次遍历图片目录是为了获取图片总数
  input_count = 0
  for i in range(0+10,NUM_CLASSES+10):
    dir = './train_images/training-set/letters/%s/' % i      # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        input_count += 1
 
  # 定义对应维数和各维长度的数组
  input_images = np.array([[0]*SIZE for i in range(input_count)])
  input_labels = np.array([[0]*NUM_CLASSES for i in range(input_count)])
 
  # 第二次遍历图片目录是为了生成图片数据和标签
  index = 0
  for i in range(0+10,NUM_CLASSES+10):
    dir = './train_images/training-set/letters/%s/' % i     # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        filename = dir + filename
        img = Image.open(filename)
        width = img.size[0]
        height = img.size[1]
        for h in range(0, height):
          for w in range(0, width):
            # 通过这样的处理,使数字的线条变细,有利于提高识别准确率
            if img.getpixel((w, h)) > 230:
              input_images[index][w+h*width] = 0
            else:
              input_images[index][w+h*width] = 1
        #print ("i=%d, index=%d" % (i, index))
        input_labels[index][i-10] = 1
        index += 1
 
  # 第一次遍历图片目录是为了获取图片总数
  val_count = 0
  for i in range(0+10,NUM_CLASSES+10):
    dir = './train_images/validation-set/%s/' % i      # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        val_count += 1
 
  # 定义对应维数和各维长度的数组
  val_images = np.array([[0]*SIZE for i in range(val_count)])
  val_labels = np.array([[0]*NUM_CLASSES for i in range(val_count)])
 
  # 第二次遍历图片目录是为了生成图片数据和标签
  index = 0
  for i in range(0+10,NUM_CLASSES+10):
    dir = './train_images/validation-set/%s/' % i     # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        filename = dir + filename
        img = Image.open(filename)
        width = img.size[0]
        height = img.size[1]
        for h in range(0, height):
          for w in range(0, width):
            # 通过这样的处理,使数字的线条变细,有利于提高识别准确率
            if img.getpixel((w, h)) > 230:
              val_images[index][w+h*width] = 0
            else:
              val_images[index][w+h*width] = 1
        val_labels[index][i-10] = 1
        index += 1
  
  with tf.Session() as sess:
    # 第一个卷积层
    W_conv1 = tf.Variable(tf.truncated_normal([8, 8, 1, 16], stddev=0.1), name="W_conv1")
    b_conv1 = tf.Variable(tf.constant(0.1, shape=[16]), name="b_conv1")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 2, 2, 1]
    pool_strides = [1, 2, 2, 1]
    L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')
 
    # 第二个卷积层
    W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 16, 32], stddev=0.1), name="W_conv2")
    b_conv2 = tf.Variable(tf.constant(0.1, shape=[32]), name="b_conv2")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 1, 1, 1]
    pool_strides = [1, 1, 1, 1]
    L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')
 
 
    # 全连接层
    W_fc1 = tf.Variable(tf.truncated_normal([16 * 20 * 32, 512], stddev=0.1), name="W_fc1")
    b_fc1 = tf.Variable(tf.constant(0.1, shape=[512]), name="b_fc1")
    h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20*32])
    h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)
 
 
    # dropout
    keep_prob = tf.placeholder(tf.float32)
 
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
 
 
    # readout层
    W_fc2 = tf.Variable(tf.truncated_normal([512, NUM_CLASSES], stddev=0.1), name="W_fc2")
    b_fc2 = tf.Variable(tf.constant(0.1, shape=[NUM_CLASSES]), name="b_fc2")
 
    # 定义优化器和训练op
    y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
    train_step = tf.train.AdamOptimizer((1e-4)).minimize(cross_entropy)
 
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
 
    sess.run(tf.global_variables_initializer())
 
    time_elapsed = time.time() - time_begin
    print("读取图片文件耗费时间:%d秒" % time_elapsed)
    time_begin = time.time()
 
    print ("一共读取了 %s 个训练图像, %s 个标签" % (input_count, input_count))
 
    # 设置每次训练op的输入个数和迭代次数,这里为了支持任意图片总数,定义了一个余数remainder,譬如,如果每次训练op的输入个数为60,图片总数为150张,则前面两次各输入60张,最后一次输入30张(余数30)
    batch_size = 60
    iterations = iterations
    batches_count = int(input_count / batch_size)
    remainder = input_count % batch_size
    print ("训练数据集分成 %s 批, 前面每批 %s 个数据,最后一批 %s 个数据" % (batches_count+1, batch_size, remainder))
 
    # 执行训练迭代
    for it in range(iterations):
      # 这里的关键是要把输入数组转为np.array
      for n in range(batches_count):
        train_step.run(feed_dict={x: input_images[n*batch_size:(n+1)*batch_size], y_: input_labels[n*batch_size:(n+1)*batch_size], keep_prob: 0.5})
      if remainder > 0:
        start_index = batches_count * batch_size;
        train_step.run(feed_dict={x: input_images[start_index:input_count-1], y_: input_labels[start_index:input_count-1], keep_prob: 0.5})
 
      # 每完成五次迭代,判断准确度是否已达到100%,达到则退出迭代循环
      iterate_accuracy = 0
      if it%5 == 0:
        iterate_accuracy = accuracy.eval(feed_dict={x: val_images, y_: val_labels, keep_prob: 1.0})
        print ('第 %d 次训练迭代: 准确率 %0.5f%%' % (it, iterate_accuracy*100))
        if iterate_accuracy >= 0.9999 and it >= iterations:
          break;
 
    print ('完成训练!')
    time_elapsed = time.time() - time_begin
    print ("训练耗费时间:%d秒" % time_elapsed)
    time_begin = time.time()
 
    # 保存训练结果
    if not os.path.exists(SAVER_DIR):
      print ('不存在训练数据保存目录,现在创建保存目录')
      os.makedirs(SAVER_DIR)
    # 初始化saver
    saver = tf.train.Saver()      
    saver_path = saver.save(sess, "%smodel.ckpt"%(SAVER_DIR))
 
 
 
if __name__ =='__main__' and sys.argv[1]=='predict':
  saver = tf.train.import_meta_graph("%smodel.ckpt.meta"%(SAVER_DIR))
  with tf.Session() as sess:
    model_file=tf.train.latest_checkpoint(SAVER_DIR)
    saver.restore(sess, model_file)
 
    # 第一个卷积层
    W_conv1 = sess.graph.get_tensor_by_name("W_conv1:0")
    b_conv1 = sess.graph.get_tensor_by_name("b_conv1:0")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 2, 2, 1]
    pool_strides = [1, 2, 2, 1]
    L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')
 
    # 第二个卷积层
    W_conv2 = sess.graph.get_tensor_by_name("W_conv2:0")
    b_conv2 = sess.graph.get_tensor_by_name("b_conv2:0")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 1, 1, 1]
    pool_strides = [1, 1, 1, 1]
    L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')
 
 
    # 全连接层
    W_fc1 = sess.graph.get_tensor_by_name("W_fc1:0")
    b_fc1 = sess.graph.get_tensor_by_name("b_fc1:0")
    h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20*32])
    h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)
 
 
    # dropout
    keep_prob = tf.placeholder(tf.float32)
 
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
 
 
    # readout层
    W_fc2 = sess.graph.get_tensor_by_name("W_fc2:0")
    b_fc2 = sess.graph.get_tensor_by_name("b_fc2:0")
 
    # 定义优化器和训练op
    conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
 
    for n in range(2,3):
      path = "test_images/%s.bmp" % (n)
      img = Image.open(path)
      width = img.size[0]
      height = img.size[1]
 
      img_data = [[0]*SIZE for i in range(1)]
      for h in range(0, height):
        for w in range(0, width):
          if img.getpixel((w, h)) < 190:
            img_data[0][w+h*width] = 1
          else:
            img_data[0][w+h*width] = 0
      
      result = sess.run(conv, feed_dict = {x: np.array(img_data), keep_prob: 1.0})
      
      max1 = 0
      max2 = 0
      max3 = 0
      max1_index = 0
      max2_index = 0
      max3_index = 0
      for j in range(NUM_CLASSES):
        if result[0][j] > max1:
          max1 = result[0][j]
          max1_index = j
          continue
        if (result[0][j]>max2) and (result[0][j]<=max1):
          max2 = result[0][j]
          max2_index = j
          continue
        if (result[0][j]>max3) and (result[0][j]<=max2):
          max3 = result[0][j]
          max3_index = j
          continue
      
      if n == 3:
        license_num += "-"
      license_num = license_num + LETTERS_DIGITS[max1_index]
      print ("概率: [%s %0.2f%%]  [%s %0.2f%%]  [%s %0.2f%%]" % (LETTERS_DIGITS[max1_index],max1*100, LETTERS_DIGITS[max2_index],max2*100, LETTERS_DIGITS[max3_index],max3*100))
      
    print ("城市代号是: 【%s】" % license_num)

车牌编号训练+识别代码(保存文件名为train-license-digits.py):

#!/usr/bin/python3.5
# -*- coding: utf-8 -*- 
 
import sys
import os
import time
import random
 
import numpy as np
import tensorflow as tf
 
from PIL import Image
 
 
SIZE = 1280
WIDTH = 32
HEIGHT = 40
NUM_CLASSES = 34
iterations = 1000
 
SAVER_DIR = "train-saver/digits/"
 
LETTERS_DIGITS = ("0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F","G","H","J","K","L","M","N","P","Q","R","S","T","U","V","W","X","Y","Z")
license_num = ""
 
time_begin = time.time()
 
 
# 定义输入节点,对应于图片像素值矩阵集合和图片标签(即所代表的数字)
x = tf.placeholder(tf.float32, shape=[None, SIZE])
y_ = tf.placeholder(tf.float32, shape=[None, NUM_CLASSES])
 
x_image = tf.reshape(x, [-1, WIDTH, HEIGHT, 1])
 
 
# 定义卷积函数
def conv_layer(inputs, W, b, conv_strides, kernel_size, pool_strides, padding):
  L1_conv = tf.nn.conv2d(inputs, W, strides=conv_strides, padding=padding)
  L1_relu = tf.nn.relu(L1_conv + b)
  return tf.nn.max_pool(L1_relu, ksize=kernel_size, strides=pool_strides, padding='SAME')
 
# 定义全连接层函数
def full_connect(inputs, W, b):
  return tf.nn.relu(tf.matmul(inputs, W) + b)
 
 
if __name__ =='__main__' and sys.argv[1]=='train':
  # 第一次遍历图片目录是为了获取图片总数
  input_count = 0
  for i in range(0,NUM_CLASSES):
    dir = './train_images/training-set/%s/' % i      # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        input_count += 1
 
  # 定义对应维数和各维长度的数组
  input_images = np.array([[0]*SIZE for i in range(input_count)])
  input_labels = np.array([[0]*NUM_CLASSES for i in range(input_count)])
 
  # 第二次遍历图片目录是为了生成图片数据和标签
  index = 0
  for i in range(0,NUM_CLASSES):
    dir = './train_images/training-set/%s/' % i     # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        filename = dir + filename
        img = Image.open(filename)
        width = img.size[0]
        height = img.size[1]
        for h in range(0, height):
          for w in range(0, width):
            # 通过这样的处理,使数字的线条变细,有利于提高识别准确率
            if img.getpixel((w, h)) > 230:
              input_images[index][w+h*width] = 0
            else:
              input_images[index][w+h*width] = 1
        input_labels[index][i] = 1
        index += 1
 
  # 第一次遍历图片目录是为了获取图片总数
  val_count = 0
  for i in range(0,NUM_CLASSES):
    dir = './train_images/validation-set/%s/' % i      # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        val_count += 1
 
  # 定义对应维数和各维长度的数组
  val_images = np.array([[0]*SIZE for i in range(val_count)])
  val_labels = np.array([[0]*NUM_CLASSES for i in range(val_count)])
 
  # 第二次遍历图片目录是为了生成图片数据和标签
  index = 0
  for i in range(0,NUM_CLASSES):
    dir = './train_images/validation-set/%s/' % i     # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        filename = dir + filename
        img = Image.open(filename)
        width = img.size[0]
        height = img.size[1]
        for h in range(0, height):
          for w in range(0, width):
            # 通过这样的处理,使数字的线条变细,有利于提高识别准确率
            if img.getpixel((w, h)) > 230:
              val_images[index][w+h*width] = 0
            else:
              val_images[index][w+h*width] = 1
        val_labels[index][i] = 1
        index += 1
  
  with tf.Session() as sess:
    # 第一个卷积层
    W_conv1 = tf.Variable(tf.truncated_normal([8, 8, 1, 16], stddev=0.1), name="W_conv1")
    b_conv1 = tf.Variable(tf.constant(0.1, shape=[16]), name="b_conv1")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 2, 2, 1]
    pool_strides = [1, 2, 2, 1]
    L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')
 
    # 第二个卷积层
    W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 16, 32], stddev=0.1), name="W_conv2")
    b_conv2 = tf.Variable(tf.constant(0.1, shape=[32]), name="b_conv2")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 1, 1, 1]
    pool_strides = [1, 1, 1, 1]
    L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')
 
 
    # 全连接层
    W_fc1 = tf.Variable(tf.truncated_normal([16 * 20 * 32, 512], stddev=0.1), name="W_fc1")
    b_fc1 = tf.Variable(tf.constant(0.1, shape=[512]), name="b_fc1")
    h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20*32])
    h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)
 
 
    # dropout
    keep_prob = tf.placeholder(tf.float32)
 
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
 
 
    # readout层
    W_fc2 = tf.Variable(tf.truncated_normal([512, NUM_CLASSES], stddev=0.1), name="W_fc2")
    b_fc2 = tf.Variable(tf.constant(0.1, shape=[NUM_CLASSES]), name="b_fc2")
 
    # 定义优化器和训练op
    y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
    train_step = tf.train.AdamOptimizer((1e-4)).minimize(cross_entropy)
 
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
 
    sess.run(tf.global_variables_initializer())
 
    time_elapsed = time.time() - time_begin
    print("读取图片文件耗费时间:%d秒" % time_elapsed)
    time_begin = time.time()
 
    print ("一共读取了 %s 个训练图像, %s 个标签" % (input_count, input_count))
 
    # 设置每次训练op的输入个数和迭代次数,这里为了支持任意图片总数,定义了一个余数remainder,譬如,如果每次训练op的输入个数为60,图片总数为150张,则前面两次各输入60张,最后一次输入30张(余数30)
    batch_size = 60
    iterations = iterations
    batches_count = int(input_count / batch_size)
    remainder = input_count % batch_size
    print ("训练数据集分成 %s 批, 前面每批 %s 个数据,最后一批 %s 个数据" % (batches_count+1, batch_size, remainder))
 
    # 执行训练迭代
    for it in range(iterations):
      # 这里的关键是要把输入数组转为np.array
      for n in range(batches_count):
        train_step.run(feed_dict={x: input_images[n*batch_size:(n+1)*batch_size], y_: input_labels[n*batch_size:(n+1)*batch_size], keep_prob: 0.5})
      if remainder > 0:
        start_index = batches_count * batch_size;
        train_step.run(feed_dict={x: input_images[start_index:input_count-1], y_: input_labels[start_index:input_count-1], keep_prob: 0.5})
 
      # 每完成五次迭代,判断准确度是否已达到100%,达到则退出迭代循环
      iterate_accuracy = 0
      if it%5 == 0:
        iterate_accuracy = accuracy.eval(feed_dict={x: val_images, y_: val_labels, keep_prob: 1.0})
        print ('第 %d 次训练迭代: 准确率 %0.5f%%' % (it, iterate_accuracy*100))
        if iterate_accuracy >= 0.9999 and it >= iterations:
          break;
 
    print ('完成训练!')
    time_elapsed = time.time() - time_begin
    print ("训练耗费时间:%d秒" % time_elapsed)
    time_begin = time.time()
 
    # 保存训练结果
    if not os.path.exists(SAVER_DIR):
      print ('不存在训练数据保存目录,现在创建保存目录')
      os.makedirs(SAVER_DIR)
    # 初始化saver
    saver = tf.train.Saver()      
    saver_path = saver.save(sess, "%smodel.ckpt"%(SAVER_DIR))
 
 
 
if __name__ =='__main__' and sys.argv[1]=='predict':
  saver = tf.train.import_meta_graph("%smodel.ckpt.meta"%(SAVER_DIR))
  with tf.Session() as sess:
    model_file=tf.train.latest_checkpoint(SAVER_DIR)
    saver.restore(sess, model_file)
 
    # 第一个卷积层
    W_conv1 = sess.graph.get_tensor_by_name("W_conv1:0")
    b_conv1 = sess.graph.get_tensor_by_name("b_conv1:0")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 2, 2, 1]
    pool_strides = [1, 2, 2, 1]
    L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')
 
    # 第二个卷积层
    W_conv2 = sess.graph.get_tensor_by_name("W_conv2:0")
    b_conv2 = sess.graph.get_tensor_by_name("b_conv2:0")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 1, 1, 1]
    pool_strides = [1, 1, 1, 1]
    L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')
 
 
    # 全连接层
    W_fc1 = sess.graph.get_tensor_by_name("W_fc1:0")
    b_fc1 = sess.graph.get_tensor_by_name("b_fc1:0")
    h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20*32])
    h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)
 
 
    # dropout
    keep_prob = tf.placeholder(tf.float32)
 
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
 
 
    # readout层
    W_fc2 = sess.graph.get_tensor_by_name("W_fc2:0")
    b_fc2 = sess.graph.get_tensor_by_name("b_fc2:0")
 
    # 定义优化器和训练op
    conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
 
    for n in range(3,8):
      path = "test_images/%s.bmp" % (n)
      img = Image.open(path)
      width = img.size[0]
      height = img.size[1]
 
      img_data = [[0]*SIZE for i in range(1)]
      for h in range(0, height):
        for w in range(0, width):
          if img.getpixel((w, h)) < 190:
            img_data[0][w+h*width] = 1
          else:
            img_data[0][w+h*width] = 0
      
      result = sess.run(conv, feed_dict = {x: np.array(img_data), keep_prob: 1.0})
      
      max1 = 0
      max2 = 0
      max3 = 0
      max1_index = 0
      max2_index = 0
      max3_index = 0
      for j in range(NUM_CLASSES):
        if result[0][j] > max1:
          max1 = result[0][j]
          max1_index = j
          continue
        if (result[0][j]>max2) and (result[0][j]<=max1):
          max2 = result[0][j]
          max2_index = j
          continue
        if (result[0][j]>max3) and (result[0][j]<=max2):
          max3 = result[0][j]
          max3_index = j
          continue
      
      license_num = license_num + LETTERS_DIGITS[max1_index]
      print ("概率: [%s %0.2f%%]  [%s %0.2f%%]  [%s %0.2f%%]" % (LETTERS_DIGITS[max1_index],max1*100, LETTERS_DIGITS[max2_index],max2*100, LETTERS_DIGITS[max3_index],max3*100))
      
    print ("车牌编号是: 【%s】" % license_num)

保存好上面三个python脚本后,我们首先进行省份简称训练。在运行代码之前,需要先把数据集解压到训练脚本所在目录。然后,在命令行中进入脚本所在目录,输入执行如下命令:

python train-license-province.py train

训练结果如下:

TensorFlow车牌识别完整版代码(含车牌数据集)

然后进行省份简称识别,在命令行输入执行如下命令:

python train-license-province.py predict

TensorFlow车牌识别完整版代码(含车牌数据集)

执行城市代号训练(相当于训练26个字母):

python train-license-letters.py train

TensorFlow车牌识别完整版代码(含车牌数据集)

识别城市代号:

python train-license-letters.py predict

TensorFlow车牌识别完整版代码(含车牌数据集)

执行车牌编号训练(相当于训练24个字母+10个数字,我国交通法规规定车牌编号中不包含字母I和O):

python train-license-digits.py train

TensorFlow车牌识别完整版代码(含车牌数据集)

识别车牌编号:

python train-license-digits.py predict

TensorFlow车牌识别完整版代码(含车牌数据集)

可以看到,在测试图片上,识别准确率很高。识别结果是闽O-1672Q。

下图是测试图片的车牌原图:

TensorFlow车牌识别完整版代码(含车牌数据集)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
pytorch 把MNIST数据集转换成图片和txt的方法
May 20 Python
windows下cx_Freeze生成Python可执行程序的详细步骤
Oct 09 Python
django 中的聚合函数,分组函数,F 查询,Q查询
Jul 25 Python
django 单表操作实例详解
Jul 30 Python
Django 对IP访问频率进行限制的例子
Aug 30 Python
PyQt5事件处理之定时在控件上显示信息的代码
Mar 25 Python
python 弧度与角度互转实例
Apr 15 Python
Python 实现一行输入多个数字(用空格隔开)
Apr 29 Python
Python 创建TCP服务器的方法
Jul 28 Python
pyx文件 生成pyd 文件用于 cython调用的实现
Mar 04 Python
Python基础之数据类型知识汇总
May 18 Python
利用python做数据拟合详情
Nov 17 Python
TensorFlow基于MNIST数据集实现车牌识别(初步演示版)
Aug 05 #Python
Django应用程序入口WSGIHandler源码解析
Aug 05 #Python
详解如何用TensorFlow训练和识别/分类自定义图片
Aug 05 #Python
详解如何从TensorFlow的mnist数据集导出手写体数字图片
Aug 05 #Python
Python获取时间范围内日期列表和周列表的函数
Aug 05 #Python
Django ORM 查询管理器源码解析
Aug 05 #Python
python实现车牌识别的示例代码
Aug 05 #Python
You might like
让php处理图片变得简单 基于gb库的图片处理类附实例代码下载
2011/05/17 PHP
对于PHP 5.4 你必须要知道的
2013/08/07 PHP
php实现可以设置中奖概率的抽奖程序代码分享
2014/01/19 PHP
PHP Web表单生成器案例分析
2020/06/02 PHP
js数字输入框(包括最大值最小值限制和四舍五入)
2009/11/24 Javascript
js setTimeout 参数传递使用介绍
2013/08/13 Javascript
jquery获得option的值和对option进行操作
2013/12/13 Javascript
jquery选择符快速提取web表单数据示例
2014/03/27 Javascript
javascript实现连续赋值
2015/08/10 Javascript
jquery实现表单输入时提示文字滑动向上效果
2015/08/10 Javascript
JS实现自定义简单网页软键盘效果代码
2015/11/05 Javascript
理解JS事件循环
2016/01/07 Javascript
Angular.js与node.js项目里用cookie校验账户登录详解
2017/02/22 Javascript
微信小程序中吸底按钮适配iPhone X方案
2017/11/29 Javascript
vue2 前端搜索实现示例
2018/02/26 Javascript
老生常谈JavaScript获取CSS样式的方法(兼容各浏览器)
2018/09/19 Javascript
layui插件表单验证提交触发提交的例子
2019/09/09 Javascript
JS关闭子窗口并且刷新上一个窗口的实现示例
2020/03/10 Javascript
[43:24]VG vs Serenity 2018国际邀请赛小组赛BO2 第二场 8.17
2018/08/20 DOTA
从Python程序中访问Java类的简单示例
2015/04/20 Python
Python常见字典内建函数用法示例
2018/05/14 Python
Python设计模式之建造者模式实例详解
2019/01/17 Python
Python提取特定时间段内数据的方法实例
2019/04/01 Python
解决tensorflow打印tensor有省略号的问题
2020/02/04 Python
python GUI库图形界面开发之PyQt5窗口类QMainWindow详细使用方法
2020/02/26 Python
基于Django signals 信号作用及用法详解
2020/03/28 Python
python rolling regression. 使用 Python 实现滚动回归操作
2020/06/08 Python
Python3爬虫中Selenium的用法详解
2020/07/10 Python
屈臣氏官方旗舰店:亚洲享负盛名的保健及美妆零售商
2019/03/15 全球购物
捷克母婴用品购物网站:Feedo.cz
2020/12/28 全球购物
学校四风对照检查材料
2014/08/28 职场文书
2015年五一劳动节演讲稿
2015/03/18 职场文书
2015年保卫科工作总结
2015/05/14 职场文书
React如何创建组件
2021/06/27 Javascript
Java Spring 控制反转(IOC)容器详解
2021/10/05 Java/Android
Python中tqdm的使用和例子
2022/09/23 Python