深入理解NumPy简明教程---数组3(组合)


Posted in Python onDecember 17, 2016

前两篇文章对NumPy数组做了基本的介绍,本篇文章对NumPy数组进行较深入的探讨。首先介绍自定义类型的数组,接着数组的组合,最后介绍数组复制方面的问题。

自定义结构数组

通过NumPy也可以定义像C语言那样的结构类型。在NumPy中定义结构的方法如下:

定义结构类型名称;定义字段名称,标明字段数据类型。

student= dtype({'names':['name', 'age', 'weight'], 'formats':['S32', 'i','f']}, align = True)

这里student是自定义结构类型的名称,使用dtype函数创建,在第一个参数中,'names'和'formats'不能改变,names中列出的是结构中字段名称,formats中列出的是对应字段的数据类型。S32表示32字节长度的字符串,i表示32位的整数,f表示32位长度的浮点数。最后一个参数为True时,表示要求进行内存对齐。

字段中使用NumPy的字符编码来表示数据类型。更详细的数据类型见下表。

数据类型 字符编码
整数 i
无符号整数 u
单精度浮点数 f
双精度浮点数 d
布尔值 b
复数 D
字符串 S
Unicode U
Void V

在定义好结构类型之后,就可以定义以该类型为元素的数组了:

a= array([(“Zhang”, 32, 65.5), (“Wang”, 24, 55.2)], dtype =student)

除了在每个元素中依次列出对应字段的数据外,还需要在array函数中最后一个参数指定其所对应的数据类型。

注:例子来源于张若愚的Python科学计算艺术的29页。更多关于dtype的内容请参考《NumPy for Beginner》一书的第二章。

组合函数

这里介绍以不同的方式组合函数。首先创建两个数组:

>>> a = arange(9).reshape(3,3) 
>>> a 
array([[0, 1, 2], 
   [3, 4, 5], 
   [6, 7, 8]]) 
>>> b = 2 * a 
>>> b 
array([[ 0, 2, 4], 
  [ 6, 8, 10], 
  [12, 14, 16]])

水平组合

>>> hstack((a, b)) 
array([[ 0, 1, 2, 0, 2, 4], 
  [ 3, 4, 5, 6, 8, 10], 
  [ 6, 7, 8, 12, 14, 16]])

也可通过concatenate函数并指定相应的轴来获得这一效果:

>>> concatenate((a, b), axis=1) 
array([[ 0, 1, 2, 0, 2, 4], 
  [ 3, 4, 5, 6, 8, 10], 
  [ 6, 7, 8, 12, 14, 16]])

垂直组合

>>> vstack((a, b)) 
array([[ 0, 1, 2], 
  [ 3, 4, 5], 
  [ 6, 7, 8], 
  [ 0, 2, 4], 
  [ 6, 8, 10], 
  [12, 14, 16]])

同样,可通过concatenate函数,并指定相应的轴来获得这一效果。

>>> concatenate((a, b), axis=0) 
array([[ 0, 1, 2], 
  [ 3, 4, 5], 
  [ 6, 7, 8], 
  [ 0, 2, 4], 
  [ 6, 8, 10], 
  [12, 14, 16]])

深度组合

另外,还有深度方面的组合函数dstack。顾名思义,就是在数组的第三个轴(即深度)上组合。如下:

>>> dstack((a, b)) 
array([[[ 0, 0], 
  [ 1, 2], 
  [ 2, 4]], 
 
  [[ 3, 6], 
  [ 4, 8], 
  [ 5, 10]], 
 
  [[ 6, 12], 
  [ 7, 14], 
  [ 8, 16]]])

仔细观察,发现对应的元素都组合成一个新的列表,该列表作为新的数组的元素。

行组合

行组合可将多个一维数组作为新数组的每一行进行组合:

>>> one = arange(2) 
>>> one 
array([0, 1]) 
>>> two = one + 2 
>>> two 
array([2, 3]) 
>>> row_stack((one, two)) 
array([[0, 1], 
  [2, 3]])

对于2维数组,其作用就像垂直组合一样。

列组合

列组合的效果应该很清楚了。如下:

>>> column_stack((oned, twiceoned)) 
array([[0, 2], 
  [1, 3]])

对于2维数组,其作用就像水平组合一样。

分割数组

在NumPy中,分割数组的函数有hsplit、vsplit、dsplit和split。可将数组分割成相同大小的子数组,或指定原数组分割的位置。

水平分割

>>> a = arange(9).reshape(3,3) 
>>> a 
array([[0, 1, 2], 
  [3, 4, 5], 
  [6, 7, 8]]) 
>>> hsplit(a, 3) 
[array([[0], 
  [3], 
  [6]]), 
 array([[1], 
  [4], 
  [7]]), 
 array([[2], 
  [5], 
  [8]])]

也调用split函数并指定轴为1来获得这样的效果:

split(a, 3, axis=1)

垂直分割

垂直分割是沿着垂直的轴切分数组:

>>> vsplit(a, 3) 
>>> [array([[0, 1, 2]]), array([[3, 4, 5]]), array([[6, 7, 8]])]

同样,也可通过solit函数并指定轴为1来获得这样的效果:

>>> split(a, 3, axis=0)

面向深度的分割

dsplit函数使用的是面向深度的分割方式:

>>> c = arange(27).reshape(3, 3, 3) 
>>> c 
array([[[ 0, 1, 2], 
  [ 3, 4, 5], 
  [ 6, 7, 8]], 
 
  [[ 9, 10, 11], 
  [12, 13, 14], 
  [15, 16, 17]], 
 
  [[18, 19, 20], 
  [21, 22, 23], 
  [24, 25, 26]]]) 
>>> dsplit(c, 3) 
[array([[[ 0], 
  [ 3], 
  [ 6]], 
 
  [[ 9], 
  [12], 
  [15]], 
 
  [[18], 
  [21], 
  [24]]]), 
 array([[[ 1], 
  [ 4], 
  [ 7]], 
 
  [[10], 
  [13], 
  [16]], 
 
  [[19], 
  [22], 
  [25]]]), 
 array([[[ 2], 
  [ 5], 
  [ 8]], 
 
  [[11], 
  [14], 
  [17]], 
 
  [[20], 
  [23], 
  [26]]])]

复制和镜像(View)

当运算和处理数组时,它们的数据有时被拷贝到新的数组有时不是。这通常是新手的困惑之源。这有三种情况:

完全不复制

简单的赋值,而不复制数组对象或它们的数据。

>>> a = arange(12) 
>>> b = a  #不创建新对象 
>>> b is a   # a和b是同一个数组对象的两个名字 
True 
>>> b.shape = 3,4 #也改变了a的形状 
>>> a.shape 
(3, 4) 
  Python 传递不定对象作为参考4,所以函数调用不拷贝数组。
 >>> def f(x): 
...  print id(x) 
... 
>>> id(a)  #id是一个对象的唯一标识 
148293216 
>>> f(a) 
148293216

视图(view)和浅复制

不同的数组对象分享同一个数据。视图方法创造一个新的数组对象指向同一数据。

>>> c = a.view() 
>>> c is a 
False 
>>> c.base is a  #c是a持有数据的镜像 
True 
>>> c.flags.owndata 
False 
>>> 
>>> c.shape = 2,6 # a的形状没变 
>>> a.shape 
(3, 4) 
>>> c[0,4] = 1234  #a的数据改变了 
>>> a 
array([[ 0, 1, 2, 3], 
  [1234, 5, 6, 7], 
  [ 8, 9, 10, 11]])

切片数组返回它的一个视图:

>>> s = a[ : , 1:3]  # 获得每一行1,2处的元素 
>>> s[:] = 10   # s[:] 是s的镜像。注意区别s=10 and s[:]=10 
>>> a 
array([[ 0, 10, 10, 3], 
  [1234, 10, 10, 7], 
  [ 8, 10, 10, 11]])

深复制

这个复制方法完全复制数组和它的数据。

>>> d = a.copy()  #创建了一个含有新数据的新数组对象 
>>> d is a 
False 
>>> d.base is a  #d和a现在没有任何关系 
False 
>>> d[0,0] = 9999 
>>> a 
array([[ 0, 10, 10, 3], 
  [1234, 10, 10, 7], 
  [ 8, 10, 10, 11]])

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python使用win32com在百度空间插入html元素示例
Feb 20 Python
python将MongoDB里的ObjectId转换为时间戳的方法
Mar 13 Python
Python实现图片滑动式验证识别方法
Nov 09 Python
详解pandas如何去掉、过滤数据集中的某些值或者某些行?
May 15 Python
python中while和for的区别总结
Jun 28 Python
对python while循环和双重循环的实例详解
Aug 23 Python
Python爬虫爬取Bilibili弹幕过程解析
Oct 10 Python
python实现udp传输图片功能
Mar 20 Python
Python中zipfile压缩文件模块的基本使用教程
Jun 14 Python
python 解决pycharm运行py文件只有unittest选项的问题
Sep 01 Python
Pycharm配置lua编译环境过程图解
Nov 28 Python
Keras保存模型并载入模型继续训练的实现
Feb 20 Python
深入理解NumPy简明教程---数组2
Dec 17 #Python
深入理解NumPy简明教程---数组1
Dec 17 #Python
Python脚本获取操作系统版本信息
Dec 17 #Python
详解python中xlrd包的安装与处理Excel表格
Dec 16 #Python
详解python开发环境搭建
Dec 16 #Python
python制作爬虫爬取京东商品评论教程
Dec 16 #Python
python用模块zlib压缩与解压字符串和文件的方法
Dec 16 #Python
You might like
php生成的html meta和link标记在body标签里 顶部有个空行
2010/05/18 PHP
thinkphp jquery实现图片上传和预览效果
2020/07/22 PHP
详解PHP数据压缩、加解密(pack, unpack)
2016/12/17 PHP
php 常用的系统函数
2017/02/07 PHP
yii2 开发api接口时优雅的处理全局异常的方法
2019/05/14 PHP
PHP实现发送微博消息功能完整示例
2019/12/04 PHP
js实现ASP分页函数 HTML分页函数
2006/09/22 Javascript
通过pjax实现无刷新翻页(兼容新版jquery)
2014/01/31 Javascript
JS删除字符串中重复字符方法
2014/03/09 Javascript
js判断游览器类型及版本号的代码
2014/05/11 Javascript
jquery简单图片切换显示效果实现方法
2015/01/14 Javascript
JavaScript中的this到底是什么(一)
2015/12/09 Javascript
原生javascript实现匀速运动动画效果
2016/02/26 Javascript
jQuery Mobile开发中日期插件Mobiscroll使用说明
2016/03/02 Javascript
BootStrap3中模态对话框的使用
2017/01/06 Javascript
jQuery Pagination分页插件使用方法详解
2017/02/28 Javascript
js 监控iframe URL的变化实例代码
2017/07/12 Javascript
vue动态添加路由addRoutes之不能将动态路由存入缓存的解决
2019/02/19 Javascript
vue-cli和v-charts实现可视化图表过程解析
2019/10/08 Javascript
js实现验证码功能
2020/07/24 Javascript
js实现验证码干扰(动态)
2021/02/23 Javascript
[52:37]完美世界DOTA2联赛循环赛 Forest vs DM BO2第一场 10.29
2020/10/29 DOTA
python计算一个序列的平均值的方法
2015/07/11 Python
Python批量创建迅雷任务及创建多个文件
2016/02/13 Python
python实现多线程抓取知乎用户
2016/12/12 Python
解决pycharm回车之后不能换行或不能缩进的问题
2019/01/16 Python
python实现合并两个排序的链表
2019/03/03 Python
python输出带颜色字体实例方法
2019/09/01 Python
如何用Matplotlib 画三维图的示例代码
2020/07/28 Python
加拿大知名的国际儿童品牌:Hatley
2016/11/09 全球购物
Manuka Doctor英国官网:真正的麦卢卡蜂蜜和护肤品
2018/10/26 全球购物
2014中考励志标语
2014/06/05 职场文书
淘宝文案策划岗位职责
2015/04/14 职场文书
2015年乡镇工会工作总结
2015/05/19 职场文书
工作后的感想
2015/08/07 职场文书
python中Matplotlib绘制直线的实例代码
2021/07/04 Python