基于Python绘制子图及子图刻度的变换等的问题


Posted in Python onMay 23, 2021

1、涉及到图的对比会用到子图形式展示

先看看效果

基于Python绘制子图及子图刻度的变换等的问题

2、绘制代码如下

accuracy_alexnet_clef = [78.05, 78.43, 78.65, 78.61, 78.69]
accuracy_resnet_clef  = [84.56, 84.84, 85.07, 85.01, 85.13]
accuracy_alexnet_office10 = [87.30, 87.57, 87.78, 87.72, 87.50]
accuracy_resnet_office10  = [96.31, 96.35, 96.62, 96.43, 96.15]
orders = ['2', '3', '5', '10', '20']
names = ['alexnet', 'resnet']
# 创建两幅子图
f, ax = plt.subplots(2,1,figsize=(6, 8))
# 第一根柱子偏移坐标
x = [i for i in range(len(orders))]
# 第二根柱子偏移坐标
x1 = [i + 0.35 for i in range(len(orders))]
# 两幅子图之间的间距
plt.subplots_adjust(wspace =0, hspace =0.4)
# 选择第一幅图
figure_1 = ax[0]
# 设置x轴偏移和标签
figure_1.set_xticks([i+0.15 for i in x])
figure_1.set_xticklabels(orders)
# 设置y轴的范围
figure_1.set_ylim(bottom=77,top=86)
# 绘制柱状图,x表示x轴内容,accuracy_alexnet_clef表示y轴的内容,alpha表示透明度,width表示柱子宽度
# label表示图列
figure_1.bar(x, accuracy_alexnet_clef, alpha=0.7, width = 0.35, facecolor = '#4c72b0', label='Alexnet')
figure_1.bar(x1, accuracy_resnet_clef, alpha=0.7, width = 0.35, facecolor = '#dd8452', label='Resnet')
figure_1.set_ylabel('Accuracy%') # 设置y轴的标签
figure_1.set_xlabel('Order') # 设置x轴的名称
figure_1.set_title('Alexnet') # 设置图一标题名称
figure_1.legend() # 显示图一的图例
# 选择第二幅图
figure_2 = ax[1]
figure_1.set_xticks([i+0.15 for i in x])
figure_1.set_xticklabels(orders)
figure_2.set_ylim(bottom=77,top=100)
figure_2.bar(x, accuracy_alexnet_office10,alpha=0.7,width = 0.35,facecolor = '#c44e52', label='Alexnet')
figure_2.bar(x1, accuracy_resnet_office10,alpha=0.7,width = 0.35,facecolor = '#5f9e6e', label='Alexnet')
# figure_2.bar(orders, accuracy_resnet_clef,alpha=0.7,width = 0.35,facecolor = '#dd8452')
figure_2.set_ylabel('Accuracy%')
figure_2.set_xlabel('Order')
figure_2.set_title('Resnet')
figure_2.legend()
f.suptitle('ImageCLEF_DA') # 设置总标题
plt.show()

补充:python使用matplotlib在一个图形中绘制多个子图以及一个子图中绘制多条动态折线问题

在讲解绘制多个子图之前先简单了解一下使用matplotlib绘制一个图,导入绘图所需库matplotlib并创建一个等间隔的列表x,将[0,2*pi]等分为50等份,绘制函数sin(x)。当没有给定x轴数值时,默认以下标作为x的值,如果x值确定,则绘图时写为plt.plot(x,y) 。

如若想要绘制一个图时写入标签,则写为plt.plot(x,y,label="figure1")。

from numpy import *
import matplotlib.pyplot as plt 
x = linspace(0, 2 * pi, 50)
plt.plot(sin(x))
plt.xlabel('x-label')
plt.ylabel('y-label', fontsize='large')
plt.title('title')

基于Python绘制子图及子图刻度的变换等的问题

以下先将整体代码插入,再分布讲解:

import numpy as np
import matplotlib.pyplot as plt 
from matplotlib.ticker import MultipleLocator, FormatStrFormatter 
def minmax_value(list1):
    minvalue=min(list1)
    maxvalue=max(list1)
    return minvalue,maxvalue
plt.figure(figsize=(16,14),dpi=98)
xmajorLocator = MultipleLocator(1) #将x主刻度标签设置为1的倍数
plt.rcParams['font.sans-serif']=['SimHei']  
plt.rcParams['axes.unicode_minus'] = False
p1 = plt.subplot(121)
p2 = plt.subplot(122)
#图中展示点的数量
pointcount=5
x=[i for i in range(20)]
print(x)
y1=[i**2 for i in range(20)]
y2=[i*4 for i in range(20)]
y3=[i*3+2 for i in range(20)]
y4=[i*4 for i in range(20)]
for i in range(len(x)-1):
    if i<pointcount:
        minx,maxx=minmax_value(x[:pointcount])
        minx,maxx=minmax_value(x[:pointcount])
        minyA,maxyA=minmax_value(y1[:pointcount])
        minyB,maxyB=minmax_value(y2[:pointcount])
        
        maxy1=max(maxyA,maxyB)
        miny1=min(minyA,minyB)
        p1.axis([minx,maxx,miny1,maxy1])
        p1.grid(True)
        A,=p1.plot(x[:pointcount],y1[:pointcount],"g-")
        B,=p1.plot(x[:pointcount],y2[:pointcount],"b-")
        #设置主刻度标签的位置,标签文本的格式
        p1.xaxis.set_major_locator(xmajorLocator)
        legend=p1.legend(handles=[A,B],labels=["图1","图2"])    
        
        
        minx,maxx=minmax_value(x[:pointcount])
        minx,maxx=minmax_value(x[:pointcount])
        minyA,maxyA=minmax_value(y3[:pointcount])
        minyB,maxyB=minmax_value(y4[:pointcount])
        
        maxy1=max(maxyA,maxyB)
        miny1=min(minyA,minyB)
        p2.axis([minx,maxx,miny1,maxy1])
        p2.grid(True)
        A,=p2.plot(x[:pointcount],y3[:pointcount],"r-")
        B,=p2.plot(x[:pointcount],y4[:pointcount],"y-")
        #设置主刻度标签的位置,标签文本的格式
        p2.xaxis.set_major_locator(xmajorLocator)
        legend=p2.legend(handles=[A,B],labels=["图3","图4"])  
    elif i>=pointcount:
        minx,maxx=minmax_value(x[i-pointcount:i])
        minx,maxx=minmax_value(x[i-pointcount:i])
        minyA,maxyA=minmax_value(y1[i-pointcount:i])
        minyB,maxyB=minmax_value(y2[i-pointcount:i])
        
        maxy1=max(maxyA,maxyB)
        miny1=min(minyA,minyB)
        p1.axis([minx,maxx,miny1,maxy1])
        p1.grid(True)
        A,=p1.plot(x[i-pointcount:i],y1[i-pointcount:i],"g-")
        B,=p1.plot(x[i-pointcount:i],y2[i-pointcount:i],"b-")
        #设置主刻度标签的位置,标签文本的格式
        p1.xaxis.set_major_locator(xmajorLocator)
        legend=p1.legend(handles=[A,B],labels=["图1","图2"])
        minx,maxx=minmax_value(x[i-pointcount:i])
        minx,maxx=minmax_value(x[i-pointcount:i])
        minyA,maxyA=minmax_value(y3[i-pointcount:i])
        minyB,maxyB=minmax_value(y4[i-pointcount:i])
        
        maxy1=max(maxyA,maxyB)
        miny1=min(minyA,minyB)
        p2.axis([minx,maxx,miny1,maxy1])
        p2.grid(True)
        A,=p2.plot(x[i-pointcount:i],y3[i-pointcount:i],"r-")
        B,=p2.plot(x[i-pointcount:i],y4[i-pointcount:i],"y-")
        #设置主刻度标签的位置,标签文本的格式
        p2.xaxis.set_major_locator(xmajorLocator)
        legend=p2.legend(handles=[A,B],labels=["图3","图4"])
    p1.set_xlabel("横轴属性名一",fontsize=14)
    p1.set_ylabel("纵轴属性名一",fontsize=14)
    p1.set_title("主题一",fontsize=18)
    
    p2.set_xlabel("横轴属性名二",fontsize=14)
    p2.set_ylabel("纵轴属性名二",fontsize=14)
    p2.set_title("主题二",fontsize=18)
    plt.pause(0.3)
    plt.tight_layout(pad=4, w_pad=4.0, h_pad=3.0)

运行结果为:

基于Python绘制子图及子图刻度的变换等的问题

1、导入库

import numpy as np
import matplotlib.pyplot as plt 
from matplotlib.ticker import MultipleLocator, FormatStrFormatter

2、由于绘图过程中多次使用获取最大最小值,将获取最大最小值写入函数,后面直接调用函数即可。

def minmax_value(list1):
    minvalue=min(list1)
    maxvalue=max(list1)
    return minvalue,maxvalue

3、

(1)创建自定义图像,并设置figured的长和宽以及dpi参数指定绘图对象的分辨率;

(2)设置x轴刻度的间隔;

(3)对本次绘图中的字体进行设置;

(4)在matplotlib下,一个figure对象可以包含多个子图(Axes),使用subplot()快速绘制。

plt.figure(figsize=(16,14),dpi=98)xmajorLocator = MultipleLocator(1)
plt.rcParams['font.sans-serif']=['SimHei']  plt.rcParams['axes.unicode_minus'] = False
 
p1 = plt.subplot(121)p2 = plt.subplot(122)

4、当数据量过多时,对数据一次性展示不能够达到对数据内部信息的解读。本例采用一次展示其中一部分数据,并动态的更新图片,于此同时,动态更新横纵坐标轴的取值范围。下面代码首先设置了每次展示点的数量,并获取了主题一中的所有数据值。根据x取值范围和值域y获取当前绘图过程中的横纵坐标取值范围,最后根据x,y的值进行绘图。

下面将先在一个子图上显示两条静态折现。当使用动态的折线图时,只需动态更新数据和横纵坐标的取值范围。总体代码中已经写出,下面不再赘述。

#图中展示点的数量
pointcount=5
x=[i for i in range(20)]
y1=[i**2 for i in range(20)]
y2=[i*4 for i in range(20)]
minx,maxx=minmax_value(x[:pointcount])
minyA,maxyA=minmax_value(y1[:pointcount])
minyB,maxyB=minmax_value(y2[:pointcount])
        
maxy1=max(maxyA,maxyB)
miny1=min(minyA,minyB)
p1.axis([minx,maxx,miny1,maxy1])
p1.grid(True)#绘图过程中出现的网格设置
A,=p1.plot(x[:pointcount],y1[:pointcount],"g-")
B,=p1.plot(x[:pointcount],y2[:pointcount],"b-")#设置主刻度标签的位置,标签文本的格式p1.xaxis.set_major_locator(xmajorLocator)legend=p1.legend(handles=[A,B],labels=["图1","图2"])

结果如下所示:

基于Python绘制子图及子图刻度的变换等的问题

5、设置边界,不设置边界经常会因为横纵轴的字体太大等其他原因导致横纵轴或者标题只能显示其中一部分。

plt.tight_layout(pad=4, w_pad=4.0, h_pad=3.0)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python学习入门之区块链详解
Jul 25 Python
深入理解Python中的*重复运算符
Oct 28 Python
Python管理Windows服务小脚本
Mar 12 Python
python实现多人聊天室
Mar 31 Python
对Python生成汉字字库文字,以及转换为文字图片的实例详解
Jan 29 Python
Python redis操作实例分析【连接、管道、发布和订阅等】
May 16 Python
Python之NumPy(axis=0 与axis=1)区分详解
May 27 Python
pandas的qcut()方法详解
Jul 06 Python
python join方法使用详解
Jul 30 Python
Python空间数据处理之GDAL读写遥感图像
Aug 01 Python
Python爬虫requests库多种用法实例
May 28 Python
使用pandas模块实现数据的标准化操作
May 14 Python
聊聊pytorch测试的时候为何要加上model.eval()
May 23 #Python
PyTorch 如何自动计算梯度
May 23 #Python
解决numpy和torch数据类型转化的问题
May 23 #Python
Python 用户输入和while循环的操作
May 23 #Python
解决Tkinter中button按钮未按却主动执行command函数的问题
May 23 #Python
python tkinter Entry控件的焦点移动操作
May 22 #Python
python3.7.2 tkinter entry框限定输入数字的操作
May 22 #Python
You might like
php实现快速排序的三种方法分享
2014/03/12 PHP
php实例分享之mysql数据备份
2014/05/19 PHP
PHP简单实现模拟登陆功能示例
2017/09/15 PHP
Laravel框架源码解析之模型Model原理与用法解析
2020/05/14 PHP
将jQuery应用于login页面的问题及解决
2009/10/17 Javascript
Js组件的一些写法
2010/09/10 Javascript
jQuery提交多个表单的小例子
2013/06/30 Javascript
各浏览器对document.getElementById等方法的实现差异解析
2013/12/05 Javascript
基于jQuery.Hz2Py.js插件实现的汉字转拼音特效
2015/05/07 Javascript
JSON相关知识汇总
2015/07/03 Javascript
微信企业号开发之微信考勤百度地图定位
2015/09/11 Javascript
javascript图片预加载完整实例
2015/12/10 Javascript
Bootstrap创建可折叠的组件
2016/02/23 Javascript
jQuery图片轮播插件——前端开发必看
2016/05/31 Javascript
说说如何在Vue.js中实现数字输入组件的方法
2019/01/08 Javascript
Node.js Windows Binary二进制文件安装方法
2019/05/16 Javascript
JavaScript判断数组类型的方法
2019/10/23 Javascript
Python 时间处理datetime实例
2008/09/06 Python
python实现斐波那契递归函数的方法
2014/09/08 Python
在Django的URLconf中使用命名组的方法
2015/07/18 Python
浅谈django中的认证与登录
2016/10/31 Python
Python抓取手机号归属地信息示例代码
2016/11/28 Python
python使用socket创建tcp服务器和客户端
2018/04/12 Python
Python 经典面试题 21 道【不可错过】
2018/09/21 Python
Python缓存技术实现过程详解
2019/09/25 Python
Python单元测试与测试用例简析
2019/11/09 Python
Python找出列表中出现次数最多的元素三种方式
2020/02/24 Python
matplotlib设置颜色、标记、线条,让你的图像更加丰富(推荐)
2020/09/25 Python
python math模块的基本使用教程
2021/01/16 Python
css3实现背景动态渐变效果
2019/12/10 HTML / CSS
Zadig&Voltaire官网:法国时装品牌
2018/01/05 全球购物
十佳教师事迹材料
2014/01/11 职场文书
行政人事专员岗位职责
2014/03/05 职场文书
初三学生语文考试作弊检讨书
2014/12/14 职场文书
2015年乡镇党务公开工作总结
2015/05/19 职场文书
python解析照片拍摄时间进行图片整理
2022/07/23 Python