python SVM 线性分类模型的实现


Posted in Python onJuly 19, 2019

运行环境:win10 64位 py 3.6 pycharm 2018.1.1

导入对应的包和数据

import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets,linear_model,cross_validation,svm
def load_data_regression():
  diabetes = datasets.load_diabetes()
  return cross_validation.train_test_split(diabetes,diabetes.target,test_size=0.25,random_state=0)
def load_data_classfication():
  iris = datasets.load_iris()
  X_train = iris.data
  y_train = iris.target
  return cross_validation.train_test_split(X_train,y_train,test_size=0.25,random_state=0,stratify=y_train)
#线性分类SVM
def test_LinearSVC(*data):
  X_train,X_test,y_train,y_test = data
  cls = svm.LinearSVC()
  cls.fit(X_train,y_train)
  print('Coefficients:%s,intercept%s'%(cls.coef_,cls.intercept_))
  print('Score:%.2f'%cls.score(X_test,y_test))
X_train,X_test,y_train,y_test = load_data_classfication()
test_LinearSVC(X_train,X_test,y_train,y_test)
def test_LinearSVC_loss(*data):
  X_train,X_test,y_train,y_test = data
  losses = ['hinge','squared_hinge']
  for loss in losses:
    cls = svm.LinearSVC(loss=loss)
    cls.fit(X_train,y_train)
    print('loss:%s'%loss)
    print('Coefficients:%s,intercept%s'%(cls.coef_,cls.intercept_))
    print('Score:%.2f'%cls.score(X_test,y_test))
X_train,X_test,y_train,y_test = load_data_classfication()
test_LinearSVC_loss(X_train,X_test,y_train,y_test)
#考察罚项形式的影响
def test_LinearSVC_L12(*data):
  X_train,X_test,y_train,y_test = data
  L12 = ['l1','l2']
  for p in L12:
    cls = svm.LinearSVC(penalty=p,dual=False)
    cls.fit(X_train,y_train)
    print('penalty:%s'%p)
    print('Coefficients:%s,intercept%s'%(cls.coef_,cls.intercept_))
    print('Score:%.2f'%cls.score(X_test,y_test))
X_train,X_test,y_train,y_test = load_data_classfication()
test_LinearSVC_L12(X_train,X_test,y_train,y_test)
#考察罚项系数C的影响
def test_LinearSVC_C(*data):
  X_train,X_test,y_train,y_test = data
  Cs = np.logspace(-2,1)
  train_scores = []
  test_scores = []
  for C in Cs:
    cls = svm.LinearSVC(C=C)
    cls.fit(X_train,y_train)
    train_scores.append(cls.score(X_train,y_train))
    test_scores.append(cls.score(X_test,y_test))
  fig = plt.figure()
  ax = fig.add_subplot(1,1,1)
  ax.plot(Cs,train_scores,label = 'Training score')
  ax.plot(Cs,test_scores,label = 'Testing score')
  ax.set_xlabel(r'C')
  ax.set_xscale('log')
  ax.set_ylabel(r'score')
  ax.set_title('LinearSVC')
  ax.legend(loc='best')
  plt.show()
X_train,X_test,y_train,y_test = load_data_classfication()
test_LinearSVC_C(X_train,X_test,y_train,y_test)

python SVM 线性分类模型的实现

#非线性分类SVM
#线性核
def test_SVC_linear(*data):
  X_train, X_test, y_train, y_test = data
  cls = svm.SVC(kernel='linear')
  cls.fit(X_train,y_train)
  print('Coefficients:%s,intercept%s'%(cls.coef_,cls.intercept_))
  print('Score:%.2f'%cls.score(X_test,y_test))
X_train,X_test,y_train,y_test = load_data_classfication()
test_SVC_linear(X_train,X_test,y_train,y_test)

python SVM 线性分类模型的实现

#考察高斯核
def test_SVC_rbf(*data):
  X_train, X_test, y_train, y_test = data
  ###测试gamm###
  gamms = range(1, 20)
  train_scores = []
  test_scores = []
  for gamm in gamms:
    cls = svm.SVC(kernel='rbf', gamma=gamm)
    cls.fit(X_train, y_train)
    train_scores.append(cls.score(X_train, y_train))
    test_scores.append(cls.score(X_test, y_test))
  fig = plt.figure()
  ax = fig.add_subplot(1, 1, 1)
  ax.plot(gamms, train_scores, label='Training score', marker='+')
  ax.plot(gamms, test_scores, label='Testing score', marker='o')
  ax.set_xlabel(r'$\gamma$')
  ax.set_ylabel(r'score')
  ax.set_ylim(0, 1.05)
  ax.set_title('SVC_rbf')
  ax.legend(loc='best')
  plt.show()
X_train,X_test,y_train,y_test = load_data_classfication()
test_SVC_rbf(X_train,X_test,y_train,y_test)

python SVM 线性分类模型的实现

#考察sigmoid核
def test_SVC_sigmod(*data):
  X_train, X_test, y_train, y_test = data
  fig = plt.figure()
  ###测试gamm###
  gamms = np.logspace(-2, 1)
  train_scores = []
  test_scores = []
  for gamm in gamms:
    cls = svm.SVC(kernel='sigmoid',gamma=gamm,coef0=0)
    cls.fit(X_train, y_train)
    train_scores.append(cls.score(X_train, y_train))
    test_scores.append(cls.score(X_test, y_test))
  ax = fig.add_subplot(1, 2, 1)
  ax.plot(gamms, train_scores, label='Training score', marker='+')
  ax.plot(gamms, test_scores, label='Testing score', marker='o')
  ax.set_xlabel(r'$\gamma$')
  ax.set_ylabel(r'score')
  ax.set_xscale('log')
  ax.set_ylim(0, 1.05)
  ax.set_title('SVC_sigmoid_gamm')
  ax.legend(loc='best')

  #测试r
  rs = np.linspace(0,5)
  train_scores = []
  test_scores = []
  for r in rs:
    cls = svm.SVC(kernel='sigmoid', gamma=0.01, coef0=r)
    cls.fit(X_train, y_train)
    train_scores.append(cls.score(X_train, y_train))
    test_scores.append(cls.score(X_test, y_test))
  ax = fig.add_subplot(1, 2, 2)
  ax.plot(rs, train_scores, label='Training score', marker='+')
  ax.plot(rs, test_scores, label='Testing score', marker='o')
  ax.set_xlabel(r'r')
  ax.set_ylabel(r'score')
  ax.set_ylim(0, 1.05)
  ax.set_title('SVC_sigmoid_r')
  ax.legend(loc='best')
  plt.show()
X_train,X_test,y_train,y_test = load_data_classfication()
test_SVC_sigmod(X_train,X_test,y_train,y_test)

python SVM 线性分类模型的实现

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
用python实现的可以拷贝或剪切一个文件列表中的所有文件
Apr 30 Python
python去掉空白行的多种实现代码
Mar 19 Python
Pandas 数据处理,数据清洗详解
Jul 10 Python
详解基于django实现的webssh简单例子
Jul 17 Python
Python判断对象是否相等及eq函数的讲解
Feb 25 Python
详解Python 切片语法
Jun 10 Python
简单了解django文件下载方式
Feb 10 Python
基于 Python 实践感知器分类算法
Jan 07 Python
pandas 按日期范围筛选数据的实现
Feb 20 Python
Pytorch数据读取之Dataset和DataLoader知识总结
May 23 Python
python实现自定义日志的具体方法
May 28 Python
Python合并多张图片成PDF
Jun 09 Python
Django密码系统实现过程详解
Jul 19 #Python
Tensorflow实现酸奶销量预测分析
Jul 19 #Python
Python实现基于SVM的分类器的方法
Jul 19 #Python
Tensorflow模型实现预测或识别单张图片
Jul 19 #Python
python django下载大的csv文件实现方法分析
Jul 19 #Python
python使用flask与js进行前后台交互的例子
Jul 19 #Python
Django 模型类(models.py)的定义详解
Jul 19 #Python
You might like
php生成缩略图的类代码
2008/10/02 PHP
PHP时间戳 strtotime()使用方法和技巧
2013/10/29 PHP
PHP使用Session遇到的一个Permission denied Notice解决办法
2014/07/30 PHP
PHP实现的各类hash算法长度及性能测试实例
2017/08/27 PHP
PHP实现微信小程序人脸识别刷脸登录功能
2018/05/24 PHP
打开超链需要“确认”对话框的方法
2007/03/08 Javascript
js left,right,mid函数
2008/06/10 Javascript
javascript 面向对象继承
2009/11/26 Javascript
用js模拟struts2的多action调用示例
2014/05/19 Javascript
通过JS判断联网类型和连接状态的实现代码
2015/04/01 Javascript
js网页滚动条滚动事件实例分析
2015/05/05 Javascript
整理Javascript流程控制语句学习笔记
2015/11/29 Javascript
Node.js数据库操作之查询MySQL数据库(二)
2017/03/04 Javascript
React学习笔记之列表渲染示例详解
2017/08/22 Javascript
详解Node.js模板引擎Jade入门
2018/01/19 Javascript
vue3.0 搭建项目总结(详细步骤)
2019/05/20 Javascript
iview的table组件自带的过滤器实现
2019/07/12 Javascript
nestjs中异常过滤器Exceptionfilter的具体使用
2021/02/07 Javascript
vue前端和Django后端如何查询一定时间段内的数据
2021/02/28 Vue.js
[02:19]2014DOTA2国际邀请赛 专访820少年们一起去追梦吧
2014/07/14 DOTA
[01:07:57]DOTA2-DPC中国联赛 正赛 Ehome vs Magma BO3 第二场 1月19日
2021/03/11 DOTA
Python内置函数OCT详解
2016/11/09 Python
pandas.DataFrame选取/排除特定行的方法
2018/07/03 Python
Python 元组拆包示例(Tuple Unpacking)
2019/12/24 Python
解决python多线程报错:AttributeError: Can't pickle local object问题
2020/04/08 Python
Python非单向递归函数如何返回全部结果
2020/12/18 Python
HTML5 对各个标签的定义与规定:body的介绍
2012/06/21 HTML / CSS
荷兰演唱会和体育比赛订票网站:viagogo荷兰
2018/04/08 全球购物
经济学人订阅:The Economist
2018/07/19 全球购物
预备党员转正思想汇报
2014/01/12 职场文书
黄继光的英雄事迹材料
2014/02/13 职场文书
学校百日安全生产活动总结
2014/07/05 职场文书
县政府办公室领导班子个人对照检查材料
2014/09/16 职场文书
2015年“七七卢沟桥事变”纪念活动总结
2015/03/24 职场文书
乡镇党建工作总结2015
2015/05/19 职场文书
python中字符串String及其常见操作指南(方法、函数)
2022/04/06 Python