three.js欧拉角和四元数的使用方法


Posted in Javascript onJuly 26, 2020

前言

这篇郭先生就来说说欧拉角和四元数,欧拉角和四元数的优缺点是老生常谈的话题了,使用条件我就不多说了,我只说一下使用方法。

1. 欧拉角(Euler)

欧拉角描述一个旋转变换,通过指定轴顺序和其各个轴向上的指定旋转角度来旋转一个物体。下面我们开看看它的方法

1. set( x: number, y: number, z: number, order?: string ): Euler

x - 用弧度表示x轴旋转量。y - 用弧度表示y轴旋转量。z - 用弧度表示z轴旋转量。order - (optional) 表示旋转顺序的字符串。设置该欧拉变换的角度和旋转顺序 order。

2. clone(): this

返回一个与当前参数相同的新欧拉角。

3. copy( euler: Euler ): this

将 euler 的属性拷贝到当前对象。

4. setFromRotationMatrix( m: Matrix4, order?: string ): Euler

m - Matrix4 矩阵上面的3x3部分是一个纯旋转矩阵rotation matrix (也就是不发生缩放)order - (可选参数) 表示旋转顺序的字符串。使用基于 order 顺序的纯旋转矩阵来设置当前欧拉角。

var vector = new THREE.Vector3(0,0,1);
var matrix = new THREE.Matrix4().makeRotationAxis(vector, Math.PI/6)
var euler = new THREE.Euler().setFromRotationMatrix(matrix); // 返回Euler {_x: -0, _y: 0, _z: 0.5235987755982987, _order: "XYZ"}

5. setFromQuaternion( q: Quaternion, order?: string ): Euler

根据 order 指定的方向,使用归一化四元数设置这个欧拉变换的角度。

var vector = new THREE.Vector3(0,0,1);
var quaternion = new THREE.Quaternion().setFromAxisAngle(vector, Math.PI/6)
var euler = new THREE.Euler().setFromQuaternion(quaternion);// 返回Euler {_x: -0, _y: 0, _z: 0.5235987755982987, _order: "XYZ"}结果同上

6. setFromVector3( v: Vector3, order?: string ): Euler

设置 x, y and z 并且选择性更新 order。

var vector = new THREE.Vector3(0,0,Math.PI/6);
var euler = new THREE.Euler().setFromVector3(vector);/ 返回Euler {_x: -0, _y: 0, _z: 0.5235987755982987, _order: "XYZ"}结果同上

7. reorder( newOrder: string ): Euler

通过这个欧拉角创建一个四元数,然后用这个四元数和新顺序设置这个欧拉角。

8. equals( euler: Euler ): boolean

检查 euler 是否与当前对象相同。

9. fromArray( xyzo: any[] ): Euler

长度为3或4的一个 array 。array[3] 是一个可选的 order 参数。将欧拉角的x分量设置为 array[0]。将欧拉角的x分量设置为 array[1]。将欧拉角的x分量设置为 array[2]。将array[3]设置给欧拉角的 order 。可选。

10. toArray( array?: number[], offset?: number ): number[]

返回一个数组:[x, y, z, order ]。

11. toVector3( optionalResult?: Vector3 ): Vector3

以 Vector3 的形式返回欧拉角的 x, y 和 z。

var vector = new THREE.Vector3(0,0,Math.PI/6);
var euler = new THREE.Euler().setFromVector3(vector);
euler.toVector3(); //返回Vector3 {x: 0, y: 0, z: 0.5235987755982988}

2. 四元数

四元数对象Quaternion使用x、y、z和w四个分量表示。在三维空间中一个旋转由一个旋转轴、一个旋转角度和旋转方向来唯一确定。

假设我们默认为右手法则的旋转,则旋转方向为逆时针,旋转轴向量为v = (vx, vy, vz), 角度为旋转角度,那么该旋转就应该类似如下图所示:

three.js欧拉角和四元数的使用方法

其对应的四元数就是:

three.js欧拉角和四元数的使用方法

1. set( x: number, y: number, z: number, w: number ): Quaternion

设置该四元数的值。

2. clone(): this

克隆此四元数。

3. copy( q: Quaternion ): this

将q的值复制到这个四元数。

4. setFromEuler( euler: Euler ): Quaternion

用欧拉角指定的旋转来设置此四元数。

var euler = new THREE.Euler(0,0,Math.PI/6);
var quaternion = new THREE.Quaternion().setFromEuler(euler) //返回Quaternion {_x: 0, _y: 0, _z: 0.25881904510252074, _w: 0.9659258262890683}

5. setFromAxisAngle( axis: Vector3, angle: number ): Quaternion

使用由轴和角度指定的旋转来设置此四元数。axis 应该是归一化的,angle 的单位是弧度。

var vector1 = new THREE.Vector3(0,0,1);
var vector2 = new THREE.Vector3(0,0,2);
var quaternion1 = new THREE.Quaternion().setFromAxisAngle(vector1, Math.PI/6); //返回Quaternion {_x: 0, _y: 0, _z: 0.25881904510252074, _w: 0.9659258262890683}
var quaternion2 = new THREE.Quaternion().setFromAxisAngle(vector2, Math.PI/6); //返回Quaternion {_x: 0, _y: 0, _z: 0.5176380902050415, _w: 0.9659258262890683}

可见axis是否归一化对四元数的x、y和z值的影响是线性的。

6. setFromRotationMatrix( m: Matrix4 ): Quaternion

从m的旋转分量来设置该四元数。使用很简单就不多说了。

7. setFromUnitVectors( vFrom: Vector3, vTo: Vector3 ): Quaternion

通过从向量vFrom到vTo所需的旋转来设置这四元数。vFrom 和 vTo 应该是归一化的。我们来看一下

var vector1 = new THREE.Vector3(1,1,0);
var vector2 = new THREE.Vector3(0,1,0);
var quaternion = new THREE.Quaternion().setFromUnitVectors(vector1, vector2); //相当于绕z轴旋转了Math.PI/4

8. angleTo( q: Quaternion ): number

返回这个四元数到q的角度

var quaternion1 = new THREE.Quaternion().setFromEuler(new THREE.Euler(0,0,Math.PI/3));
var quaternion2 = new THREE.Quaternion().setFromEuler(new THREE.Euler(0,0,Math.PI/6));
quaternion1.angleTo(quaternion2); // 返回0.5235987755982987

9. rotateTowards( q: Quaternion, step: number ): Quaternion

将此四元数按给定的step旋转到定义的四元数q。该方法确保最终四元数不会超出q。那么是什么意思呢?

var quaternion1 = new THREE.Quaternion().setFromEuler(new THREE.Euler(0,0,Math.PI/3)); //{_x: 0, _y: 0, _z: 0.49999999999999994, _w: 0.8660254037844387}
var quaternion2 = new THREE.Quaternion().setFromEuler(new THREE.Euler(0,0,Math.PI/6)); //{_x: 0, _y: 0, _z: 0.25881904510252074, _w: 0.9659258262890683}
quaternion1.rotateTowards( quaternion2, 0); //{_x: 0, _y: 0, _z: 0.49999999999999994, _w: 0.8660254037844387}
quaternion1.rotateTowards( quaternion2, 0.5); //{_x: 0, _y: 0, _z: 0.2701980971440553, _w: 0.9628047508709812}
quaternion1.rotateTowards( quaternion2, 1); //{_x: 0, _y: 0, _z: 0.25881904510252074, _w: 0.9659258262890683}

可以看出其内部使用了quaternion.slerp()方法。当step为0时,rotateTowards方法返回就是当前四元数。当step为1时,rotateTowards方法返回就是参数q的四元数。当step为0~1之间时,rotateTowards方法返回就是当前四元数和参数q的四元数之间的插值。

10. inverse(): Quaternion

转置此四元数-计算共轭。假设四元数具有单位长度。

var quaternion = new THREE.Quaternion().setFromEuler(new THREE.Euler(Math.PI/6,Math.PI/6,Math.PI/6)); //初始四元数Quaternion {_x: 0.30618621784789724, _y: 0.17677669529663687, _z: 0.30618621784789724, _w: 0.8838834764831845}
quaternion.inverse(); //返回Quaternion {_x: -0.30618621784789724, _y: -0.17677669529663687, _z: -0.30618621784789724, _w: 0.8838834764831845}

由此可知计算共轭之后,x、y和z分别取复制,而w值不变。

11. conjugate(): Quaternion

返回此四元数的旋转共轭。四元数的共轭。表示旋转轴在相反方向上的同一个旋转。经过我的测试这个方法和inverse()方法是一样的,来看看inverse的源码

inverse: function () {
  // quaternion is assumed to have unit length
  return this.conjugate();
},

12. dot( v: Quaternion ): number

计算四元数v和当前四元数的点积。众所周知点积得到的是一个数字。很简单

13. lengthSq(): number

计算四元数的平方长度。就是各个值平方求和。

14 length(): number

计算此四元数的长度。也就是各个值平方求和,然后在开根号。

15. normalize(): Quaternion

归一化该四元数。开看下源码

normalize: function () {
  var l = this.length();
  if ( l === 0 ) { //如果四元数参length为0,那么this._x、this._y和this._z都设置为0,this._w设置为1
   this._x = 0;
   this._y = 0;
   this._z = 0;
   this._w = 1;
  } else { //如果四元数参length为l,那么四元数的各个参数乘以l的倒数。
   l = 1 / l;
   this._x = this._x * l;
   this._y = this._y * l;
   this._z = this._z * l;
   this._w = this._w * l;
  }
  return this;
 },

16. multiply( q: Quaternion ): Quaternion

把该四元数和q相乘。具体怎么相乘。稍后再说。

17. premultiply( q: Quaternion ): Quaternion;

使用q左乘以(pre-multiply)该四元数。同样稍后再说。

18. multiplyQuaternions( a: Quaternion, b: Quaternion ): Quaternion

四元数a乘以四元数b,我们说一下四元数的乘法。

multiplyQuaternions: function ( a, b ) {
  var qax = a._x, qay = a._y, qaz = a._z, qaw = a._w;
  var qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w;
  this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
  this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
  this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
  this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
  return this;
},

19. equals( v: Quaternion ): boolean;

比较v和这个四元数的各个分量,以确定两者是否代表同样的旋转。不多说。

20. slerp( qb: Quaternion, t: number ): Quaternion

处理四元数之间的球面线性插值。t 代表quaternionA(这里t为0)和quaternionB(这里t为1)这两个四元数之间的旋转量。quaternion 被设置为结果。rotateTowards的底层同样使用了slerp方法。

var quaternion1 = new THREE.Quaternion().setFromEuler(new THREE.Euler(0,0,Math.PI/6));
var quaternion2 = new THREE.Quaternion().setFromEuler(new THREE.Euler(0,0,Math.PI/2));
quaternion1; //quaternion1的值为{_x: 0, _y: 0, _z: 0.25881904510252074, _w: 0.9659258262890683}
quaternion2; //quaternion2的值为{_x: 0, _y: 0, _z: 0.7071067811865475, _w: 0.7071067811865476}
quaternion1.slerp(quaternion2, 0) //返回的结果和quaternion1相同
quaternion1.slerp(quaternion2, 1) //返回的结果和quaternion2相同
quaternion1.slerp(quaternion2, 其他值) //返回quaternion1到quaternion2的插值,当然这个t也是可以大于1的
//看一下rotateTowards的部分源码
rotateTowards: function ( q, step ) {
  var angle = this.angleTo( q );
  if ( angle === 0 ) return this;
  var t = Math.min( 1, step / angle );
  this.slerp( q, t );
  return this;
}

21. static slerp: functistatic slerp(qa: Quaternion, qb: Quaternion, qm: Quaternion, t: number): Quaternionon
这是slerp的静态方法,无需动态设置。同样使用了slerp方法。

slerp: function ( qa, qb, qm, t ) {
  return qm.copy( qa ).slerp( qb, t );
}

关于欧拉角四元数要说的差不多就这些,还需要平时多多应用才能记熟。

总结

到此这篇关于three.js欧拉角和四元数的使用方法的文章就介绍到这了,更多相关three.js欧拉角和四元数内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Javascript 相关文章推荐
Ext修改GridPanel数据和字体颜色、css属性等
Jun 13 Javascript
node.js中的console.trace方法使用说明
Dec 09 Javascript
日常收集整理的JavaScript常用函数方法
Dec 10 Javascript
jQuery使用ajax跨域获取数据的简单实例
May 18 Javascript
sea.js常用的api简易文档
Nov 15 Javascript
jQuery实现文章图片弹出放大效果
Apr 06 jQuery
使用vue构建一个上传图片表单
Jul 04 Javascript
使用canvas进行图像编辑的实例
Aug 29 Javascript
使用watch监听路由变化和watch监听对象的实例
Feb 24 Javascript
微信小程序下拉框功能的实例代码
Nov 06 Javascript
通过jQuery学习js类型判断的技巧
May 27 jQuery
微信小程序实现上拉加载功能
Nov 20 Javascript
Element Collapse 折叠面板的使用方法
Jul 26 #Javascript
Element Input输入框的使用方法
Jul 26 #Javascript
解决vuex数据页面刷新后初始化操作
Jul 26 #Javascript
Angular利用HTTP POST下载流文件的步骤记录
Jul 26 #Javascript
vue中keep-alive、activated的探讨和使用详解
Jul 26 #Javascript
关于angular浏览器兼容性问题的解决方案
Jul 26 #Javascript
Vue生命周期activated之返回上一页不重新请求数据操作
Jul 26 #Javascript
You might like
Terran剧情介绍
2020/03/14 星际争霸
PHP中实现图片的锐化
2006/10/09 PHP
BBS(php & mysql)完整版(四)
2006/10/09 PHP
简单的用PHP编写的导航条程序
2006/10/09 PHP
php中的观察者模式
2010/03/24 PHP
关于PHP定时发送服务的解决办法
2017/04/23 PHP
laravel与thinkphp之间的区别与优缺点
2021/03/02 PHP
js 分栏效果实现代码
2009/08/29 Javascript
用jquery实现输入框获取焦点消失文字
2013/04/27 Javascript
基于jquery实现导航菜单高亮显示(两种方法)
2015/08/23 Javascript
jQuery增加与删除table列的方法
2016/03/01 Javascript
node.js 动态执行脚本
2016/06/02 Javascript
浅谈Angular.js中使用$watch监听模型变化
2017/01/10 Javascript
数组Array的一些方法(总结)
2017/02/17 Javascript
微信小程序 循环及嵌套循环的使用总结
2017/09/26 Javascript
layer实现关闭弹出层刷新父界面功能详解
2017/11/15 Javascript
JavaScript中var、let、const区别浅析
2018/06/24 Javascript
vue中前进刷新、后退缓存用户浏览数据和浏览位置的实例讲解
2018/09/21 Javascript
python在linux系统下获取系统内存使用情况的方法
2015/05/11 Python
python中lambda()的用法
2017/11/16 Python
Flask框架信号用法实例分析
2018/07/24 Python
Python二维码生成识别实例详解
2019/07/16 Python
Python中输入和输出(打印)数据实例方法
2019/10/13 Python
python爬虫模拟浏览器访问-User-Agent过程解析
2019/12/28 Python
pytorch 归一化与反归一化实例
2019/12/31 Python
关于windows下Tensorflow和pytorch安装教程
2020/02/04 Python
浅析HTML5 meta viewport参数
2020/10/28 HTML / CSS
Three Graces London官网:英国奢侈品牌
2021/03/18 全球购物
介绍下java.util.Arrays类
2012/10/16 面试题
迟到早退检讨书
2014/02/10 职场文书
2015秋季幼儿园开学寄语
2015/03/25 职场文书
演讲稿:态度决定一切
2019/04/02 职场文书
在js中修改html body的样式
2021/11/11 Javascript
十大最强格斗系宝可梦,超梦X仅排第十,第二最重格斗礼仪
2022/03/18 日漫
SQLServer RANK() 排名函数的使用
2022/03/23 SQL Server
mysql 索引的数据结构为什么要采用B+树
2022/04/26 MySQL