详解Tensorflow数据读取有三种方式(next_batch)


Posted in Python onFebruary 01, 2018

Tensorflow数据读取有三种方式:

  1. Preloaded data: 预加载数据
  2. Feeding: Python产生数据,再把数据喂给后端。
  3. Reading from file: 从文件中直接读取

这三种有读取方式有什么区别呢? 我们首先要知道TensorFlow(TF)是怎么样工作的。

TF的核心是用C++写的,这样的好处是运行快,缺点是调用不灵活。而Python恰好相反,所以结合两种语言的优势。涉及计算的核心算子和运行框架是用C++写的,并提供API给Python。Python调用这些API,设计训练模型(Graph),再将设计好的Graph给后端去执行。简而言之,Python的角色是Design,C++是Run。

一、预加载数据:

import tensorflow as tf 
# 设计Graph 
x1 = tf.constant([2, 3, 4]) 
x2 = tf.constant([4, 0, 1]) 
y = tf.add(x1, x2) 
# 打开一个session --> 计算y 
with tf.Session() as sess: 
  print sess.run(y)

二、python产生数据,再将数据喂给后端

import tensorflow as tf 
# 设计Graph 
x1 = tf.placeholder(tf.int16) 
x2 = tf.placeholder(tf.int16) 
y = tf.add(x1, x2) 
# 用Python产生数据 
li1 = [2, 3, 4] 
li2 = [4, 0, 1] 
# 打开一个session --> 喂数据 --> 计算y 
with tf.Session() as sess: 
  print sess.run(y, feed_dict={x1: li1, x2: li2})

说明:在这里x1, x2只是占位符,没有具体的值,那么运行的时候去哪取值呢?这时候就要用到sess.run()中的feed_dict参数,将Python产生的数据喂给后端,并计算y。

这两种方案的缺点:

1、预加载:将数据直接内嵌到Graph中,再把Graph传入Session中运行。当数据量比较大时,Graph的传输会遇到效率问题。

2、用占位符替代数据,待运行的时候填充数据。

前两种方法很方便,但是遇到大型数据的时候就会很吃力,即使是Feeding,中间环节的增加也是不小的开销,比如数据类型转换等等。最优的方案就是在Graph定义好文件读取的方法,让TF自己去从文件中读取数据,并解码成可使用的样本集。

三、从文件中读取,简单来说就是将数据读取模块的图搭好

详解Tensorflow数据读取有三种方式(next_batch)

1、准备数据,构造三个文件,A.csv,B.csv,C.csv

$ echo -e "Alpha1,A1\nAlpha2,A2\nAlpha3,A3" > A.csv 
$ echo -e "Bee1,B1\nBee2,B2\nBee3,B3" > B.csv 
$ echo -e "Sea1,C1\nSea2,C2\nSea3,C3" > C.csv

2、单个Reader,单个样本

#-*- coding:utf-8 -*- 
import tensorflow as tf 
# 生成一个先入先出队列和一个QueueRunner,生成文件名队列 
filenames = ['A.csv', 'B.csv', 'C.csv'] 
filename_queue = tf.train.string_input_producer(filenames, shuffle=False) 
# 定义Reader 
reader = tf.TextLineReader() 
key, value = reader.read(filename_queue) 
# 定义Decoder 
example, label = tf.decode_csv(value, record_defaults=[['null'], ['null']]) 
#example_batch, label_batch = tf.train.shuffle_batch([example,label], batch_size=1, capacity=200, min_after_dequeue=100, num_threads=2) 
# 运行Graph 
with tf.Session() as sess: 
  coord = tf.train.Coordinator() #创建一个协调器,管理线程 
  threads = tf.train.start_queue_runners(coord=coord) #启动QueueRunner, 此时文件名队列已经进队。 
  for i in range(10): 
    print example.eval(),label.eval() 
  coord.request_stop() 
  coord.join(threads)

说明:这里没有使用tf.train.shuffle_batch,会导致生成的样本和label之间对应不上,乱序了。生成结果如下:

Alpha1 A2
Alpha3 B1
Bee2 B3
Sea1 C2
Sea3 A1
Alpha2 A3
Bee1 B2
Bee3 C1
Sea2 C3
Alpha1 A2

解决方案:用tf.train.shuffle_batch,那么生成的结果就能够对应上。

#-*- coding:utf-8 -*- 
import tensorflow as tf 
# 生成一个先入先出队列和一个QueueRunner,生成文件名队列 
filenames = ['A.csv', 'B.csv', 'C.csv'] 
filename_queue = tf.train.string_input_producer(filenames, shuffle=False) 
# 定义Reader 
reader = tf.TextLineReader() 
key, value = reader.read(filename_queue) 
# 定义Decoder 
example, label = tf.decode_csv(value, record_defaults=[['null'], ['null']]) 
example_batch, label_batch = tf.train.shuffle_batch([example,label], batch_size=1, capacity=200, min_after_dequeue=100, num_threads=2) 
# 运行Graph 
with tf.Session() as sess: 
  coord = tf.train.Coordinator() #创建一个协调器,管理线程 
  threads = tf.train.start_queue_runners(coord=coord) #启动QueueRunner, 此时文件名队列已经进队。 
  for i in range(10): 
    e_val,l_val = sess.run([example_batch, label_batch]) 
    print e_val,l_val 
  coord.request_stop() 
  coord.join(threads)

3、单个Reader,多个样本,主要也是通过tf.train.shuffle_batch来实现

#-*- coding:utf-8 -*- 
import tensorflow as tf 
filenames = ['A.csv', 'B.csv', 'C.csv'] 
filename_queue = tf.train.string_input_producer(filenames, shuffle=False) 
reader = tf.TextLineReader() 
key, value = reader.read(filename_queue) 
example, label = tf.decode_csv(value, record_defaults=[['null'], ['null']]) 
# 使用tf.train.batch()会多加了一个样本队列和一个QueueRunner。 
#Decoder解后数据会进入这个队列,再批量出队。 
# 虽然这里只有一个Reader,但可以设置多线程,相应增加线程数会提高读取速度,但并不是线程越多越好。 
example_batch, label_batch = tf.train.batch( 
   [example, label], batch_size=5) 
with tf.Session() as sess: 
  coord = tf.train.Coordinator() 
  threads = tf.train.start_queue_runners(coord=coord) 
  for i in range(10): 
    e_val,l_val = sess.run([example_batch,label_batch]) 
    print e_val,l_val 
  coord.request_stop() 
  coord.join(threads)

说明:下面这种写法,提取出来的batch_size个样本,特征和label之间也是不同步的

#-*- coding:utf-8 -*- 
import tensorflow as tf 
filenames = ['A.csv', 'B.csv', 'C.csv'] 
filename_queue = tf.train.string_input_producer(filenames, shuffle=False) 
reader = tf.TextLineReader() 
key, value = reader.read(filename_queue) 
example, label = tf.decode_csv(value, record_defaults=[['null'], ['null']]) 
# 使用tf.train.batch()会多加了一个样本队列和一个QueueRunner。 
#Decoder解后数据会进入这个队列,再批量出队。 
# 虽然这里只有一个Reader,但可以设置多线程,相应增加线程数会提高读取速度,但并不是线程越多越好。 
example_batch, label_batch = tf.train.batch( 
   [example, label], batch_size=5) 
with tf.Session() as sess: 
  coord = tf.train.Coordinator() 
  threads = tf.train.start_queue_runners(coord=coord) 
  for i in range(10): 
    print example_batch.eval(), label_batch.eval() 
  coord.request_stop() 
  coord.join(threads)

说明:输出结果如下:可以看出feature和label之间是不对应的

['Alpha1' 'Alpha2' 'Alpha3' 'Bee1' 'Bee2'] ['B3' 'C1' 'C2' 'C3' 'A1']
['Alpha2' 'Alpha3' 'Bee1' 'Bee2' 'Bee3'] ['C1' 'C2' 'C3' 'A1' 'A2']
['Alpha3' 'Bee1' 'Bee2' 'Bee3' 'Sea1'] ['C2' 'C3' 'A1' 'A2' 'A3']

4、多个reader,多个样本

#-*- coding:utf-8 -*- 
import tensorflow as tf 
filenames = ['A.csv', 'B.csv', 'C.csv'] 
filename_queue = tf.train.string_input_producer(filenames, shuffle=False) 
reader = tf.TextLineReader() 
key, value = reader.read(filename_queue) 
record_defaults = [['null'], ['null']] 
#定义了多种解码器,每个解码器跟一个reader相连 
example_list = [tf.decode_csv(value, record_defaults=record_defaults) 
         for _ in range(2)] # Reader设置为2 
# 使用tf.train.batch_join(),可以使用多个reader,并行读取数据。每个Reader使用一个线程。 
example_batch, label_batch = tf.train.batch_join( 
   example_list, batch_size=5) 
with tf.Session() as sess: 
  coord = tf.train.Coordinator() 
  threads = tf.train.start_queue_runners(coord=coord) 
  for i in range(10): 
    e_val,l_val = sess.run([example_batch,label_batch]) 
    print e_val,l_val 
  coord.request_stop() 
  coord.join(threads)

tf.train.batch与tf.train.shuffle_batch函数是单个Reader读取,但是可以多线程。tf.train.batch_join与tf.train.shuffle_batch_join可设置多Reader读取,每个Reader使用一个线程。至于两种方法的效率,单Reader时,2个线程就达到了速度的极限。多Reader时,2个Reader就达到了极限。所以并不是线程越多越快,甚至更多的线程反而会使效率下降。

5、迭代控制,设置epoch参数,指定我们的样本在训练的时候只能被用多少轮

#-*- coding:utf-8 -*- 
import tensorflow as tf 
filenames = ['A.csv', 'B.csv', 'C.csv'] 
#num_epoch: 设置迭代数 
filename_queue = tf.train.string_input_producer(filenames, shuffle=False,num_epochs=3) 
reader = tf.TextLineReader() 
key, value = reader.read(filename_queue) 
record_defaults = [['null'], ['null']] 
#定义了多种解码器,每个解码器跟一个reader相连 
example_list = [tf.decode_csv(value, record_defaults=record_defaults) 
         for _ in range(2)] # Reader设置为2 
# 使用tf.train.batch_join(),可以使用多个reader,并行读取数据。每个Reader使用一个线程。 
example_batch, label_batch = tf.train.batch_join( 
   example_list, batch_size=1) 
#初始化本地变量 
init_local_op = tf.initialize_local_variables() 
with tf.Session() as sess: 
  sess.run(init_local_op) 
  coord = tf.train.Coordinator() 
  threads = tf.train.start_queue_runners(coord=coord) 
  try: 
    while not coord.should_stop(): 
      e_val,l_val = sess.run([example_batch,label_batch]) 
      print e_val,l_val 
  except tf.errors.OutOfRangeError: 
      print('Epochs Complete!') 
  finally: 
      coord.request_stop() 
  coord.join(threads) 
  coord.request_stop() 
  coord.join(threads)

在迭代控制中,记得添加tf.initialize_local_variables(),官网教程没有说明,但是如果不初始化,运行就会报错。

对于传统的机器学习而言,比方说分类问题,[x1 x2 x3]是feature。对于二分类问题,label经过one-hot编码之后就会是[0,1]或者[1,0]。一般情况下,我们会考虑将数据组织在csv文件中,一行代表一个sample。然后使用队列的方式去读取数据

详解Tensorflow数据读取有三种方式(next_batch)

说明:对于该数据,前三列代表的是feature,因为是分类问题,后两列就是经过one-hot编码之后得到的label

使用队列读取该csv文件的代码如下:

#-*- coding:utf-8 -*- 
import tensorflow as tf 
# 生成一个先入先出队列和一个QueueRunner,生成文件名队列 
filenames = ['A.csv'] 
filename_queue = tf.train.string_input_producer(filenames, shuffle=False) 
# 定义Reader 
reader = tf.TextLineReader() 
key, value = reader.read(filename_queue) 
# 定义Decoder 
record_defaults = [[1], [1], [1], [1], [1]] 
col1, col2, col3, col4, col5 = tf.decode_csv(value,record_defaults=record_defaults) 
features = tf.pack([col1, col2, col3]) 
label = tf.pack([col4,col5]) 
example_batch, label_batch = tf.train.shuffle_batch([features,label], batch_size=2, capacity=200, min_after_dequeue=100, num_threads=2) 
# 运行Graph 
with tf.Session() as sess: 
  coord = tf.train.Coordinator() #创建一个协调器,管理线程 
  threads = tf.train.start_queue_runners(coord=coord) #启动QueueRunner, 此时文件名队列已经进队。 
  for i in range(10): 
    e_val,l_val = sess.run([example_batch, label_batch]) 
    print e_val,l_val 
  coord.request_stop() 
  coord.join(threads)

输出结果如下:

详解Tensorflow数据读取有三种方式(next_batch)

说明:

record_defaults = [[1], [1], [1], [1], [1]]

代表解析的模板,每个样本有5列,在数据中是默认用‘,'隔开的,然后解析的标准是[1],也即每一列的数值都解析为整型。[1.0]就是解析为浮点,['null']解析为string类型

二、此处给出了几种不同的next_batch方法,该文章只是做出代码片段的解释,以备以后查看:

def next_batch(self, batch_size, fake_data=False):
  """Return the next `batch_size` examples from this data set."""
  if fake_data:
   fake_image = [1] * 784
   if self.one_hot:
    fake_label = [1] + [0] * 9
   else:
    fake_label = 0
   return [fake_image for _ in xrange(batch_size)], [
     fake_label for _ in xrange(batch_size)
   ]
  start = self._index_in_epoch
  self._index_in_epoch += batch_size
  if self._index_in_epoch > self._num_examples: # epoch中的句子下标是否大于所有语料的个数,如果为True,开始新一轮的遍历
   # Finished epoch
   self._epochs_completed += 1
   # Shuffle the data
   perm = numpy.arange(self._num_examples) # arange函数用于创建等差数组
   numpy.random.shuffle(perm) # 打乱
   self._images = self._images[perm]
   self._labels = self._labels[perm]
   # Start next epoch
   start = 0
   self._index_in_epoch = batch_size
   assert batch_size <= self._num_examples
  end = self._index_in_epoch
  return self._images[start:end], self._labels[start:end]

 该段代码摘自mnist.py文件,从代码第12行start = self._index_in_epoch开始解释,_index_in_epoch-1是上一次batch个图片中最后一张图片的下边,这次epoch第一张图片的下标是从 _index_in_epoch开始,最后一张图片的下标是_index_in_epoch+batch, 如果 _index_in_epoch 大于语料中图片的个数,表示这个epoch是不合适的,就算是完成了语料的一遍的遍历,所以应该对图片洗牌然后开始新一轮的语料组成batch开始

def ptb_iterator(raw_data, batch_size, num_steps):
 """Iterate on the raw PTB data.

 This generates batch_size pointers into the raw PTB data, and allows
 minibatch iteration along these pointers.

 Args:
  raw_data: one of the raw data outputs from ptb_raw_data.
  batch_size: int, the batch size.
  num_steps: int, the number of unrolls.

 Yields:
  Pairs of the batched data, each a matrix of shape [batch_size, num_steps].
  The second element of the tuple is the same data time-shifted to the
  right by one.

 Raises:
  ValueError: if batch_size or num_steps are too high.
 """
 raw_data = np.array(raw_data, dtype=np.int32)

 data_len = len(raw_data)
 batch_len = data_len // batch_size #有多少个batch
 data = np.zeros([batch_size, batch_len], dtype=np.int32) # batch_len 有多少个单词
 for i in range(batch_size): # batch_size 有多少个batch
  data[i] = raw_data[batch_len * i:batch_len * (i + 1)]

 epoch_size = (batch_len - 1) // num_steps # batch_len 是指一个batch中有多少个句子
 #epoch_size = ((len(data) // model.batch_size) - 1) // model.num_steps # // 表示整数除法
 if epoch_size == 0:
  raise ValueError("epoch_size == 0, decrease batch_size or num_steps")

 for i in range(epoch_size):
  x = data[:, i*num_steps:(i+1)*num_steps]
  y = data[:, i*num_steps+1:(i+1)*num_steps+1]
  yield (x, y)

第三种方式:

def next(self, batch_size):
    """ Return a batch of data. When dataset end is reached, start over.
    """
    if self.batch_id == len(self.data):
      self.batch_id = 0
    batch_data = (self.data[self.batch_id:min(self.batch_id +
                         batch_size, len(self.data))])
    batch_labels = (self.labels[self.batch_id:min(self.batch_id +
                         batch_size, len(self.data))])
    batch_seqlen = (self.seqlen[self.batch_id:min(self.batch_id +
                         batch_size, len(self.data))])
    self.batch_id = min(self.batch_id + batch_size, len(self.data))
    return batch_data, batch_labels, batch_seqlen

第四种方式:

def batch_iter(sourceData, batch_size, num_epochs, shuffle=True):
  data = np.array(sourceData) # 将sourceData转换为array存储
  data_size = len(sourceData)
  num_batches_per_epoch = int(len(sourceData) / batch_size) + 1
  for epoch in range(num_epochs):
    # Shuffle the data at each epoch
    if shuffle:
      shuffle_indices = np.random.permutation(np.arange(data_size))
      shuffled_data = sourceData[shuffle_indices]
    else:
      shuffled_data = sourceData

    for batch_num in range(num_batches_per_epoch):
      start_index = batch_num * batch_size
      end_index = min((batch_num + 1) * batch_size, data_size)

      yield shuffled_data[start_index:end_index]

迭代器的用法,具体学习Python迭代器的用法

另外需要注意的是,前三种方式只是所有语料遍历一次,而最后一种方法是,所有语料遍历了num_epochs次

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
使用python分析git log日志示例
Feb 27 Python
python获取文件版本信息、公司名和产品名的方法
Oct 05 Python
python中私有函数调用方法解密
Apr 29 Python
python实现杨辉三角思路
Jul 14 Python
Python3利用SMTP协议发送E-mail电子邮件的方法
Sep 30 Python
Python 25行代码实现的RSA算法详解
Apr 10 Python
python 对类的成员函数开启线程的方法
Jan 22 Python
python爬虫 爬取超清壁纸代码实例
Aug 16 Python
Python交互环境下打印和输入函数的实例内容
Feb 16 Python
python datetime时间格式的相互转换问题
Jun 11 Python
Selenium环境变量配置(火狐浏览器)及验证实现
Dec 07 Python
基于PyQt5制作一个群发邮件工具
Apr 08 Python
Python3 XML 获取雅虎天气的实现方法
Feb 01 #Python
Python命令行解析模块详解
Feb 01 #Python
python2.7到3.x迁移指南
Feb 01 #Python
Python Paramiko模块的使用实际案例
Feb 01 #Python
python中使用xlrd读excel使用xlwt写excel的实例代码
Jan 31 #Python
python使用tensorflow保存、加载和使用模型的方法
Jan 31 #Python
python通过elixir包操作mysql数据库实例代码
Jan 31 #Python
You might like
PHP之COOKIE支持详解
2010/09/20 PHP
ThinkPHP实现一键清除缓存方法
2014/06/26 PHP
写给想学习Javascript的朋友一点学习经验小结
2010/11/23 Javascript
基于jQuery的自动完成插件
2011/02/03 Javascript
如何防止回车(enter)键提交表单
2014/05/11 Javascript
node.js中的fs.fchown方法使用说明
2014/12/16 Javascript
Javascript 高阶函数使用介绍
2015/06/15 Javascript
JavaScript实现定时隐藏与显示图片的方法
2015/08/06 Javascript
JS简单循环遍历json数组的方法
2016/04/22 Javascript
JS 拼凑字符串的简单实例
2016/09/02 Javascript
通过sails和阿里大于实现短信验证
2017/01/04 Javascript
原生js和css实现图片轮播效果
2017/02/07 Javascript
JS+HTML实现的圆形可点击区域示例【3种方法】
2018/08/01 Javascript
使用node搭建自动发图文微博机器人的方法
2019/03/22 Javascript
vue axios重复点击取消上一次请求封装的方法
2019/06/19 Javascript
浅谈React中组件逻辑复用的那些事儿
2020/05/21 Javascript
H5 js点击按钮复制文本到粘贴板
2020/11/19 Javascript
[15:46]教你分分钟做大人——沙王
2015/03/11 DOTA
[32:56]完美世界DOTA2联赛PWL S3 Rebirth vs CPG 第二场 12.11
2020/12/16 DOTA
python连接池实现示例程序
2013/11/26 Python
windows上安装Anaconda和python的教程详解
2017/03/28 Python
python中requests和https使用简单示例
2018/01/18 Python
python中update的基本使用方法详解
2019/07/17 Python
pycharm中import呈现灰色原因的解决方法
2020/03/04 Python
Python HTTP下载文件并显示下载进度条功能的实现
2020/04/02 Python
Python可以实现栈的结构吗
2020/05/27 Python
css3让div随鼠标移动而抖动起来
2014/02/10 HTML / CSS
HTML5所有标签汇总及标签意义解释
2015/03/12 HTML / CSS
迷你分体式空调:SoGoodToBuy
2018/08/07 全球购物
德国户外商店:eXXpozed
2020/07/25 全球购物
元旦寄语大全
2014/04/10 职场文书
企业宣传稿范文
2015/07/23 职场文书
部门主管竞聘书
2015/09/15 职场文书
技术转让协议书
2016/03/19 职场文书
nginx 反向代理之 proxy_pass的实现
2021/03/31 Servers
JS精髓原型链继承及构造函数继承问题纠正
2022/06/16 Javascript