Python使用DFA算法过滤内容敏感词


Posted in Python onApril 22, 2022

DFA 算法是通过提前构造出一个 树状查找结构,之后根据输入在该树状结构中就可以进行非常高效的查找。

设我们有一个敏感词库,词酷中的词汇为:

  • 我爱你
  • 我爱他
  • 我爱她
  • 我爱你呀
  • 我爱他呀
  • 我爱她呀
  • 我爱她啊

那么就可以构造出这样的树状结构:

设玩家输入的字符串为:白菊我爱你呀哈哈哈

我们遍历玩家输入的字符串 str,并设指针 i 指向树状结构的根节点,即最左边的空白节点:

  • str[0] = ‘白’ 时,此时 tree[i] 没有指向值为 ‘白’ 的节点,所以不满足匹配条件,继续往下遍历
  • str[1] = ‘菊’,同样不满足匹配条件,继续遍历
  • str[2] = ‘我’,此时 tree[i] 有一条路径连接着 ‘我’ 这个节点,满足匹配条件,i 指向 ‘我’ 这个节点,然后继续遍历
  • str[3] = ‘爱’,此时 tree[i] 有一条路径连着 ‘爱’ 这个节点,满足匹配条件,i 指向 ‘爱’,继续遍历
  • str[4] = ‘你’,同样有路径,i 指向 ‘你’,继续遍历
  • str[5] = ‘呀’,同样有路径,i 指向 ‘呀’

此时,我们的指针 i 已经指向了树状结构的末尾,即此时已经完成了一次敏感词判断。我们可以用变量来记录下这次敏感词匹配开始时玩家输入字符串的下标,和匹配结束时的下标,然后再遍历一次将字符替换为 * 即可。

结束一次匹配后,我们把指针 i 重新指向树状结构的根节点处。

此时我们玩家输入的字符串还没有遍历到头,所以继续遍历:

str[6] = ‘哈’,不满足匹配条件,继续遍历

str[7] = ‘哈’ …

str[8] = ‘哈’ …

可以看出我们遍历了一次玩家输入的字符串,就找到了其中的敏感词汇。

Python使用DFA算法过滤内容敏感词

DFA算法python实现

class DFA:
    """DFA 算法
       敏感字中“*”代表任意一个字符
    """

    def __init__(self, sensitive_words: list, skip_words: list):  # 对于敏感词sensitive_words及无意义的词skip_words可以通过数据库、文件或者其他存储介质进行保存
        self.state_event_dict = self._generate_state_event(sensitive_words)
        self.skip_words = skip_words

    def __repr__(self):
        return '{}'.format(self.state_event_dict)

    @staticmethod
    def _generate_state_event(sensitive_words) -> dict:
        state_event_dict = {}
        for word in sensitive_words:
            tmp_dict = state_event_dict
            length = len(word)
            for index, char in enumerate(word):
                if char not in tmp_dict:
                    next_dict = {'is_end': False}
                    tmp_dict[char] = next_dict
                    tmp_dict = next_dict
                else:
                    next_dict = tmp_dict[char]
                    tmp_dict = next_dict
                if index == length - 1:
                    tmp_dict['is_end'] = True
        return state_event_dict

    def match(self, content: str):
        match_list = []
        state_list = []
        temp_match_list = []

        for char_pos, char in enumerate(content):
            if char in self.skip_words:
                continue
            if char in self.state_event_dict:
                state_list.append(self.state_event_dict)
                temp_match_list.append({
                    "start": char_pos,
                    "match": ""
                })
            for index, state in enumerate(state_list):
                is_match = False
                state_char = None
                if '*' in state: # 对于一些敏感词,比如大傻X,可能是大傻B,大傻×,大傻...,采用通配符*,一个*代表一个字符
                    state_list[index] = state['*']
                    state_char = state['*']
                    is_match = True
                if char in state:
                    state_list[index] = state[char]
                    state_char = state[char]
                    is_match = True
                if is_match:
                    if state_char["is_end"]:
                        stop = char_pos + 1
                        temp_match_list[index]['match'] = content[
                                                          temp_match_list[index]['start']:stop]
                        match_list.append(copy.deepcopy(temp_match_list[index]))
                        if len(state_char.keys()) == 1:
                            state_list.pop(index)
                            temp_match_list.pop(index)
                else:
                    state_list.pop(index)
                    temp_match_list.pop(index)
        for index, match_words in enumerate(match_list):
            print(match_words['start'])
        return match_list

_generate_state_event方法生成敏感词的树状结构,(以字典保存),对于上面的例子,生成的树状结构保存如下:

if __name__ == '__main__':
    dfa = DFA(['我爱你', '我爱他', '我爱她', '我爱你呀', '我爱他呀', '我爱她呀', '我爱她啊'], skip_words=[])  # 暂时不配置skip_words
    print(dfa)

结果:

{'我': {'is_end': False, '爱': {'is_end': False, '你': {'is_end': True, '呀': {'is_end': True}}, '他': {'is_end': True, '呀': {'is_end': True}}, '她': {'is_end': True, '呀': {'is_end': True}, '啊': {'is_end': True}}}}}

然后调用match方法,输入内容进行敏感词匹配:

if __name__ == '__main__':
    dfa = DFA(['我爱你', '我爱他', '我爱她', '我爱你呀', '我爱他呀', '我爱她呀', '我爱她啊'], ['\n', '\r\n', '\r'])
    # print(dfa)
    print(dfa.match('白菊我爱你呀哈哈哈'))

结果:

[{'start': 2, 'match': '我爱你'}, {'start': 2, 'match': '我爱你呀'}]

而对于一些敏感词,比如大傻X,可能是大傻B,大傻×,大傻...,那是不是可以通过一个通配符*来解决?

见代码:48 ~51行

if '*' in state: # 对于一些敏感词,比如大傻X,可能是大傻B,大傻×,大傻...,采用通配符*,一个*代表一个字符
 state_list[index] = state['*']
 state_char = state['*']
 is_match = True

验证一下:

if __name__ == '__main__':
    dfa = DFA(['大傻*'], [])
    print(dfa)
    print(dfa.match('大傻X安乐飞大傻B'))

{'大': {'is_end': False, '傻': {'is_end': False, '*': {'is_end': True}}}}
[{'start': 0, 'match': '大傻X'}, {'start': 6, 'match': '大傻B'}]

上列中如果输入的内容中,“大傻X安乐飞大傻B”写成“大%傻X安乐飞大&傻B”,看看是否能识别出敏感词呢?识别不出了!

if __name__ == '__main__':
    dfa = DFA(['大傻*'], [])
    print(dfa)
    print(dfa.match('大%傻X安乐飞大&傻B'))

结果:

{'大': {'is_end': False, '傻': {'is_end': False, '*': {'is_end': True}}}}
[

诸如“,&,!,!,@,#,$,¥,*,^,%,?,?,<,>,《,》",这些特殊符号无实际意义,但是可以在敏感词中间插入而破坏敏感词的结构规避敏感词检查

进行无意义词配置,再进行敏感词检查,如下,可见对于被破坏的敏感词也能识别

if __name__ == '__main__':
    dfa = DFA(['大傻*'], ['%', '&'])
    print(dfa)
    print(dfa.match('大%傻X安乐飞大&傻B'))

结果: 

{'大': {'is_end': False, '傻': {'is_end': False, '*': {'is_end': True}}}}
[{'start': 0, 'match': '大%傻X'}, {'start': 7, 'match': '大&傻B'}]

以上就是Python基于DFA算法实现内容敏感词过滤的详细内容!


Tags in this post...

Python 相关文章推荐
详解Python各大聊天系统的屏蔽脏话功能原理
Dec 01 Python
pip matplotlib报错equired packages can not be built解决
Jan 06 Python
Python实现重建二叉树的三种方法详解
Jun 23 Python
python查看模块,对象的函数方法
Oct 16 Python
一百行python代码将图片转成字符画
Feb 19 Python
对python opencv 添加文字 cv2.putText 的各参数介绍
Dec 05 Python
Django的models中on_delete参数详解
Jul 16 Python
基于python实现自动化办公学习笔记(CSV、word、Excel、PPT)
Aug 06 Python
python求前n个阶乘的和实例
Apr 02 Python
Python pymysql模块安装并操作过程解析
Oct 13 Python
python中绕过反爬虫的方法总结
Nov 25 Python
python数字图像处理:图像的绘制
Jun 28 Python
python游戏开发之pygame实现接球小游戏
Apr 22 #Python
python游戏开发Pygame框架
Apr 22 #Python
python中的random模块和相关函数详解
Apr 22 #Python
Python写情书? 10行代码展示如何把情书写在她的照片里
Apr 21 #Python
微信小程序调用python模型
Apr 21 #Python
使用python绘制分组对比柱状图
使用python将HTML转换为PDF pdfkit包(wkhtmltopdf) 的使用方法
Apr 21 #Python
You might like
PHP编码转换
2012/11/05 PHP
PHP实现XML与数据格式进行转换类实例
2015/07/29 PHP
laravel 配置路由 api和web定义的路由的区别详解
2019/09/03 PHP
php设计模式之享元模式分析【星际争霸游戏案例】
2020/03/23 PHP
Thinkphp 框架配置操作之配置加载与读取配置实例分析
2020/05/15 PHP
jQuery 常见学习网站与参考书
2009/11/09 Javascript
如何将JS的变量值传递给ASP变量
2012/12/10 Javascript
jquery ui dialog实现弹窗特效的思路及代码
2013/08/03 Javascript
基于jquery扩展漂亮的下拉框可以二次修改
2013/11/19 Javascript
使用js实现一个可编辑的select下拉列表
2014/02/20 Javascript
使用jquery中height()方法获取各种高度大全
2014/04/02 Javascript
JavaScript修改浏览器tab标题小技巧
2015/01/06 Javascript
基于JavaScript实现拖动滑块效果
2017/02/16 Javascript
jquery 禁止鼠标右键并监听右键事件
2017/04/27 jQuery
jQuery简单绑定单个事件的方法示例
2017/06/10 jQuery
linux 后台运行node服务指令方法
2018/05/23 Javascript
bootstrap 路径导航 分页 进度条的实例代码
2018/08/06 Javascript
用原生 JS 实现 innerHTML 功能实例详解
2019/04/03 Javascript
Node.js API详解之 zlib模块用法分析
2020/05/19 Javascript
解决Antd Table组件表头不对齐的问题
2020/10/27 Javascript
在vue中给后台接口传的值为数组的格式代码
2020/11/12 Javascript
three.js如何实现3D动态文字效果
2021/03/03 Javascript
Python中使用logging模块代替print(logging简明指南)
2014/07/09 Python
flask + pymysql操作Mysql数据库的实例
2017/11/13 Python
Python闭包函数定义与用法分析
2018/07/20 Python
关于pytorch中网络loss传播和参数更新的理解
2019/08/20 Python
Python交互环境下打印和输入函数的实例内容
2020/02/16 Python
django 解决自定义序列化返回处理数据为null的问题
2020/05/20 Python
美国一家全面的在线零售鞋类公司:SHOEBACCA
2017/01/06 全球购物
购买英国原创艺术:Art Gallery
2018/08/25 全球购物
Hotels.com印度:酒店预订
2019/05/11 全球购物
店长职务说明书
2014/02/04 职场文书
计算机专业自荐信范文
2014/05/28 职场文书
环境科学专业求职信
2014/08/04 职场文书
教师学习群众路线心得体会
2014/11/04 职场文书
2016年大学校运会广播稿件
2015/12/21 职场文书