由Python运算π的值深入Python中科学计算的实现


Posted in Python onApril 17, 2015

π是一个无数人追随的真正的神奇数字。我不是很清楚一个永远重复的无理数的迷人之处。在我看来,我乐于计算π,也就是计算π的值。因为π是一个无理数,它是无限的。这就意味着任何对π的计算都仅仅是个近似值。如果你计算100位,我可以计算101位并且更精确。迄今为止,有些人已经选拔出超级计算机来试图计算最精确的π。一些极值包括 计算π的5亿位。你甚至能从网上找到包含 π的一百亿位的文本文件(注意啦!下载这个文件可能得花一会儿时间,并且没法用你平时使用的记事本应用程序打开。)。对于我而言,如何用几行简单的Python来计算π才是我的兴趣所在。
你总是可以 使用 math.pi 变量的 。它被 包含在 标准库中, 在你试图自己 计算它之前,你应该去使用它 。 事实上 , 我们将 用它来计算 精度 。作为 开始, 让我们看 一个 非常直截了当的 计算Pi的 方法 。像往常一样,我将使用Python 2.7,同样的想法和代码可能应用于不同的版本。我们将要使用的大部分算法来自Pi WikiPedia page并加以实现。让我们看看下面的代码:
 

importsys
importmath
 
defmain(argv):
 
  iflen(argv) !=1:
    sys.exit('Usage: calc_pi.py <n>')
 
  print'\nComputing Pi v.01\n'
   
  a=1.0
  b=1.0/math.sqrt(2)
  t=1.0/4.0
  p=1.0
     
  foriinrange(int(sys.argv[1])):
    at=(a+b)/2
    bt=math.sqrt(a*b)
    tt=t-p*(a-at)**2
    pt=2*p
     
    a=at;b=bt;t=tt;p=pt
     
  my_pi=(a+b)**2/(4*t)
  accuracy=100*(math.pi-my_pi)/my_pi
     
  print"Pi is approximately: "+str(my_pi)
  print"Accuracy with math.pi: "+str(accuracy)
   
if__name__=="__main__":
  main(sys.argv[1:])

这是个非常简单的脚本,你可以下载,运行,修改,和随意分享给别人。你能够看到类似下面的输出结果: 

由Python运算π的值深入Python中科学计算的实现

 你会发现,尽管 n 大于4 ,我们逼近 Pi 精度却没有多大的提升。 我们可以猜到即使 n的值更大,同样的事情(pi的逼近精度没有提升)依旧会发生。幸运的是,有不止一种方法来揭开这个谜。使用 Python Decimal (十进制)库,我们可以就可以得到更高精度的值来逼近Pi。让我们来看看库函数是如何使用的。这个简化的版本,可以得到多于11位的数字 通常情况小Python 浮点数给出的精度。下面是Python Decimal 库中的一个例子 :

wpid-python_decimal_example-2013-05-28-12-54.png

看到这些数字。不对! 我们输入的仅是 3.14,为什么我们得到了一些垃圾(junk)? 这是内存垃圾(memory junk)。 简单点说,Python给你你想要的十进制数,再加上一点点额外的值。 只要精度小于垃圾数,它不会影响任何计算。通过设置getcontext().prec 你可以的到你想要的位数 。我们试试。

由Python运算π的值深入Python中科学计算的实现

看到这些数字。不对! 我们输入的仅是 3.14,为什么我们得到了一些垃圾(junk)? 这是内存垃圾(memory junk)。 简单点说,Python给你你想要的十进制数,再加上一点点额外的值。 只要精度小于垃圾数,它不会影响任何计算。通过设置getcontext().prec 你可以的到你想要的位数 。我们试试。

由Python运算π的值深入Python中科学计算的实现

很好。 现在让我们 试着用这个 来 看看我们是否能 与我们以前的 代码 有更好的 逼近 。 现在, 我通常 是反对 使用“ from library import * ” , 但在这种情况下, 它会 使代码 看起来更漂亮 。
 

importsys
importmath
fromdecimalimport*
 
defmain(argv):
 
  iflen(argv) !=1:
    sys.exit('Usage: calc_pi.py <n>')
 
  print'\nComputing Pi v.01\n'
   
  a=Decimal(1.0)
  b=Decimal(1.0/math.sqrt(2))
  t=Decimal(1.0)/Decimal(4.0)
  p=Decimal(1.0)
     
  foriinrange(int(sys.argv[1])):
    at=Decimal((a+b)/2)
    bt=Decimal(math.sqrt(a*b))
    tt=Decimal(t-p*(a-at)**2)
    pt=Decimal(2*p)
     
    a=at;b=bt;t=tt;p=pt
     
  my_pi=(a+b)**2/(4*t)
  accuracy=100*(Decimal(math.pi)-my_pi)/my_pi
     
  print"Pi is approximately: "+str(my_pi)
  print"Accuracy with math.pi: "+str(accuracy)
   
if__name__=="__main__":
  main(sys.argv[1:])

 
输出结果: 

由Python运算π的值深入Python中科学计算的实现

 好了。我们更准确了,但看起来似乎有一些舍入。从n = 100和n = 1000,我们有相同的精度。现在怎么办?好吧,现在我们来求助于公式。到目前为止,我们计算Pi的方式是通过对几部分加在一起。我从DAN 的关于Calculating Pi 的文章中发现一些代码。他建议我们用以下3个公式:

    Bailey?Borwein?Plouffe 公式
   Bellard的公式
    Chudnovsky 算法

让我们从Bailey?Borwein?Plouffe 公式开始。它看起来是这个样子: 

由Python运算π的值深入Python中科学计算的实现

 在代码中我们可以这样编写它:
 

import sys
import math
from decimal import *
 
def bbp(n):
  pi=Decimal(0)
  k=0
  while k < n:
    pi+=(Decimal(1)/(16**k))*((Decimal(4)/(8*k+1))-(Decimal(2)/(8*k+4))-(Decimal(1)/(8*k+5))-(Decimal(1)/(8*k+6)))
    k+=1
  return pi
 
def main(argv):
 
    if len(argv) !=2:
    sys.exit('Usage: BaileyBorweinPlouffe.py <prec> <n>')
     
  getcontext().prec=(int(sys.argv[1]))
  my_pi=bbp(int(sys.argv[2]))
  accuracy=100*(Decimal(math.pi)-my_pi)/my_pi
 
  print"Pi is approximately "+str(my_pi)
  print"Accuracy with math.pi: "+str(accuracy)
   
if __name__=="__main__":
  main(sys.argv[1:])

 
抛开“ 包装”的代码,BBP(N)的功能是你真正想要的。你给它越大的N和给 getcontext().prec 设置越大的值,你就会使计算越精确。让我们看看一些代码结果:

由Python运算π的值深入Python中科学计算的实现

这有许多数字位。你可以看出,我们并没有比以前更准确。所以我们需要前进到下一个公式,贝拉公式,希望能获得更好的精度。它看起来像这样: 

由Python运算π的值深入Python中科学计算的实现

 我们将只改变我们的变换公式,其余的代码将保持不变。点击这里下载Python实现的贝拉公式。让我们看一看bellards(n):
 

def bellard(n):
  pi=Decimal(0)
  k=0
  while k < n:
    pi+=(Decimal(-1)**k/(1024**k))*( Decimal(256)/(10*k+1)+Decimal(1)/(10*k+9)-Decimal(64)/(10*k+3)-Decimal(32)/(4*k+1)-Decimal(4)/(10*k+5)-Decimal(4)/(10*k+7)-Decimal(1)/(4*k+3))
    k+=1
  pi=pi*1/(2**6)
  return pi

由Python运算π的值深入Python中科学计算的实现

   哦,不,我们得到的是同样的精度。好吧,让我们试试第三个公式, Chudnovsky 算法,它看起来是这个样子: 

由Python运算π的值深入Python中科学计算的实现

   再一次,让我们看一下这个计算公式(假设我们有一个阶乘公式)。 点击这里可下载用 python 实现的 Chudnovsky 公式。

下面是程序和输出结果:
 

def chudnovsky(n):
  pi=Decimal(0)
  k=0
  while k < n:
    pi+=(Decimal(-1)**k)*(Decimal(factorial(6*k))/((factorial(k)**3)*(factorial(3*k)))*(13591409+545140134*k)/(640320**(3*k)))
    k+=1
  pi=pi*Decimal(10005).sqrt()/4270934400
  pi=pi**(-1)
  return pi

由Python运算π的值深入Python中科学计算的实现

    所以我们有了什么结论?花哨的算法不会使机器浮点世界达到更高标准。我真的很期待能有一个比我们用求和公式时所能得到的更好的精度。我猜那是过分的要求。如果你真的需要用PI,就只需使用math.pi变量了。然而,作为乐趣和测试你的计算机真的能有多快,你总是可以尝试第一个计算出Pi的百万位或者更多位是几。

Python 相关文章推荐
python服务器与android客户端socket通信实例
Nov 12 Python
python执行get提交的方法
Apr 29 Python
详解Pytorch 使用Pytorch拟合多项式(多项式回归)
May 24 Python
pandas中的series数据类型详解
Jul 06 Python
Python实现的远程文件自动打包并下载功能示例
Jul 12 Python
Python&amp;&amp;GDAL实现NDVI的计算方式
Jan 09 Python
pyinstaller 3.6版本通过pip安装失败的解决办法(推荐)
Jan 18 Python
Python 改变数组类型为uint8的实现
Apr 09 Python
Python实现电视里的5毛特效实例代码详解
May 15 Python
python画图时设置分辨率和画布大小的实现(plt.figure())
Jan 08 Python
python爬虫框架feapde的使用简介
Apr 20 Python
Python词云的正确实现方法实例
May 08 Python
在Python中实现贪婪排名算法的教程
Apr 17 #Python
在Linux下调试Python代码的各种方法
Apr 17 #Python
Python脚本在Appium库上对移动应用实现自动化测试
Apr 17 #Python
Python中生成器和yield语句的用法详解
Apr 17 #Python
使用Python脚本在Linux下实现部分Bash Shell的教程
Apr 17 #Python
使用Python的Scrapy框架编写web爬虫的简单示例
Apr 17 #Python
用Python的Django框架编写从Google Adsense中获得报表的应用
Apr 17 #Python
You might like
自己前几天写的无限分类类
2007/02/14 PHP
php设计模式 Template (模板模式)
2011/06/26 PHP
php 下载保存文件保存到本地的两种实现方法
2013/08/12 PHP
不使用php api函数实现数组的交换排序示例
2014/04/13 PHP
PHP简单选择排序算法实例
2015/01/26 PHP
PHP的new static和new self的区别与使用
2019/11/27 PHP
Jquery Ajax学习实例5 向WebService发出请求,返回泛型集合数据的异步调用
2010/03/17 Javascript
JavaScript操作XML/HTML比较常用的对象属性集锦
2015/10/30 Javascript
跟我学习javascript的arguments对象
2015/11/16 Javascript
教你JS中的运算符乘方、开方及变量格式转换
2016/08/09 Javascript
jQuery图片轮播实现并封装(一)
2016/12/03 Javascript
Vue 过渡(动画)transition组件案例详解
2017/01/22 Javascript
ES6新特性之模块Module用法详解
2017/04/01 Javascript
vue实现点击图片放大效果
2017/08/15 Javascript
vue短信验证性能优化如何写入localstorage中
2018/04/25 Javascript
vue cli3.0结合echarts3.0与地图的使用方法示例
2019/03/26 Javascript
Swiper.js实现移动端元素左右滑动
2019/09/08 Javascript
Node.js API详解之 repl模块用法实例分析
2020/05/25 Javascript
JS运算符优先级与表达式示例详解
2020/09/04 Javascript
vue 数据遍历筛选 过滤 排序的应用操作
2020/11/17 Javascript
[01:02:10]DOTA2上海特级锦标赛B组小组赛#2 VG VS Fnatic第一局
2016/02/26 DOTA
python使用xauth方式登录饭否网然后发消息
2014/04/11 Python
Python+Selenium+PIL+Tesseract自动识别验证码进行一键登录
2017/09/20 Python
Python logging模块用法示例
2018/08/28 Python
python中如何使用分步式进程计算详解
2019/03/22 Python
tensorflow使用range_input_producer多线程读取数据实例
2020/01/20 Python
微软开源最强Python自动化神器Playwright(不用写一行代码)
2021/01/05 Python
详解如何在登录过期后跳出Ifram框架
2020/09/10 HTML / CSS
英国百安居装饰建材网上超市:B&Q
2016/09/13 全球购物
澳大利亚票务和娱乐市场领导者:Ticketmaster
2017/03/03 全球购物
Carolina工作鞋官网:Carolina Footwear
2019/03/14 全球购物
灵泰克Java笔试题
2016/01/09 面试题
大学自我鉴定
2013/12/20 职场文书
表决心的诗句大全
2014/03/11 职场文书
文明班级申报材料
2014/12/24 职场文书
天下第一关导游词
2015/02/06 职场文书