python中的reduce内建函数使用方法指南


Posted in Python onAugust 31, 2014

官方解释:

Apply function of two arguments cumulatively to the items of iterable, from left to right, so as to reduce the iterable to a single value. For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates ((((1+2)+3)+4)+5). The left argument, x, is the accumulated value and the right argument, y, is the update value from the iterable. If the optional initializer is present, it is placed before the items of the iterable in the calculation, and serves as a default when the iterable is empty. If initializer is not given and iterable contains only one item, the first item is returned. Roughly equivalent to:

意思就是说:将一个可迭代的对象应用到一个带有两个参数的方法上,我们称之为appFun,遍历这个可迭代对象,将其中的元素依次作为appFun的参数,但这个函数有两个参数,作为哪个参数呢?有这样的规则,看一下下面reduce方法的实现,有三个参数,第一个参数就是上面说的appFun,第二个参数就是那个可迭代的对象,而第三个呢?当调用reduce方法的时候给出了initializer这个参数,那么第一次调用appFun的时候这个参数值就作为第一个参数,而可迭代对象的元素依次作为appFun的第二个参数;如果调用reduce的时候没有给出initializer这个参数,那么第一次调用appFun的时候,可迭代对象的第一个元素就作为appFun的第一个元素,而可迭代器的从第二个元素到最后依次作为appFun的第二个参数,除第一次调用之外,appFun的第一个参数就是appFun的返回值了。例如reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]),计算1到5的和,因为没有给定initializer参数,所以第一次调用x+y时,x=1,即列表的第一个元素,y=2,即列表的第二个元素,之后返回的1+2的结果作为第二次调用x+y中的x,即上一次的结果,y=2,即第二个元素,依次类推,知道得到1+2+3+4+5的结果。

这样看来,其实下面的代码定义是有一点问题,我们在程序中调用这段代码reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]),得到的结果为16,而正确的结果为15,问题在于如果集合不是以0开始,那么按照如下代码,第一次调用x=1,即第一个元素,y也是等于1,也是第一个元素,而正确的y应该是2。所以真正的reduce方法应该和下面的例子是有差别的。

def reduce(function, iterable, initializer=None): 
  it = iter(iterable) 
  if initializer is None: 
    try: 
      initializer = next(it) 
    except StopIteration: 
      raise TypeError('reduce() of empty sequence with no initial value') 
  accum_value = initializer 
  for x in iterable: 
    accum_value = function(accum_value, x) 
  return accum_value

那么reduce函数能做什么,什么情况下要用reduce呢,看下面的例子:

例如上面的例子,实现一个整形集合的累加。假设lst = [1,2,3,4,5],实现累加的方式有很多:

第一种:用sum函数

sum(lst)

 
第二种:循环方式。

def customer_sum(lst): 
  result = 0 
  for x in lst: 
    result+=x 
  return result 
 
#或者 
def customer_sum(lst): 
  result = 0 
  while lst: 
      temp = lst.pop(0) 
      result+=temp 
  return result 
 
if __name__=="__main__": 
  lst = [1,2,3,4,5] 
  print customer_sum(lst)

第三种:递推求和

def add(lst,result): 
  if lst: 
    temp = lst.pop(0) 
    temp+=result 
    return add(lst,temp) 
  else: 
    return result 
 
if __name__=="__main__": 
  lst = [1,2,3,4,5] 
  print add(lst,0)

第四种:reduce方式

lst = [1,2,3,4,5] 
print reduce(lambda x,y:x+y,lst) 
#这种方式用lambda表示当做参数,因为没有提供reduce的第三个参数,所以第一次执行时x=1,y=2,第二次x=1+2,y=3,即列表的第三个元素 
 
 
#或者 
lst = [1,2,3,4,5] 
print reduce(lambda x,y:x+y,lst,0) 
#这种方式用lambda表示当做参数,因为指定了reduce的第三个参数为0,所以第一次执行时x=0,y=1,第二次x=0+1,y=2,即列表的第二个元素, 
假定指定reduce的第三个参数为100,那么第一次执行x=100,y仍然是遍历列表的元素,最后得到的结果为115 
 
 
 
#或者 
def add(x,y): 
  return x+y 
 
print reduce(add, lst) 
#与方式1相同,只不过把lambda表达式换成了自定义函数 
 
#或者 
def add(x,y): 
  return x+y 
 
print reduce(add, lst,0) 
#与方式2相同,只不过把lambda表达式换成了自定义函数

 
再举一个例子:有一个序列集合,例如[1,1,2,3,2,3,3,5,6,7,7,6,5,5,5],统计这个集合所有键的重复个数,例如1出现了两次,2出现了两次等。大致的思路就是用字典存储,元素就是字典的key,出现的次数就是字典的value。方法依然很多

第一种:for循环判断

def statistics(lst): 
  dic = {} 
  for k in lst: 
    if not k in dic: 
      dic[k] = 1 
    else: 
      dic[k] +=1 
  return dic 
 
lst = [1,1,2,3,2,3,3,5,6,7,7,6,5,5,5] 
print(statistics(lst))

第二种:比较取巧的,先把列表用set方式去重,然后用列表的count方法

def statistics2(lst): 
  m = set(lst) 
  dic = {} 
  for x in m: 
    dic[x] = lst.count(x) 
 
  return dic 
 
lst = [1,1,2,3,2,3,3,5,6,7,7,6,5,5,5] 
print statistics2(lst)

第三种:用reduce方式

def statistics(dic,k): 
  if not k in dic: 
    dic[k] = 1 
  else: 
    dic[k] +=1 
  return dic 
 
lst = [1,1,2,3,2,3,3,5,6,7,7,6,5,5,5] 
print reduce(statistics,lst,{})  
#提供第三个参数,第一次,初始字典为空,作为statistics的第一个参数,然后遍历lst,作为第二个参数,然后将返回的字典集合作为下一次的第一个参数 
 
或者 
d = {} 
d.extend(lst) 
print reduce(statistics,d) 
#不提供第三个参数,但是要在保证集合的第一个元素是一个字典对象,作为statistics的第一个参数,遍历集合依次作为第二个参数

通过上面的例子发现,凡是要对一个集合进行操作的,并且要有一个统计结果的,能够用循环或者递归方式解决的问题,一般情况下都可以用reduce方式实现。

reduce函数真是“一位好同志啊”!

Python 相关文章推荐
在Python下使用Txt2Html实现网页过滤代理的教程
Apr 11 Python
Django验证码的生成与使用示例
May 20 Python
Python实现将SQLite中的数据直接输出为CVS的方法示例
Jul 13 Python
python中logging库的使用总结
Oct 18 Python
python自动发邮件库yagmail的示例代码
Feb 23 Python
python之文件读取一行一行的方法
Jul 12 Python
Python 实现中值滤波、均值滤波的方法
Jan 09 Python
使用python Telnet远程登录执行程序的方法
Jan 26 Python
Python算法的时间复杂度和空间复杂度(实例解析)
Nov 19 Python
K最近邻算法(KNN)---sklearn+python实现方式
Feb 24 Python
python使用梯度下降算法实现一个多线性回归
Mar 24 Python
去除python中的字符串空格的简单方法
Dec 22 Python
Python中使用ConfigParser解析ini配置文件实例
Aug 30 #Python
python进阶教程之动态类型详解
Aug 30 #Python
python进阶教程之异常处理
Aug 30 #Python
python进阶教程之函数对象(函数也是对象)
Aug 30 #Python
python进阶教程之循环对象
Aug 30 #Python
python进阶教程之循环相关函数range、enumerate、zip
Aug 30 #Python
python进阶教程之函数参数的多种传递方法
Aug 30 #Python
You might like
PHP 表单提交给自己
2008/07/24 PHP
php cookie 作用范围?不要在当前页面使用你的cookie
2009/03/24 PHP
php自定义函数之递归删除文件及目录
2010/08/08 PHP
php去除字符串中空字符的常用方法小结
2015/03/17 PHP
php实现改变图片直接打开为下载的方法
2015/04/14 PHP
java解析json方法总结
2019/05/16 PHP
php+js实现的无刷新下载文件功能示例
2019/08/23 PHP
JQuery 拾色器插件发布-jquery.icolor.js
2010/10/20 Javascript
js中用window.open()打开多个窗口的name问题
2014/03/13 Javascript
jQuery fancybox在ie浏览器下无法显示关闭按钮的解决办法
2016/02/19 Javascript
细数JavaScript 一个等号,两个等号,三个等号的区别
2016/10/09 Javascript
解决浏览器会自动填充密码的问题
2017/04/28 Javascript
Django+Vue.js搭建前后端分离项目的示例
2017/08/07 Javascript
JS实现div模块的截图并下载功能
2017/10/17 Javascript
详解RequireJs官方使用教程
2017/10/31 Javascript
vue基础之事件简写、事件对象、冒泡、默认行为、键盘事件实例分析
2019/03/11 Javascript
详解vue-cli+element-ui树形表格(多级表格折腾小计)
2019/04/17 Javascript
Typescript 中的 interface 和 type 到底有什么区别详解
2019/06/18 Javascript
Vue中图片Src使用变量的方法
2019/10/30 Javascript
electron+vue实现div contenteditable截图功能
2020/01/07 Javascript
前端开发基础javaScript的六大作用
2020/08/06 Javascript
微信小程序用户登录和登录态维护的实现
2020/12/10 Javascript
Python实现提取文章摘要的方法
2015/04/21 Python
Django objects的查询结果转化为json的三种方式的方法
2018/11/07 Python
详解Python中的各种转义符\n\r\t
2019/07/10 Python
Python 寻找局部最高点的实现
2019/12/05 Python
Python爬虫JSON及JSONPath运行原理详解
2020/06/04 Python
基于python实现模拟数据结构模型
2020/06/12 Python
Python中Pyspider爬虫框架的基本使用详解
2021/01/27 Python
html5定制表单_动力节点Java学院整理
2017/07/11 HTML / CSS
台湾最大网路书店:博客来
2018/03/18 全球购物
澳大利亚在线性感内衣商店:Fantasy Lingerie
2021/02/07 全球购物
大二学期个人自我评价
2014/01/13 职场文书
考试作弊检讨书怎么写?
2014/12/21 职场文书
万能检讨书
2015/01/27 职场文书
战友聚会致辞
2015/07/28 职场文书