详解如何用TensorFlow训练和识别/分类自定义图片


Posted in Python onAugust 05, 2019

很多正在入门或刚入门TensorFlow机器学习的同学希望能够通过自己指定图片源对模型进行训练,然后识别和分类自己指定的图片。但是,在TensorFlow官方入门教程中,并无明确给出如何把自定义数据输入训练模型的方法。现在,我们就参考官方入门课程《Deep MNIST for Experts》一节的内容(传送门:https://www.tensorflow.org/get_started/mnist/pros),介绍如何将自定义图片输入到TensorFlow的训练模型。

在《Deep MNISTfor Experts》一节的代码中,程序将TensorFlow自带的mnist图片数据集mnist.train.images作为训练输入,将mnist.test.images作为验证输入。当学习了该节内容后,我们会惊叹卷积神经网络的超高识别率,但对于刚开始学习TensorFlow的同学,内心可能会产生一个问号:如何将mnist数据集替换为自己指定的图片源?譬如,我要将图片源改为自己C盘里面的图片,应该怎么调整代码?

我们先看下该节课程中涉及到mnist图片调用的代码:

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
batch = mnist.train.next_batch(50)
train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print('test accuracy %g' % accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

对于刚接触TensorFlow的同学,要修改上述代码,可能会较为吃力。我也是经过一番摸索,才成功调用自己的图片集。

要实现输入自定义图片,需要自己先准备好一套图片集。为节省时间,我们把mnist的手写体数字集一张一张地解析出来,存放到自己的本地硬盘,保存为bmp格式,然后再把本地硬盘的手写体图片一张一张地读取出来,组成集合,再输入神经网络。mnist手写体数字集的提取方式详见《如何从TensorFlow的mnist数据集导出手写体数字图片》。

将mnist手写体数字集导出图片到本地后,就可以仿照以下python代码,实现自定义图片的训练:

#!/usr/bin/python3.5
# -*- coding: utf-8 -*- 
 
import os
 
import numpy as np
import tensorflow as tf
 
from PIL import Image
 
 
# 第一次遍历图片目录是为了获取图片总数
input_count = 0
for i in range(0,10):
  dir = './custom_images/%s/' % i         # 这里可以改成你自己的图片目录,i为分类标签
  for rt, dirs, files in os.walk(dir):
    for filename in files:
      input_count += 1
 
# 定义对应维数和各维长度的数组
input_images = np.array([[0]*784 for i in range(input_count)])
input_labels = np.array([[0]*10 for i in range(input_count)])
 
# 第二次遍历图片目录是为了生成图片数据和标签
index = 0
for i in range(0,10):
  dir = './custom_images/%s/' % i         # 这里可以改成你自己的图片目录,i为分类标签
  for rt, dirs, files in os.walk(dir):
    for filename in files:
      filename = dir + filename
      img = Image.open(filename)
      width = img.size[0]
      height = img.size[1]
      for h in range(0, height):
        for w in range(0, width):
          # 通过这样的处理,使数字的线条变细,有利于提高识别准确率
          if img.getpixel((w, h)) > 230:
            input_images[index][w+h*width] = 0
          else:
            input_images[index][w+h*width] = 1
      input_labels[index][i] = 1
      index += 1
 
 
# 定义输入节点,对应于图片像素值矩阵集合和图片标签(即所代表的数字)
x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])
 
x_image = tf.reshape(x, [-1, 28, 28, 1])
 
# 定义第一个卷积层的variables和ops
W_conv1 = tf.Variable(tf.truncated_normal([7, 7, 1, 32], stddev=0.1))
b_conv1 = tf.Variable(tf.constant(0.1, shape=[32]))
 
L1_conv = tf.nn.conv2d(x_image, W_conv1, strides=[1, 1, 1, 1], padding='SAME')
L1_relu = tf.nn.relu(L1_conv + b_conv1)
L1_pool = tf.nn.max_pool(L1_relu, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
 
# 定义第二个卷积层的variables和ops
W_conv2 = tf.Variable(tf.truncated_normal([3, 3, 32, 64], stddev=0.1))
b_conv2 = tf.Variable(tf.constant(0.1, shape=[64]))
 
L2_conv = tf.nn.conv2d(L1_pool, W_conv2, strides=[1, 1, 1, 1], padding='SAME')
L2_relu = tf.nn.relu(L2_conv + b_conv2)
L2_pool = tf.nn.max_pool(L2_relu, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
 
 
# 全连接层
W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1))
b_fc1 = tf.Variable(tf.constant(0.1, shape=[1024]))
 
h_pool2_flat = tf.reshape(L2_pool, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
 
 
# dropout
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
 
 
# readout层
W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1))
b_fc2 = tf.Variable(tf.constant(0.1, shape=[10]))
 
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
 
# 定义优化器和训练op
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer((1e-4)).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
 
 
with tf.Session() as sess:
  sess.run(tf.global_variables_initializer())
 
  print ("一共读取了 %s 个输入图像, %s 个标签" % (input_count, input_count))
 
  # 设置每次训练op的输入个数和迭代次数,这里为了支持任意图片总数,定义了一个余数remainder,譬如,如果每次训练op的输入个数为60,图片总数为150张,则前面两次各输入60张,最后一次输入30张(余数30)
  batch_size = 60
  iterations = 100
  batches_count = int(input_count / batch_size)
  remainder = input_count % batch_size
  print ("数据集分成 %s 批, 前面每批 %s 个数据,最后一批 %s 个数据" % (batches_count+1, batch_size, remainder))
 
  # 执行训练迭代
  for it in range(iterations):
    # 这里的关键是要把输入数组转为np.array
    for n in range(batches_count):
      train_step.run(feed_dict={x: input_images[n*batch_size:(n+1)*batch_size], y_: input_labels[n*batch_size:(n+1)*batch_size], keep_prob: 0.5})
    if remainder > 0:
      start_index = batches_count * batch_size;
      train_step.run(feed_dict={x: input_images[start_index:input_count-1], y_: input_labels[start_index:input_count-1], keep_prob: 0.5})
 
    # 每完成五次迭代,判断准确度是否已达到100%,达到则退出迭代循环
    iterate_accuracy = 0
    if it%5 == 0:
      iterate_accuracy = accuracy.eval(feed_dict={x: input_images, y_: input_labels, keep_prob: 1.0})
      print ('iteration %d: accuracy %s' % (it, iterate_accuracy))
      if iterate_accuracy >= 1:
        break;
 
  print ('完成训练!')

上述python代码的执行结果截图如下:

详解如何用TensorFlow训练和识别/分类自定义图片

对于上述代码中与模型构建相关的代码,请查阅官方《Deep MNIST for Experts》一节的内容进行理解。在本文中,需要重点掌握的是如何将本地图片源整合成为feed_dict可接受的格式。其中最关键的是这两行:

# 定义对应维数和各维长度的数组
input_images = np.array([[0]*784 for i in range(input_count)])
input_labels = np.array([[0]*10 for i in range(input_count)])

它们对应于feed_dict的两个placeholder:

x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])

这样一看,是不是很简单?

我们将在下一篇博文中介绍如何通过本文成果识别车牌数字。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现获取序列中最小的几个元素
Sep 25 Python
python计算书页码的统计数字问题实例
Sep 26 Python
介绍Python中的__future__模块
Apr 27 Python
介绍Python的@property装饰器的用法
Apr 28 Python
python中装饰器级连的使用方法示例
Sep 29 Python
python队列通信:rabbitMQ的使用(实例讲解)
Dec 22 Python
一篇文章快速了解Python的GIL
Jan 12 Python
Pyqt实现无边框窗口拖动以及窗口大小改变
Apr 19 Python
在pycharm下设置自己的个性模版方法
Jul 15 Python
使用Python画出小人发射爱心的代码
Nov 23 Python
Pyecharts地图显示不完成问题解决方案
May 11 Python
sklearn线性逻辑回归和非线性逻辑回归的实现
Jun 09 Python
详解如何从TensorFlow的mnist数据集导出手写体数字图片
Aug 05 #Python
Python获取时间范围内日期列表和周列表的函数
Aug 05 #Python
Django ORM 查询管理器源码解析
Aug 05 #Python
python实现车牌识别的示例代码
Aug 05 #Python
使用python实现滑动验证码功能
Aug 05 #Python
Django 源码WSGI剖析过程详解
Aug 05 #Python
Python使用itchat 功能分析微信好友性别和位置
Aug 05 #Python
You might like
深入理解PHP之require/include顺序 推荐
2011/01/02 PHP
基于php iconv函数的使用详解
2013/06/09 PHP
PHP多例模式介绍
2013/06/24 PHP
php文件服务实现虚拟挂载其他目录示例
2014/04/17 PHP
作为程序员必知的16个最佳PHP库
2015/12/09 PHP
Javascript技巧之不要用for in语句对数组进行遍历
2010/10/20 Javascript
ExtJs中gridpanel分组后组名排序实例代码
2013/12/02 Javascript
js实现的点击div区域外隐藏div区域
2014/06/30 Javascript
director.js实现前端路由使用实例
2015/02/03 Javascript
JavaScript获取按钮所在form表单id的方法
2015/04/02 Javascript
JavaScript中的Math.sin()方法使用详解
2015/06/15 Javascript
jQuery实现表格隔行及滑动,点击时变色的方法【测试可用】
2016/08/20 Javascript
bootstrapfileinput实现文件自动上传
2016/11/08 Javascript
jQuery简单自定义图片轮播插件及用法示例
2016/11/21 Javascript
Vue.js实现按钮的动态绑定效果及实现代码
2017/08/21 Javascript
angular4自定义组件详解
2017/09/28 Javascript
Vue-router路由判断页面未登录跳转到登录页面的实例
2017/10/26 Javascript
解决vue处理axios post请求传参的问题
2018/03/05 Javascript
Vue记住滚动条和实现下拉加载的完美方法
2020/07/31 Javascript
python计算N天之后日期的方法
2015/03/31 Python
Python实现字典的key和values的交换
2015/08/04 Python
使用Python写一个量化股票提醒系统
2018/08/22 Python
利用 PyCharm 实现本地代码和远端的实时同步功能
2020/03/23 Python
django实现模板中的字符串文字和自动转义
2020/03/31 Python
python的数学算法函数及公式用法
2020/11/18 Python
用Python自动清理电脑内重复文件,只要10行代码(自动脚本)
2021/01/09 Python
中国跨境海淘网站:考拉海购
2016/08/01 全球购物
土耳其新趋势女装购物网站:Addax
2020/01/07 全球购物
C语言面试题
2015/10/30 面试题
大四本科生的自我评价
2013/12/30 职场文书
迎新生标语大全
2014/10/06 职场文书
2015年科室工作总结
2015/04/10 职场文书
教师专业技术工作总结2015
2015/05/13 职场文书
2015年行政人事工作总结
2015/05/21 职场文书
2016年社区国庆节活动总结
2016/04/01 职场文书
python分分钟绘制精美地图海报
2022/02/15 Python