基于Python绘制子图及子图刻度的变换等的问题


Posted in Python onMay 23, 2021

1、涉及到图的对比会用到子图形式展示

先看看效果

基于Python绘制子图及子图刻度的变换等的问题

2、绘制代码如下

accuracy_alexnet_clef = [78.05, 78.43, 78.65, 78.61, 78.69]
accuracy_resnet_clef  = [84.56, 84.84, 85.07, 85.01, 85.13]
accuracy_alexnet_office10 = [87.30, 87.57, 87.78, 87.72, 87.50]
accuracy_resnet_office10  = [96.31, 96.35, 96.62, 96.43, 96.15]
orders = ['2', '3', '5', '10', '20']
names = ['alexnet', 'resnet']
# 创建两幅子图
f, ax = plt.subplots(2,1,figsize=(6, 8))
# 第一根柱子偏移坐标
x = [i for i in range(len(orders))]
# 第二根柱子偏移坐标
x1 = [i + 0.35 for i in range(len(orders))]
# 两幅子图之间的间距
plt.subplots_adjust(wspace =0, hspace =0.4)
# 选择第一幅图
figure_1 = ax[0]
# 设置x轴偏移和标签
figure_1.set_xticks([i+0.15 for i in x])
figure_1.set_xticklabels(orders)
# 设置y轴的范围
figure_1.set_ylim(bottom=77,top=86)
# 绘制柱状图,x表示x轴内容,accuracy_alexnet_clef表示y轴的内容,alpha表示透明度,width表示柱子宽度
# label表示图列
figure_1.bar(x, accuracy_alexnet_clef, alpha=0.7, width = 0.35, facecolor = '#4c72b0', label='Alexnet')
figure_1.bar(x1, accuracy_resnet_clef, alpha=0.7, width = 0.35, facecolor = '#dd8452', label='Resnet')
figure_1.set_ylabel('Accuracy%') # 设置y轴的标签
figure_1.set_xlabel('Order') # 设置x轴的名称
figure_1.set_title('Alexnet') # 设置图一标题名称
figure_1.legend() # 显示图一的图例
# 选择第二幅图
figure_2 = ax[1]
figure_1.set_xticks([i+0.15 for i in x])
figure_1.set_xticklabels(orders)
figure_2.set_ylim(bottom=77,top=100)
figure_2.bar(x, accuracy_alexnet_office10,alpha=0.7,width = 0.35,facecolor = '#c44e52', label='Alexnet')
figure_2.bar(x1, accuracy_resnet_office10,alpha=0.7,width = 0.35,facecolor = '#5f9e6e', label='Alexnet')
# figure_2.bar(orders, accuracy_resnet_clef,alpha=0.7,width = 0.35,facecolor = '#dd8452')
figure_2.set_ylabel('Accuracy%')
figure_2.set_xlabel('Order')
figure_2.set_title('Resnet')
figure_2.legend()
f.suptitle('ImageCLEF_DA') # 设置总标题
plt.show()

补充:python使用matplotlib在一个图形中绘制多个子图以及一个子图中绘制多条动态折线问题

在讲解绘制多个子图之前先简单了解一下使用matplotlib绘制一个图,导入绘图所需库matplotlib并创建一个等间隔的列表x,将[0,2*pi]等分为50等份,绘制函数sin(x)。当没有给定x轴数值时,默认以下标作为x的值,如果x值确定,则绘图时写为plt.plot(x,y) 。

如若想要绘制一个图时写入标签,则写为plt.plot(x,y,label="figure1")。

from numpy import *
import matplotlib.pyplot as plt 
x = linspace(0, 2 * pi, 50)
plt.plot(sin(x))
plt.xlabel('x-label')
plt.ylabel('y-label', fontsize='large')
plt.title('title')

基于Python绘制子图及子图刻度的变换等的问题

以下先将整体代码插入,再分布讲解:

import numpy as np
import matplotlib.pyplot as plt 
from matplotlib.ticker import MultipleLocator, FormatStrFormatter 
def minmax_value(list1):
    minvalue=min(list1)
    maxvalue=max(list1)
    return minvalue,maxvalue
plt.figure(figsize=(16,14),dpi=98)
xmajorLocator = MultipleLocator(1) #将x主刻度标签设置为1的倍数
plt.rcParams['font.sans-serif']=['SimHei']  
plt.rcParams['axes.unicode_minus'] = False
p1 = plt.subplot(121)
p2 = plt.subplot(122)
#图中展示点的数量
pointcount=5
x=[i for i in range(20)]
print(x)
y1=[i**2 for i in range(20)]
y2=[i*4 for i in range(20)]
y3=[i*3+2 for i in range(20)]
y4=[i*4 for i in range(20)]
for i in range(len(x)-1):
    if i<pointcount:
        minx,maxx=minmax_value(x[:pointcount])
        minx,maxx=minmax_value(x[:pointcount])
        minyA,maxyA=minmax_value(y1[:pointcount])
        minyB,maxyB=minmax_value(y2[:pointcount])
        
        maxy1=max(maxyA,maxyB)
        miny1=min(minyA,minyB)
        p1.axis([minx,maxx,miny1,maxy1])
        p1.grid(True)
        A,=p1.plot(x[:pointcount],y1[:pointcount],"g-")
        B,=p1.plot(x[:pointcount],y2[:pointcount],"b-")
        #设置主刻度标签的位置,标签文本的格式
        p1.xaxis.set_major_locator(xmajorLocator)
        legend=p1.legend(handles=[A,B],labels=["图1","图2"])    
        
        
        minx,maxx=minmax_value(x[:pointcount])
        minx,maxx=minmax_value(x[:pointcount])
        minyA,maxyA=minmax_value(y3[:pointcount])
        minyB,maxyB=minmax_value(y4[:pointcount])
        
        maxy1=max(maxyA,maxyB)
        miny1=min(minyA,minyB)
        p2.axis([minx,maxx,miny1,maxy1])
        p2.grid(True)
        A,=p2.plot(x[:pointcount],y3[:pointcount],"r-")
        B,=p2.plot(x[:pointcount],y4[:pointcount],"y-")
        #设置主刻度标签的位置,标签文本的格式
        p2.xaxis.set_major_locator(xmajorLocator)
        legend=p2.legend(handles=[A,B],labels=["图3","图4"])  
    elif i>=pointcount:
        minx,maxx=minmax_value(x[i-pointcount:i])
        minx,maxx=minmax_value(x[i-pointcount:i])
        minyA,maxyA=minmax_value(y1[i-pointcount:i])
        minyB,maxyB=minmax_value(y2[i-pointcount:i])
        
        maxy1=max(maxyA,maxyB)
        miny1=min(minyA,minyB)
        p1.axis([minx,maxx,miny1,maxy1])
        p1.grid(True)
        A,=p1.plot(x[i-pointcount:i],y1[i-pointcount:i],"g-")
        B,=p1.plot(x[i-pointcount:i],y2[i-pointcount:i],"b-")
        #设置主刻度标签的位置,标签文本的格式
        p1.xaxis.set_major_locator(xmajorLocator)
        legend=p1.legend(handles=[A,B],labels=["图1","图2"])
        minx,maxx=minmax_value(x[i-pointcount:i])
        minx,maxx=minmax_value(x[i-pointcount:i])
        minyA,maxyA=minmax_value(y3[i-pointcount:i])
        minyB,maxyB=minmax_value(y4[i-pointcount:i])
        
        maxy1=max(maxyA,maxyB)
        miny1=min(minyA,minyB)
        p2.axis([minx,maxx,miny1,maxy1])
        p2.grid(True)
        A,=p2.plot(x[i-pointcount:i],y3[i-pointcount:i],"r-")
        B,=p2.plot(x[i-pointcount:i],y4[i-pointcount:i],"y-")
        #设置主刻度标签的位置,标签文本的格式
        p2.xaxis.set_major_locator(xmajorLocator)
        legend=p2.legend(handles=[A,B],labels=["图3","图4"])
    p1.set_xlabel("横轴属性名一",fontsize=14)
    p1.set_ylabel("纵轴属性名一",fontsize=14)
    p1.set_title("主题一",fontsize=18)
    
    p2.set_xlabel("横轴属性名二",fontsize=14)
    p2.set_ylabel("纵轴属性名二",fontsize=14)
    p2.set_title("主题二",fontsize=18)
    plt.pause(0.3)
    plt.tight_layout(pad=4, w_pad=4.0, h_pad=3.0)

运行结果为:

基于Python绘制子图及子图刻度的变换等的问题

1、导入库

import numpy as np
import matplotlib.pyplot as plt 
from matplotlib.ticker import MultipleLocator, FormatStrFormatter

2、由于绘图过程中多次使用获取最大最小值,将获取最大最小值写入函数,后面直接调用函数即可。

def minmax_value(list1):
    minvalue=min(list1)
    maxvalue=max(list1)
    return minvalue,maxvalue

3、

(1)创建自定义图像,并设置figured的长和宽以及dpi参数指定绘图对象的分辨率;

(2)设置x轴刻度的间隔;

(3)对本次绘图中的字体进行设置;

(4)在matplotlib下,一个figure对象可以包含多个子图(Axes),使用subplot()快速绘制。

plt.figure(figsize=(16,14),dpi=98)xmajorLocator = MultipleLocator(1)
plt.rcParams['font.sans-serif']=['SimHei']  plt.rcParams['axes.unicode_minus'] = False
 
p1 = plt.subplot(121)p2 = plt.subplot(122)

4、当数据量过多时,对数据一次性展示不能够达到对数据内部信息的解读。本例采用一次展示其中一部分数据,并动态的更新图片,于此同时,动态更新横纵坐标轴的取值范围。下面代码首先设置了每次展示点的数量,并获取了主题一中的所有数据值。根据x取值范围和值域y获取当前绘图过程中的横纵坐标取值范围,最后根据x,y的值进行绘图。

下面将先在一个子图上显示两条静态折现。当使用动态的折线图时,只需动态更新数据和横纵坐标的取值范围。总体代码中已经写出,下面不再赘述。

#图中展示点的数量
pointcount=5
x=[i for i in range(20)]
y1=[i**2 for i in range(20)]
y2=[i*4 for i in range(20)]
minx,maxx=minmax_value(x[:pointcount])
minyA,maxyA=minmax_value(y1[:pointcount])
minyB,maxyB=minmax_value(y2[:pointcount])
        
maxy1=max(maxyA,maxyB)
miny1=min(minyA,minyB)
p1.axis([minx,maxx,miny1,maxy1])
p1.grid(True)#绘图过程中出现的网格设置
A,=p1.plot(x[:pointcount],y1[:pointcount],"g-")
B,=p1.plot(x[:pointcount],y2[:pointcount],"b-")#设置主刻度标签的位置,标签文本的格式p1.xaxis.set_major_locator(xmajorLocator)legend=p1.legend(handles=[A,B],labels=["图1","图2"])

结果如下所示:

基于Python绘制子图及子图刻度的变换等的问题

5、设置边界,不设置边界经常会因为横纵轴的字体太大等其他原因导致横纵轴或者标题只能显示其中一部分。

plt.tight_layout(pad=4, w_pad=4.0, h_pad=3.0)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python里隐藏的“禅”
Jun 16 Python
Python写的一个简单监控系统
Jun 19 Python
深入讲解Python中的迭代器和生成器
Oct 26 Python
shell命令行,一键创建 python 模板文件脚本方法
Mar 20 Python
Python对List中的元素排序的方法
Apr 01 Python
Tornado Web Server框架编写简易Python服务器
Jul 28 Python
Python 生成 -1~1 之间的随机数矩阵方法
Aug 04 Python
如何清空python的变量
Jul 05 Python
Python打印不合法的文件名
Jul 31 Python
python requests库的使用
Jan 06 Python
详解Java中一维、二维数组在内存中的结构
Feb 11 Python
Python常用配置文件ini、json、yaml读写总结
Jul 09 Python
聊聊pytorch测试的时候为何要加上model.eval()
May 23 #Python
PyTorch 如何自动计算梯度
May 23 #Python
解决numpy和torch数据类型转化的问题
May 23 #Python
Python 用户输入和while循环的操作
May 23 #Python
解决Tkinter中button按钮未按却主动执行command函数的问题
May 23 #Python
python tkinter Entry控件的焦点移动操作
May 22 #Python
python3.7.2 tkinter entry框限定输入数字的操作
May 22 #Python
You might like
php下MYSQL limit的优化
2008/01/10 PHP
关于zend studio 出现乱码问题的总结
2013/06/23 PHP
IIS安装Apache伪静态插件的具体操作图文
2013/07/01 PHP
PHP实现读取一个1G的文件大小
2013/08/24 PHP
php判断页面是否是微信打开的示例(微信打开网页)
2014/04/25 PHP
搭建基于Docker的PHP开发环境的详细教程
2015/07/01 PHP
关于Jqzoom的使用心得 jquery放大镜效果插件
2010/04/12 Javascript
jQuery timers计时器简单应用说明
2010/10/28 Javascript
jQuery实现渐变弹出层和弹出菜单的方法
2015/02/20 Javascript
浅谈angularjs module返回对象的坑(推荐)
2016/10/21 Javascript
Javascript 链式作用域详细介绍
2017/02/23 Javascript
JS中Swiper的使用和轮播图效果
2017/08/11 Javascript
JavaScript实现鼠标滚轮控制页面图片切换功能示例
2017/10/14 Javascript
微信小程序实现topBar底部选择栏效果
2018/07/20 Javascript
微信小程序实现富文本图片宽度自适应的方法
2019/01/20 Javascript
Nodejs技巧之Exceljs表格操作用法示例
2019/11/06 NodeJs
使用Karma做vue组件单元测试的实现
2020/01/16 Javascript
解决echarts echarts数据动态更新和dataZoom被重置问题
2020/07/20 Javascript
vue路由分文件拆分管理详解
2020/08/13 Javascript
[40:05]DOTA2上海特级锦标赛A组小组赛#1 EHOME VS MVP.Phx第一局
2016/02/25 DOTA
Python数据结构与算法之列表(链表,linked list)简单实现
2017/10/30 Python
pyqt5 QProgressBar清空进度条的实例
2019/06/21 Python
Django form表单与请求的生命周期步骤详解
2020/06/07 Python
宝塔面板出现“open_basedir restriction in effect. ”的解决方法
2021/03/14 PHP
CSS3基础(RGBa、text-shadow、box-shadow、border-radius)
2012/11/13 HTML / CSS
html5 Canvas画图教程(3)—canvas出现1像素线条模糊不清的原因
2013/01/09 HTML / CSS
巴西最大的家具及装饰用品店:Mobly
2017/10/11 全球购物
泰国第一在线超市:Tops
2021/02/13 全球购物
日期和时间问题
2015/01/04 面试题
采购文员岗位职责
2013/11/20 职场文书
编辑硕士自荐信范文
2013/11/27 职场文书
自我评价如何写好?
2014/01/05 职场文书
20年同学聚会邀请函
2014/02/04 职场文书
党员大会主持词
2014/04/02 职场文书
青年志愿者先进事迹
2014/05/06 职场文书
jquery插件实现代码雨特效
2021/04/24 jQuery