TensorFLow 数学运算的示例代码


Posted in Python onApril 21, 2020

一、Tensor 之间的运算规则

  • 相同大小 Tensor 之间的任何算术运算都会将运算应用到元素级
  • 不同大小 Tensor(要求dimension 0 必须相同) 之间的运算叫做广播(broadcasting)
  • Tensor 与 Scalar(0维 tensor) 间的算术运算会将那个标量值传播到各个元素
  • Note: TensorFLow 在进行数学运算时,一定要求各个 Tensor 数据类型一致

二、常用操作符和基本数学函数

大多数运算符都进行了重载操作,使我们可以快速使用 (+ - * /) 等,但是有一点不好的是使用重载操作符后就不能为每个操作命名了。

# 算术操作符:+ - * / % 
tf.add(x, y, name=None)  # 加法(支持 broadcasting)
tf.subtract(x, y, name=None) # 减法
tf.multiply(x, y, name=None) # 乘法
tf.divide(x, y, name=None)  # 浮点除法, 返回浮点数(python3 除法)
tf.mod(x, y, name=None)  # 取余
 
# 幂指对数操作符:^ ^2 ^0.5 e^ ln 
tf.pow(x, y, name=None)  # 幂次方
tf.square(x, name=None)  # 平方
tf.sqrt(x, name=None)   # 开根号,必须传入浮点数或复数
tf.exp(x, name=None)   # 计算 e 的次方
tf.log(x, name=None)   # 以 e 为底,必须传入浮点数或复数
 
# 取符号、负、倒数、绝对值、近似、两数中较大/小的
tf.negative(x, name=None)  # 取负(y = -x).
tf.sign(x, name=None)   # 返回 x 的符号
tf.reciprocal(x, name=None) # 取倒数
tf.abs(x, name=None)   # 求绝对值
tf.round(x, name=None)   # 四舍五入
tf.ceil(x, name=None)   # 向上取整
tf.floor(x, name=None)   # 向下取整
tf.rint(x, name=None)   # 取最接近的整数 
tf.maximum(x, y, name=None) # 返回两tensor中的最大值 (x > y ? x : y)
tf.minimum(x, y, name=None) # 返回两tensor中的最小值 (x < y ? x : y)
 
# 三角函数和反三角函数
tf.cos(x, name=None) 
tf.sin(x, name=None) 
tf.tan(x, name=None) 
tf.acos(x, name=None)
tf.asin(x, name=None)
tf.atan(x, name=None) 
 
# 其它
tf.div(x, y, name=None) # python 2.7 除法, x/y-->int or x/float(y)-->float
tf.truediv(x, y, name=None) # python 3 除法, x/y-->float
tf.floordiv(x, y, name=None) # python 3 除法, x//y-->int
tf.realdiv(x, y, name=None)
tf.truncatediv(x, y, name=None)
tf.floor_div(x, y, name=None)
tf.truncatemod(x, y, name=None)
tf.floormod(x, y, name=None)
tf.cross(x, y, name=None)
tf.add_n(inputs, name=None) # inputs: A list of Tensor objects, each with same shape and type
tf.squared_difference(x, y, name=None)

三、矩阵数学函数

# 矩阵乘法(tensors of rank >= 2)
tf.matmul(a, b, transpose_a=False, transpose_b=False, adjoint_a=False, adjoint_b=False, a_is_sparse=False, b_is_sparse=False, name=None)
 
# 转置,可以通过指定 perm=[1, 0] 来进行轴变换
tf.transpose(a, perm=None, name='transpose')
 
# 在张量 a 的最后两个维度上进行转置
tf.matrix_transpose(a, name='matrix_transpose')
# Matrix with two batch dimensions, x.shape is [1, 2, 3, 4]
# tf.matrix_transpose(x) is shape [1, 2, 4, 3]
 
# 求矩阵的迹
tf.trace(x, name=None)

# 计算方阵行列式的值
tf.matrix_determinant(input, name=None)

# 求解可逆方阵的逆,input 必须为浮点型或复数
tf.matrix_inverse(input, adjoint=None, name=None)

# 奇异值分解
tf.svd(tensor, full_matrices=False, compute_uv=True, name=None)
 
# QR 分解
tf.qr(input, full_matrices=None, name=None)
 
# 求张量的范数(默认2)
tf.norm(tensor, ord='euclidean', axis=None, keep_dims=False, name=None)
 
# 构建一个单位矩阵, 或者 batch 个矩阵,batch_shape 以 list 的形式传入
tf.eye(num_rows, num_columns=None, batch_shape=None, dtype=tf.float32, name=None)
# Construct one identity matrix.
tf.eye(2)
==> [[1., 0.],
  [0., 1.]]
 
# Construct a batch of 3 identity matricies, each 2 x 2.
# batch_identity[i, :, :] is a 2 x 2 identity matrix, i = 0, 1, 2.
batch_identity = tf.eye(2, batch_shape=[3])
 
# Construct one 2 x 3 "identity" matrix
tf.eye(2, num_columns=3)
==> [[ 1., 0., 0.],
  [ 0., 1., 0.]]
 
# 构建一个对角矩阵,rank = 2*rank(diagonal)
tf.diag(diagonal, name=None)
# 'diagonal' is [1, 2, 3, 4]
tf.diag(diagonal) ==> [[1, 0, 0, 0]
      [0, 2, 0, 0]
      [0, 0, 3, 0]
      [0, 0, 0, 4]]

# 其它
tf.diag_part
tf.matrix_diag
tf.matrix_diag_part
tf.matrix_band_part
tf.matrix_set_diag
tf.cholesky
tf.cholesky_solve
tf.matrix_solve
tf.matrix_triangular_solve
tf.matrix_solve_ls
tf.self_adjoint_eig
tf.self_adjoint_eigvals

四、Reduction:reduce various dimensions of a tensor

# 计算输入 tensor 所有元素的和,或者计算指定的轴所有元素的和
tf.reduce_sum(input_tensor, axis=None, keep_dims=False, name=None)
# 'x' is [[1, 1, 1]
#   [1, 1, 1]]
tf.reduce_sum(x) ==> 6
tf.reduce_sum(x, 0) ==> [2, 2, 2]
tf.reduce_sum(x, 1) ==> [3, 3]
tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]] # 维度不缩减
tf.reduce_sum(x, [0, 1]) ==> 6
 
# 计算输入 tensor 所有元素的均值/最大值/最小值/积/逻辑与/或
# 或者计算指定的轴所有元素的均值/最大值/最小值/积/逻辑与/或(just like reduce_sum)
tf.reduce_mean(input_tensor, axis=None, keep_dims=False, name=None)
tf.reduce_max(input_tensor, axis=None, keep_dims=False, name=None)
tf.reduce_min(input_tensor, axis=None, keep_dims=False, name=None)
tf.reduce_prod(input_tensor, axis=None, keep_dims=False, name=None)
tf.reduce_all(input_tensor, axis=None, keep_dims=False, name=None) # 全部满足条件
tf.reduce_any(input_tensor, axis=None, keep_dims=False, name=None) #至少有一个满足条件

-------------------------------------------
# 分界线以上和 Numpy 中相应的用法完全一致
-------------------------------------------
 
# inputs 为一 list, 计算 list 中所有元素的累计和,
# tf.add(x, y, name=None)只能计算两个元素的和,此函数相当于扩展了其功能
tf.accumulate_n(inputs, shape=None, tensor_dtype=None, name=None)

 
# Computes log(sum(exp(elements across dimensions of a tensor)))
tf.reduce_logsumexp(input_tensor, axis=None, keep_dims=False, name=None)
 
# Computes number of nonzero elements across dimensions of a tensor
tf.count_nonzero(input_tensor, axis=None, keep_dims=False, name=None)

五、Scan:perform scans (running totals) across one axis of a tensor

# Compute the cumulative sum of the tensor x along axis
tf.cumsum(x, axis=0, exclusive=False, reverse=False, name=None)
# Eg:
tf.cumsum([a, b, c]) # => [a, a + b, a + b + c]
tf.cumsum([a, b, c], exclusive=True) # => [0, a, a + b]
tf.cumsum([a, b, c], reverse=True) # => [a + b + c, b + c, c]
tf.cumsum([a, b, c], exclusive=True, reverse=True) # => [b + c, c, 0]
 
# Compute the cumulative product of the tensor x along axis
tf.cumprod(x, axis=0, exclusive=False, reverse=False, name=None)

六、Segmentation

沿着第一维(x 轴)根据 segment_ids(list)分割好相应的数据后再进行操作

TensorFLow 数学运算的示例代码

# Computes the sum/mean/max/min/prod along segments of a tensor
tf.segment_sum(data, segment_ids, name=None)
# Eg:
m = tf.constant([5,1,7,2,3,4,1,3])
s_id = [0,0,0,1,2,2,3,3]
s.run(tf.segment_sum(m, segment_ids=s_id))
>array([13, 2, 7, 4], dtype=int32)
 
tf.segment_mean(data, segment_ids, name=None)
tf.segment_max(data, segment_ids, name=None)
tf.segment_min(data, segment_ids, name=None)
tf.segment_prod(data, segment_ids, name=None)
 
# 其它
tf.unsorted_segment_sum
tf.sparse_segment_sum
tf.sparse_segment_mean
tf.sparse_segment_sqrt_n

 七、 序列比较与索引提取

# 比较两个 list 或者 string 的不同,并返回不同的值和索引
tf.setdiff1d(x, y, index_dtype=tf.int32, name=None) 
 
# 返回 x 中的唯一值所组成的tensor 和原 tensor 中元素在现 tensor 中的索引
tf.unique(x, out_idx=None, name=None)
 
# x if condition else y, condition 为 bool 类型的,可用tf.equal()等来表示
# x 和 y 的形状和数据类型必须一致
tf.where(condition, x=None, y=None, name=None) 
 
# 返回沿着坐标轴方向的最大/最小值的索引
tf.argmax(input, axis=None, name=None, output_type=tf.int64)
tf.argmin(input, axis=None, name=None, output_type=tf.int64)
 
# x 的值当作 y 的索引,range(len(x)) 索引当作 y 的值
# y[x[i]] = i for i in [0, 1, ..., len(x) - 1]
tf.invert_permutation(x, name=None)
 
# 其它
tf.edit_distance

到此这篇关于TensorFLow 数学运算的示例代码的文章就介绍到这了,更多相关TensorFLow 数学运算内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python使用rabbitmq实现网络爬虫示例
Feb 20 Python
使用 Python 获取 Linux 系统信息的代码
Jul 13 Python
Python简单检测文本类型的2种方法【基于文件头及cchardet库】
Sep 18 Python
Python判断两个list是否是父子集关系的实例
May 04 Python
python-pyinstaller、打包后获取路径的实例
Jun 10 Python
python获取磁盘号下盘符步骤详解
Jun 19 Python
python3下pygame如何实现显示中文
Jan 11 Python
探秘TensorFlow 和 NumPy 的 Broadcasting 机制
Mar 13 Python
python线程池 ThreadPoolExecutor 的用法示例
Oct 10 Python
详解BeautifulSoup获取特定标签下内容的方法
Dec 07 Python
用pip给python安装matplotlib库的详细教程
Feb 24 Python
聊聊pytorch测试的时候为何要加上model.eval()
May 23 Python
jupyter修改文件名方式(TensorFlow)
Apr 21 #Python
Python基于requests实现模拟上传文件
Apr 21 #Python
Ubuntu中配置TensorFlow使用环境的方法
Apr 21 #Python
基于jupyter代码无法在pycharm中运行的解决方法
Apr 21 #Python
如何基于python对接钉钉并获取access_token
Apr 21 #Python
python用TensorFlow做图像识别的实现
Apr 21 #Python
jupyter notebook 添加kernel permission denied的操作
Apr 21 #Python
You might like
PHP的面试题集
2006/11/19 PHP
php获取textarea的值并处理回车换行的方法
2014/10/20 PHP
PHP防盗链的基本思想 防盗链的设置方法
2015/09/25 PHP
PHP架构及原理知识点详解
2019/12/22 PHP
jQuery Ajax文件上传(php)
2009/06/16 Javascript
Jquery 滑入滑出效果实现代码
2010/03/27 Javascript
jquery 列表双向选择器之改进版
2013/08/09 Javascript
js取消单选按钮选中并判断对象是否为空
2013/11/14 Javascript
js实现兼容IE、Firefox的图片缩放代码
2015/12/08 Javascript
AngularJS 单元测试(二)详解
2016/09/21 Javascript
bootstrap multiselect下拉列表功能
2017/08/22 Javascript
JavaScript 数组的进化与性能分析
2017/09/18 Javascript
一文了解Vue中的nextTick
2019/05/06 Javascript
JavaScript对象访问器Getter及Setter原理解析
2020/12/08 Javascript
JavaScript实现消消乐的源代码
2021/01/12 Javascript
vue3.0 自适应不同分辨率电脑的操作
2021/02/06 Vue.js
[10:28]2018DOTA2国际邀请赛寻真——VGJ.S寻梦之路
2018/08/15 DOTA
[01:20:38]完美世界DOTA2联赛 GXR vs IO 第一场 11.07
2020/11/09 DOTA
python类:class创建、数据方法属性及访问控制详解
2016/07/25 Python
Python使用filetype精确判断文件类型
2017/07/02 Python
Python实现检测文件MD5值的方法示例
2018/04/11 Python
PyTorch 普通卷积和空洞卷积实例
2020/01/07 Python
使用keras实现densenet和Xception的模型融合
2020/05/23 Python
基于python实现简单网页服务器代码实例
2020/09/14 Python
python实现一个简单RPC框架的示例
2020/10/28 Python
Scrapy+Selenium自动获取cookie爬取网易云音乐个人喜爱歌单
2021/02/01 Python
使用CSS3实现input多选框自定义样式的方法示例
2019/07/19 HTML / CSS
怎样写留学自荐信
2013/11/11 职场文书
红领巾心向党广播稿
2014/01/19 职场文书
大二法学专业职业生涯规划范文
2014/02/12 职场文书
合同审查法律意见书
2015/06/04 职场文书
大队委员竞选演讲稿
2015/11/20 职场文书
高中语文教材(文学文化常识大全一)
2019/08/13 职场文书
MySQL配置主从服务器(一主多从)
2021/08/07 MySQL
「睡美人」爱洛公主粘土人开订
2022/03/22 日漫
Linux中各个目录的作用与内容
2022/06/28 Servers