由Python运算π的值深入Python中科学计算的实现


Posted in Python onApril 17, 2015

π是一个无数人追随的真正的神奇数字。我不是很清楚一个永远重复的无理数的迷人之处。在我看来,我乐于计算π,也就是计算π的值。因为π是一个无理数,它是无限的。这就意味着任何对π的计算都仅仅是个近似值。如果你计算100位,我可以计算101位并且更精确。迄今为止,有些人已经选拔出超级计算机来试图计算最精确的π。一些极值包括 计算π的5亿位。你甚至能从网上找到包含 π的一百亿位的文本文件(注意啦!下载这个文件可能得花一会儿时间,并且没法用你平时使用的记事本应用程序打开。)。对于我而言,如何用几行简单的Python来计算π才是我的兴趣所在。
你总是可以 使用 math.pi 变量的 。它被 包含在 标准库中, 在你试图自己 计算它之前,你应该去使用它 。 事实上 , 我们将 用它来计算 精度 。作为 开始, 让我们看 一个 非常直截了当的 计算Pi的 方法 。像往常一样,我将使用Python 2.7,同样的想法和代码可能应用于不同的版本。我们将要使用的大部分算法来自Pi WikiPedia page并加以实现。让我们看看下面的代码:
 

importsys
importmath
 
defmain(argv):
 
  iflen(argv) !=1:
    sys.exit('Usage: calc_pi.py <n>')
 
  print'\nComputing Pi v.01\n'
   
  a=1.0
  b=1.0/math.sqrt(2)
  t=1.0/4.0
  p=1.0
     
  foriinrange(int(sys.argv[1])):
    at=(a+b)/2
    bt=math.sqrt(a*b)
    tt=t-p*(a-at)**2
    pt=2*p
     
    a=at;b=bt;t=tt;p=pt
     
  my_pi=(a+b)**2/(4*t)
  accuracy=100*(math.pi-my_pi)/my_pi
     
  print"Pi is approximately: "+str(my_pi)
  print"Accuracy with math.pi: "+str(accuracy)
   
if__name__=="__main__":
  main(sys.argv[1:])

这是个非常简单的脚本,你可以下载,运行,修改,和随意分享给别人。你能够看到类似下面的输出结果: 

由Python运算π的值深入Python中科学计算的实现

 你会发现,尽管 n 大于4 ,我们逼近 Pi 精度却没有多大的提升。 我们可以猜到即使 n的值更大,同样的事情(pi的逼近精度没有提升)依旧会发生。幸运的是,有不止一种方法来揭开这个谜。使用 Python Decimal (十进制)库,我们可以就可以得到更高精度的值来逼近Pi。让我们来看看库函数是如何使用的。这个简化的版本,可以得到多于11位的数字 通常情况小Python 浮点数给出的精度。下面是Python Decimal 库中的一个例子 :

wpid-python_decimal_example-2013-05-28-12-54.png

看到这些数字。不对! 我们输入的仅是 3.14,为什么我们得到了一些垃圾(junk)? 这是内存垃圾(memory junk)。 简单点说,Python给你你想要的十进制数,再加上一点点额外的值。 只要精度小于垃圾数,它不会影响任何计算。通过设置getcontext().prec 你可以的到你想要的位数 。我们试试。

由Python运算π的值深入Python中科学计算的实现

看到这些数字。不对! 我们输入的仅是 3.14,为什么我们得到了一些垃圾(junk)? 这是内存垃圾(memory junk)。 简单点说,Python给你你想要的十进制数,再加上一点点额外的值。 只要精度小于垃圾数,它不会影响任何计算。通过设置getcontext().prec 你可以的到你想要的位数 。我们试试。

由Python运算π的值深入Python中科学计算的实现

很好。 现在让我们 试着用这个 来 看看我们是否能 与我们以前的 代码 有更好的 逼近 。 现在, 我通常 是反对 使用“ from library import * ” , 但在这种情况下, 它会 使代码 看起来更漂亮 。
 

importsys
importmath
fromdecimalimport*
 
defmain(argv):
 
  iflen(argv) !=1:
    sys.exit('Usage: calc_pi.py <n>')
 
  print'\nComputing Pi v.01\n'
   
  a=Decimal(1.0)
  b=Decimal(1.0/math.sqrt(2))
  t=Decimal(1.0)/Decimal(4.0)
  p=Decimal(1.0)
     
  foriinrange(int(sys.argv[1])):
    at=Decimal((a+b)/2)
    bt=Decimal(math.sqrt(a*b))
    tt=Decimal(t-p*(a-at)**2)
    pt=Decimal(2*p)
     
    a=at;b=bt;t=tt;p=pt
     
  my_pi=(a+b)**2/(4*t)
  accuracy=100*(Decimal(math.pi)-my_pi)/my_pi
     
  print"Pi is approximately: "+str(my_pi)
  print"Accuracy with math.pi: "+str(accuracy)
   
if__name__=="__main__":
  main(sys.argv[1:])

 
输出结果: 

由Python运算π的值深入Python中科学计算的实现

 好了。我们更准确了,但看起来似乎有一些舍入。从n = 100和n = 1000,我们有相同的精度。现在怎么办?好吧,现在我们来求助于公式。到目前为止,我们计算Pi的方式是通过对几部分加在一起。我从DAN 的关于Calculating Pi 的文章中发现一些代码。他建议我们用以下3个公式:

    Bailey?Borwein?Plouffe 公式
   Bellard的公式
    Chudnovsky 算法

让我们从Bailey?Borwein?Plouffe 公式开始。它看起来是这个样子: 

由Python运算π的值深入Python中科学计算的实现

 在代码中我们可以这样编写它:
 

import sys
import math
from decimal import *
 
def bbp(n):
  pi=Decimal(0)
  k=0
  while k < n:
    pi+=(Decimal(1)/(16**k))*((Decimal(4)/(8*k+1))-(Decimal(2)/(8*k+4))-(Decimal(1)/(8*k+5))-(Decimal(1)/(8*k+6)))
    k+=1
  return pi
 
def main(argv):
 
    if len(argv) !=2:
    sys.exit('Usage: BaileyBorweinPlouffe.py <prec> <n>')
     
  getcontext().prec=(int(sys.argv[1]))
  my_pi=bbp(int(sys.argv[2]))
  accuracy=100*(Decimal(math.pi)-my_pi)/my_pi
 
  print"Pi is approximately "+str(my_pi)
  print"Accuracy with math.pi: "+str(accuracy)
   
if __name__=="__main__":
  main(sys.argv[1:])

 
抛开“ 包装”的代码,BBP(N)的功能是你真正想要的。你给它越大的N和给 getcontext().prec 设置越大的值,你就会使计算越精确。让我们看看一些代码结果:

由Python运算π的值深入Python中科学计算的实现

这有许多数字位。你可以看出,我们并没有比以前更准确。所以我们需要前进到下一个公式,贝拉公式,希望能获得更好的精度。它看起来像这样: 

由Python运算π的值深入Python中科学计算的实现

 我们将只改变我们的变换公式,其余的代码将保持不变。点击这里下载Python实现的贝拉公式。让我们看一看bellards(n):
 

def bellard(n):
  pi=Decimal(0)
  k=0
  while k < n:
    pi+=(Decimal(-1)**k/(1024**k))*( Decimal(256)/(10*k+1)+Decimal(1)/(10*k+9)-Decimal(64)/(10*k+3)-Decimal(32)/(4*k+1)-Decimal(4)/(10*k+5)-Decimal(4)/(10*k+7)-Decimal(1)/(4*k+3))
    k+=1
  pi=pi*1/(2**6)
  return pi

由Python运算π的值深入Python中科学计算的实现

   哦,不,我们得到的是同样的精度。好吧,让我们试试第三个公式, Chudnovsky 算法,它看起来是这个样子: 

由Python运算π的值深入Python中科学计算的实现

   再一次,让我们看一下这个计算公式(假设我们有一个阶乘公式)。 点击这里可下载用 python 实现的 Chudnovsky 公式。

下面是程序和输出结果:
 

def chudnovsky(n):
  pi=Decimal(0)
  k=0
  while k < n:
    pi+=(Decimal(-1)**k)*(Decimal(factorial(6*k))/((factorial(k)**3)*(factorial(3*k)))*(13591409+545140134*k)/(640320**(3*k)))
    k+=1
  pi=pi*Decimal(10005).sqrt()/4270934400
  pi=pi**(-1)
  return pi

由Python运算π的值深入Python中科学计算的实现

    所以我们有了什么结论?花哨的算法不会使机器浮点世界达到更高标准。我真的很期待能有一个比我们用求和公式时所能得到的更好的精度。我猜那是过分的要求。如果你真的需要用PI,就只需使用math.pi变量了。然而,作为乐趣和测试你的计算机真的能有多快,你总是可以尝试第一个计算出Pi的百万位或者更多位是几。

Python 相关文章推荐
Django中对数据查询结果进行排序的方法
Jul 17 Python
Python 循环语句之 while,for语句详解
Apr 23 Python
python numpy 一维数组转变为多维数组的实例
Jul 02 Python
用Python分析3天破10亿的《我不是药神》到底神在哪?
Jul 12 Python
python爬虫基础教程:requests库(二)代码实例
Apr 09 Python
flask框架渲染Jinja模板与传入模板变量操作详解
Jan 25 Python
python如何实现复制目录到指定目录
Feb 13 Python
Python实现从N个数中找到最大的K个数
Apr 02 Python
浅析Python __name__ 是什么
Jul 07 Python
基于Python爬取搜狐证券股票过程解析
Nov 18 Python
python 实现百度网盘非会员上传超过500个文件的方法
Jan 07 Python
使paramiko库执行命令时在给定的时间强制退出功能的实现
Mar 03 Python
在Python中实现贪婪排名算法的教程
Apr 17 #Python
在Linux下调试Python代码的各种方法
Apr 17 #Python
Python脚本在Appium库上对移动应用实现自动化测试
Apr 17 #Python
Python中生成器和yield语句的用法详解
Apr 17 #Python
使用Python脚本在Linux下实现部分Bash Shell的教程
Apr 17 #Python
使用Python的Scrapy框架编写web爬虫的简单示例
Apr 17 #Python
用Python的Django框架编写从Google Adsense中获得报表的应用
Apr 17 #Python
You might like
php 中include()与require()的对比
2006/10/09 PHP
分享PHP入门的学习方法
2007/01/02 PHP
PHP+ajax 无刷新删除数据
2010/02/20 PHP
php文字水印和php图片水印实现代码(二种加水印方法)
2013/12/25 PHP
CodeIgniter框架数据库事务处理的设计缺陷和解决方案
2014/07/25 PHP
php 读取输出其他文件的实现方法
2016/07/26 PHP
php获取客户端IP及URL的方法示例
2017/02/03 PHP
PHP实现基于回溯法求解迷宫问题的方法详解
2017/08/17 PHP
JavaScript 学习技巧
2010/02/17 Javascript
Javascript Math ceil()、floor()、round()三个函数的区别
2010/03/09 Javascript
jquery简单的拖动效果实现原理及示例
2013/07/26 Javascript
JavaScript获取客户端计算机硬件及系统等信息的方法
2014/01/02 Javascript
jQuery中odd选择器的定义和用法
2014/12/23 Javascript
JS+CSS实现可拖拽的漂亮圆角特效弹出层完整实例
2015/02/13 Javascript
理解javascript中try...catch...finally
2015/12/25 Javascript
JavaScript中各种引用类型的常用操作方法小结
2016/05/05 Javascript
完美解决node.js中使用https请求报CERT_UNTRUSTED的问题
2017/01/08 Javascript
原生JS实现圆环拖拽效果
2017/04/07 Javascript
JS图片预加载插件详解
2017/06/21 Javascript
基于vue 动态加载图片src的解决方法
2018/02/05 Javascript
vue 图片裁剪上传组件的实现
2020/11/12 Javascript
Python开发如何在ubuntu 15.10 上配置vim
2016/01/25 Python
Saltstack快速入门简单汇总
2016/03/01 Python
利用Python实现Shp格式向GeoJSON的转换方法
2019/07/09 Python
Django分页功能的实现代码详解
2019/07/29 Python
selenium 多窗口切换的实现(windows)
2020/01/18 Python
Pycharm操作Git及GitHub的步骤详解
2020/10/27 Python
python tkinter实现下载进度条及抖音视频去水印原理
2021/02/07 Python
CSS3 transition 实现通知消息轮播条
2020/10/14 HTML / CSS
别名指示符是什么
2012/10/08 面试题
体育之星事迹材料
2014/05/11 职场文书
服务承诺书格式
2014/05/21 职场文书
召开会议通知范文
2015/04/15 职场文书
解决Pytorch修改预训练模型时遇到key不匹配的情况
2021/06/05 Python
OpenCV实现反阈值二值化
2021/11/17 Java/Android
numpy array找出符合条件的数并赋值的示例代码
2022/06/01 Python