TensorFLow 数学运算的示例代码


Posted in Python onApril 21, 2020

一、Tensor 之间的运算规则

  • 相同大小 Tensor 之间的任何算术运算都会将运算应用到元素级
  • 不同大小 Tensor(要求dimension 0 必须相同) 之间的运算叫做广播(broadcasting)
  • Tensor 与 Scalar(0维 tensor) 间的算术运算会将那个标量值传播到各个元素
  • Note: TensorFLow 在进行数学运算时,一定要求各个 Tensor 数据类型一致

二、常用操作符和基本数学函数

大多数运算符都进行了重载操作,使我们可以快速使用 (+ - * /) 等,但是有一点不好的是使用重载操作符后就不能为每个操作命名了。

# 算术操作符:+ - * / % 
tf.add(x, y, name=None)  # 加法(支持 broadcasting)
tf.subtract(x, y, name=None) # 减法
tf.multiply(x, y, name=None) # 乘法
tf.divide(x, y, name=None)  # 浮点除法, 返回浮点数(python3 除法)
tf.mod(x, y, name=None)  # 取余
 
# 幂指对数操作符:^ ^2 ^0.5 e^ ln 
tf.pow(x, y, name=None)  # 幂次方
tf.square(x, name=None)  # 平方
tf.sqrt(x, name=None)   # 开根号,必须传入浮点数或复数
tf.exp(x, name=None)   # 计算 e 的次方
tf.log(x, name=None)   # 以 e 为底,必须传入浮点数或复数
 
# 取符号、负、倒数、绝对值、近似、两数中较大/小的
tf.negative(x, name=None)  # 取负(y = -x).
tf.sign(x, name=None)   # 返回 x 的符号
tf.reciprocal(x, name=None) # 取倒数
tf.abs(x, name=None)   # 求绝对值
tf.round(x, name=None)   # 四舍五入
tf.ceil(x, name=None)   # 向上取整
tf.floor(x, name=None)   # 向下取整
tf.rint(x, name=None)   # 取最接近的整数 
tf.maximum(x, y, name=None) # 返回两tensor中的最大值 (x > y ? x : y)
tf.minimum(x, y, name=None) # 返回两tensor中的最小值 (x < y ? x : y)
 
# 三角函数和反三角函数
tf.cos(x, name=None) 
tf.sin(x, name=None) 
tf.tan(x, name=None) 
tf.acos(x, name=None)
tf.asin(x, name=None)
tf.atan(x, name=None) 
 
# 其它
tf.div(x, y, name=None) # python 2.7 除法, x/y-->int or x/float(y)-->float
tf.truediv(x, y, name=None) # python 3 除法, x/y-->float
tf.floordiv(x, y, name=None) # python 3 除法, x//y-->int
tf.realdiv(x, y, name=None)
tf.truncatediv(x, y, name=None)
tf.floor_div(x, y, name=None)
tf.truncatemod(x, y, name=None)
tf.floormod(x, y, name=None)
tf.cross(x, y, name=None)
tf.add_n(inputs, name=None) # inputs: A list of Tensor objects, each with same shape and type
tf.squared_difference(x, y, name=None)

三、矩阵数学函数

# 矩阵乘法(tensors of rank >= 2)
tf.matmul(a, b, transpose_a=False, transpose_b=False, adjoint_a=False, adjoint_b=False, a_is_sparse=False, b_is_sparse=False, name=None)
 
# 转置,可以通过指定 perm=[1, 0] 来进行轴变换
tf.transpose(a, perm=None, name='transpose')
 
# 在张量 a 的最后两个维度上进行转置
tf.matrix_transpose(a, name='matrix_transpose')
# Matrix with two batch dimensions, x.shape is [1, 2, 3, 4]
# tf.matrix_transpose(x) is shape [1, 2, 4, 3]
 
# 求矩阵的迹
tf.trace(x, name=None)

# 计算方阵行列式的值
tf.matrix_determinant(input, name=None)

# 求解可逆方阵的逆,input 必须为浮点型或复数
tf.matrix_inverse(input, adjoint=None, name=None)

# 奇异值分解
tf.svd(tensor, full_matrices=False, compute_uv=True, name=None)
 
# QR 分解
tf.qr(input, full_matrices=None, name=None)
 
# 求张量的范数(默认2)
tf.norm(tensor, ord='euclidean', axis=None, keep_dims=False, name=None)
 
# 构建一个单位矩阵, 或者 batch 个矩阵,batch_shape 以 list 的形式传入
tf.eye(num_rows, num_columns=None, batch_shape=None, dtype=tf.float32, name=None)
# Construct one identity matrix.
tf.eye(2)
==> [[1., 0.],
  [0., 1.]]
 
# Construct a batch of 3 identity matricies, each 2 x 2.
# batch_identity[i, :, :] is a 2 x 2 identity matrix, i = 0, 1, 2.
batch_identity = tf.eye(2, batch_shape=[3])
 
# Construct one 2 x 3 "identity" matrix
tf.eye(2, num_columns=3)
==> [[ 1., 0., 0.],
  [ 0., 1., 0.]]
 
# 构建一个对角矩阵,rank = 2*rank(diagonal)
tf.diag(diagonal, name=None)
# 'diagonal' is [1, 2, 3, 4]
tf.diag(diagonal) ==> [[1, 0, 0, 0]
      [0, 2, 0, 0]
      [0, 0, 3, 0]
      [0, 0, 0, 4]]

# 其它
tf.diag_part
tf.matrix_diag
tf.matrix_diag_part
tf.matrix_band_part
tf.matrix_set_diag
tf.cholesky
tf.cholesky_solve
tf.matrix_solve
tf.matrix_triangular_solve
tf.matrix_solve_ls
tf.self_adjoint_eig
tf.self_adjoint_eigvals

四、Reduction:reduce various dimensions of a tensor

# 计算输入 tensor 所有元素的和,或者计算指定的轴所有元素的和
tf.reduce_sum(input_tensor, axis=None, keep_dims=False, name=None)
# 'x' is [[1, 1, 1]
#   [1, 1, 1]]
tf.reduce_sum(x) ==> 6
tf.reduce_sum(x, 0) ==> [2, 2, 2]
tf.reduce_sum(x, 1) ==> [3, 3]
tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]] # 维度不缩减
tf.reduce_sum(x, [0, 1]) ==> 6
 
# 计算输入 tensor 所有元素的均值/最大值/最小值/积/逻辑与/或
# 或者计算指定的轴所有元素的均值/最大值/最小值/积/逻辑与/或(just like reduce_sum)
tf.reduce_mean(input_tensor, axis=None, keep_dims=False, name=None)
tf.reduce_max(input_tensor, axis=None, keep_dims=False, name=None)
tf.reduce_min(input_tensor, axis=None, keep_dims=False, name=None)
tf.reduce_prod(input_tensor, axis=None, keep_dims=False, name=None)
tf.reduce_all(input_tensor, axis=None, keep_dims=False, name=None) # 全部满足条件
tf.reduce_any(input_tensor, axis=None, keep_dims=False, name=None) #至少有一个满足条件

-------------------------------------------
# 分界线以上和 Numpy 中相应的用法完全一致
-------------------------------------------
 
# inputs 为一 list, 计算 list 中所有元素的累计和,
# tf.add(x, y, name=None)只能计算两个元素的和,此函数相当于扩展了其功能
tf.accumulate_n(inputs, shape=None, tensor_dtype=None, name=None)

 
# Computes log(sum(exp(elements across dimensions of a tensor)))
tf.reduce_logsumexp(input_tensor, axis=None, keep_dims=False, name=None)
 
# Computes number of nonzero elements across dimensions of a tensor
tf.count_nonzero(input_tensor, axis=None, keep_dims=False, name=None)

五、Scan:perform scans (running totals) across one axis of a tensor

# Compute the cumulative sum of the tensor x along axis
tf.cumsum(x, axis=0, exclusive=False, reverse=False, name=None)
# Eg:
tf.cumsum([a, b, c]) # => [a, a + b, a + b + c]
tf.cumsum([a, b, c], exclusive=True) # => [0, a, a + b]
tf.cumsum([a, b, c], reverse=True) # => [a + b + c, b + c, c]
tf.cumsum([a, b, c], exclusive=True, reverse=True) # => [b + c, c, 0]
 
# Compute the cumulative product of the tensor x along axis
tf.cumprod(x, axis=0, exclusive=False, reverse=False, name=None)

六、Segmentation

沿着第一维(x 轴)根据 segment_ids(list)分割好相应的数据后再进行操作

TensorFLow 数学运算的示例代码

# Computes the sum/mean/max/min/prod along segments of a tensor
tf.segment_sum(data, segment_ids, name=None)
# Eg:
m = tf.constant([5,1,7,2,3,4,1,3])
s_id = [0,0,0,1,2,2,3,3]
s.run(tf.segment_sum(m, segment_ids=s_id))
>array([13, 2, 7, 4], dtype=int32)
 
tf.segment_mean(data, segment_ids, name=None)
tf.segment_max(data, segment_ids, name=None)
tf.segment_min(data, segment_ids, name=None)
tf.segment_prod(data, segment_ids, name=None)
 
# 其它
tf.unsorted_segment_sum
tf.sparse_segment_sum
tf.sparse_segment_mean
tf.sparse_segment_sqrt_n

 七、 序列比较与索引提取

# 比较两个 list 或者 string 的不同,并返回不同的值和索引
tf.setdiff1d(x, y, index_dtype=tf.int32, name=None) 
 
# 返回 x 中的唯一值所组成的tensor 和原 tensor 中元素在现 tensor 中的索引
tf.unique(x, out_idx=None, name=None)
 
# x if condition else y, condition 为 bool 类型的,可用tf.equal()等来表示
# x 和 y 的形状和数据类型必须一致
tf.where(condition, x=None, y=None, name=None) 
 
# 返回沿着坐标轴方向的最大/最小值的索引
tf.argmax(input, axis=None, name=None, output_type=tf.int64)
tf.argmin(input, axis=None, name=None, output_type=tf.int64)
 
# x 的值当作 y 的索引,range(len(x)) 索引当作 y 的值
# y[x[i]] = i for i in [0, 1, ..., len(x) - 1]
tf.invert_permutation(x, name=None)
 
# 其它
tf.edit_distance

到此这篇关于TensorFLow 数学运算的示例代码的文章就介绍到这了,更多相关TensorFLow 数学运算内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
pyqt4教程之messagebox使用示例分享
Mar 07 Python
Windows系统下安装Python的SSH模块教程
Feb 05 Python
在Python的Bottle框架中使用微信API的示例
Apr 23 Python
基于Django filter中用contains和icontains的区别(详解)
Dec 12 Python
从django的中间件直接返回请求的方法
May 30 Python
python多进程提取处理大量文本的关键词方法
Jun 05 Python
Python机器学习库scikit-learn安装与基本使用教程
Jun 25 Python
Sanic框架请求与响应实例分析
Jul 16 Python
Tensorflow实现神经网络拟合线性回归
Jul 19 Python
决策树剪枝算法的python实现方法详解
Sep 18 Python
python生成xml时规定dtd实例方法
Sep 21 Python
Python中os模块的简单使用及重命名操作
Apr 17 Python
jupyter修改文件名方式(TensorFlow)
Apr 21 #Python
Python基于requests实现模拟上传文件
Apr 21 #Python
Ubuntu中配置TensorFlow使用环境的方法
Apr 21 #Python
基于jupyter代码无法在pycharm中运行的解决方法
Apr 21 #Python
如何基于python对接钉钉并获取access_token
Apr 21 #Python
python用TensorFlow做图像识别的实现
Apr 21 #Python
jupyter notebook 添加kernel permission denied的操作
Apr 21 #Python
You might like
PHP n个不重复的随机数生成代码
2009/06/23 PHP
php 静态页面中显示动态内容
2009/08/14 PHP
基于php数组中的索引数组和关联数组详解
2018/03/12 PHP
用PHP的反射实现委托模式的讲解
2019/03/22 PHP
Yii 框架使用数据库(databases)的方法示例
2020/05/19 PHP
JQuery 网站换肤功能实现代码
2009/11/02 Javascript
JavaScript 加号(+)运算符号
2009/12/06 Javascript
js 可拖动列表实现代码
2011/12/13 Javascript
JavaScript通过事件代理高亮显示表格行的方法
2015/05/27 Javascript
jquery简单实现外部链接用新窗口打开的方法
2015/05/30 Javascript
AngularJS基础 ng-selected 指令简单示例
2016/08/03 Javascript
轻松掌握JavaScript中介者模式
2016/08/26 Javascript
BootStrap Tooltip插件源码解析
2016/12/27 Javascript
js获取地址栏参数的两种方法
2017/06/27 Javascript
jquery select插件异步实时搜索实例代码
2017/10/20 jQuery
vue.js使用3DES加密的方法示例
2018/05/18 Javascript
vue如何根据网站路由判断页面主题色详解
2018/11/02 Javascript
vue2.0+SVG实现音乐播放圆形进度条组件
2019/09/21 Javascript
layui--select使用以及下拉框实现键盘选择的例子
2019/09/24 Javascript
微信sdk实现禁止微信分享(使用原生php实现)
2019/11/15 Javascript
Vue如何将页面导出成PDF文件
2020/08/17 Javascript
vue实现点击按钮“查看详情”弹窗展示详情列表操作
2020/09/09 Javascript
python3中dict(字典)的使用方法示例
2017/03/22 Python
pygame游戏之旅 创建游戏窗口界面
2018/11/20 Python
33个Python爬虫项目实战(推荐)
2019/07/08 Python
python实现简易学生信息管理系统
2020/04/05 Python
Python日志处理模块logging用法解析
2020/05/19 Python
python安装及变量名介绍详解
2020/12/12 Python
英国医生在线预约:Top Doctors
2019/10/30 全球购物
应聘美工求职信
2013/11/07 职场文书
水利学院求职自荐书
2014/02/01 职场文书
幼儿园教师演讲稿
2014/05/06 职场文书
销售2014年度工作总结
2014/12/08 职场文书
农村环境卫生倡议书
2015/04/29 职场文书
2016年教师学习廉政准则心得体会
2016/01/20 职场文书
尝试使用Python爬取城市租房信息
2022/04/12 Python