浅谈Python数学建模之固定费用问题


Posted in Python onJune 23, 2021
目录
  • 一、固定费用问题案例解析
    • 1.1、固定费用问题(Fixed cost problem)
    • 1.2、案例问题描述
    • 1.3、建模过程分析
    • 1.4、PuLP 求解固定费用问题的编程
    • 1.5、Python 例程:固定费用问题
    • 1.6、Python 例程运行结果
  • 二、PuLP 求解规划问题的快捷方法
    • 2.1、PuLP 求解固定费用问题的编程
    • 2.2、Python 例程:PuLP 快捷方法
    • 2.3、Python 例程运行结果

 

一、固定费用问题案例解析

 

1.1、固定费用问题(Fixed cost problem)

固定费用问题,是指求解生产成本最小问题时,总成本包括固定成本和变动成本,而选择不同生产方式会有不同的固定成本,因此总成本与选择的生产方式有关。

固定费用问题,实际上是互斥的目标函数问题,对于不同的生产方式具有多个互斥的目标函数,但只有一个起作用。固定费用问题不能用一般的线性规划模型求解。

一般地,设有 m 种生产方式可供选择,采用第 j 种方式时的固定成本为 \(K_j\)、变动成本为 \(c_j\)、产量为 \(x_j\),则采用各种生产方式的总成本分别为:

浅谈Python数学建模之固定费用问题

该类问题的建模方法,为了构造统一的目标函数,可以引入 m 个 0-1 变量 y_j 表示是否采用第 j 种生产方式:

浅谈Python数学建模之固定费用问题

于是可以构造新的目标函数和约束条件:

浅谈Python数学建模之固定费用问题

M 是一个充分大的常数。

 

1.2、案例问题描述

例题 1:

某服装厂可以生产 A、B、C 三种服装,生产不同种类服装需要租用不同设备,设备租金、生产成本、销售价格等指标如下表所示。

服装种类 设备租金 材料成本 销售价格 人工工时 设备工时 设备可用工时
单位 (元) (元/件) (元/件) (小时/件) (小时/件) (小时)
A 5000 280 400 5 3 300
B 2000 30 40 1 0.5 300
C 2000 200 300 4 2 300

如果各类服装的市场需求都足够大,服装厂每月可用人工时为 2000h,那么应该如何安排生产计划使利润最大?

 

1.3、建模过程分析

首先要理解生产某种服装就会发生设备租金,租金只与是否生产该产品有关,而与生产数量无关,这就是固定成本。因此本题属于固定费用问题。

有些同学下意识地认为是从 3 种产品中选择一种,但题目中并没有限定必须或只能生产一种产品,因此决策结果可以是都不生产、选择 1 种或 2 种产品、3 种都生产。

决策结果会是什么都不生产吗?有可能的。

每种产品的利润:(销售价格 - 材料成本)× 生产数量 - 设备租金

本题中如果设备租金很高,决策结果就可能是什么都不做时利润最大,这是利润为 0,至少不亏。

现在可以用固定费用问题的数学模型来描述问题了:

浅谈Python数学建模之固定费用问题

 

1.4、PuLP 求解固定费用问题的编程

编程求解建立的数学模型,用标准模型的优化算法对模型求解,得到优化结果。

模型求解的编程步骤与之前的线性规划、整数规划问题并没有什么区别,这就是 PuLP工具包的优势。

(0)导入 PuLP库函数

import pulp

(1)定义一个规划问题

FixedCostP1 = pulp.LpProblem("Fixed_cost_problem", sense=pulp.LpMaximize)  # 定义问题,求最大值

pulp.LpProblem 用来定义问题的构造函数。"FixedCostP1"是用户定义的问题名。
参数 sense 指定问题求目标函数的最小值/最大值 。本例求最大值,选择 “pulp.LpMaximize” 。

(2)定义决策变量

x1 = pulp.LpVariable('A', cat='Binary')  # 定义 x1,0-1变量,是否生产 A 产品
x2 = pulp.LpVariable('B', cat='Binary')  # 定义 x2,0-1变量,是否生产 B 产品
x3 = pulp.LpVariable('C', cat='Binary')  # 定义 x3,0-1变量,是否生产 C 产品
y1 = pulp.LpVariable('yieldA', lowBound=0, upBound=100, cat='Integer')  # 定义 y1,整型变量
y2 = pulp.LpVariable('yieldB', lowBound=0, upBound=600, cat='Integer')  # 定义 y2,整型变量
y3 = pulp.LpVariable('youCans', lowBound=0, upBound=150, cat='Integer')  # 定义 y3,整型变量

pulp.LpVariable 用来定义决策变量的函数。参数 cat 用来设定变量类型,' Binary ' 表示0/1变量(用于0/1规划问题),' Integer ' 表示整数变量。'lowBound'、'upBound' 分别表示变量取值范围的下限和上限。

(3)添加目标函数

FixedCostP1 += pulp.lpSum(-5000*x1-2000*x2-2000*x3+120*y1+10*y2+100*y3)  # 设置目标函数 f(x)

(4)添加约束条件

FixedCostP1 += (5*y1 + y2 + 4*y3 <= 2000)  # 不等式约束
FixedCostP1 += (3*y1 - 300*x1 <= 0)  # 不等式约束
FixedCostP1 += (0.5*y2 - 300*x2 <= 0)  # 不等式约束
FixedCostP1 += (2*y3 - 300*x3 <= 0)  # 不等式约束

添加约束条件使用 "问题名 += 约束条件表达式" 格式。
约束条件可以是等式约束或不等式约束,不等式约束可以是 小于等于 或 大于等于,分别使用关键字">="、"<="和"=="。

(5)求解

FixedCostP1.solve()

solve() 是求解函数,可以对求解器、求解精度进行设置。

 

1.5、Python 例程:固定费用问题

import pulp      # 导入 pulp 库

# 主程序
def main():
    # 固定费用问题(Fixed cost problem)
    print("固定费用问题(Fixed cost problem)")
    # 问题建模:
    """
        决策变量:
            y(i) = 0, 不生产第 i 种产品
            y(i) = 1, 生产第 i 种产品            
            x(i), 生产第 i 种产品的数量, i>=0 整数
            i=1,2,3
        目标函数:
            min profit = 120x1 + 10x2+ 100x3 - 5000y1 - 2000y2 - 2000y3
        约束条件:
            5x1 + x2 + 4x3 <= 2000
            3x1 <= 300y1
            0.5x2 <= 300y2
            2x3 <= 300y3
        变量取值范围:Youcans XUPT
            0<=x1<=100, 0<=x2<=600, 0<=x3<=150, 整数变量
            y1, y2 ,y3 为 0/1 变量 
    """
    # 1. 固定费用问题(Fixed cost problem), 使用 PuLP 工具包求解
    # (1) 建立优化问题 FixedCostP1: 求最大值(LpMaximize)
    FixedCostP1 = pulp.LpProblem("Fixed_cost_problem_1", sense=pulp.LpMaximize)  # 定义问题,求最大值
    # (2) 建立变量
    x1 = pulp.LpVariable('A', cat='Binary')  # 定义 x1,0-1变量,是否生产 A 产品
    x2 = pulp.LpVariable('B', cat='Binary')  # 定义 x2,0-1变量,是否生产 B 产品
    x3 = pulp.LpVariable('C', cat='Binary')  # 定义 x3,0-1变量,是否生产 C 产品
    y1 = pulp.LpVariable('yieldA', lowBound=0, upBound=100, cat='Integer')  # 定义 y1,整型变量
    y2 = pulp.LpVariable('yieldB', lowBound=0, upBound=600, cat='Integer')  # 定义 y2,整型变量
    y3 = pulp.LpVariable('yieldC', lowBound=0, upBound=150, cat='Integer')  # 定义 y3,整型变量
    # (3) 设置目标函数
    FixedCostP1 += pulp.lpSum(-5000*x1-2000*x2-2000*x3+120*y1+10*y2+100*y3)  # 设置目标函数 f(x)
    # (4) 设置约束条件
    FixedCostP1 += (5*y1 + y2 + 4*y3 <= 2000)  # 不等式约束
    FixedCostP1 += (3*y1 - 300*x1 <= 0)  # 不等式约束
    FixedCostP1 += (0.5*y2 - 300*x2 <= 0)  # 不等式约束
    FixedCostP1 += (2*y3 - 300*x3 <= 0)  # 不等式约束
    # (5) 求解 youcans
    FixedCostP1.solve()
    # (6) 打印结果
    print(FixedCostP1.name)
    if pulp.LpStatus[FixedCostP1.status] == "Optimal":  # 获得最优解
        for v in FixedCostP1.variables():  # youcans
            print(v.name, "=", v.varValue)  # 输出每个变量的最优值
        print("Youcans F(x) = ", pulp.value(FixedCostP1.objective))  # 输出最优解的目标函数值
    return

if __name__ == '__main__':  # Copyright 2021 YouCans, XUPT
    main()

 

1.6、Python 例程运行结果

Welcome to the CBC MILP Solver 

Version: 2.9.0 

Build Date: Feb 12 2015 

 

Result - Optimal solution found

 

Fixed_cost_problem_1

A = 1.0

B = 1.0

C = 1.0

yieldA = 100.0

yieldB = 600.0

yieldC = 150.0

Max F(x) =  24000.0

从固定费用问题模型的求解结果可知,A、B、C 三种服装都生产,产量分别为 A/100、B/600、C/150 时获得最大利润为:24000。

 

二、PuLP 求解规划问题的快捷方法

 

2.1、PuLP 求解固定费用问题的编程

通过从线性规划、整数规划、0-1规划到上例中的混合0-1规划问题,我们已经充分体会到 PuLP 使用相同的步骤和参数处理不同问题所带来的便利。

但是,如果问题非常复杂,例如变量数量很多,约束条件复杂,逐个定义变量、逐项编写目标函数与约束条件的表达式,不仅显得重复冗长,不方便修改对变量和参数的定义,而且在输入过程中容易发生错误。因此,我们希望用字典、列表、循环等快捷方法来进行变量定义、目标函数和约束条件设置。

PuLP 提供了快捷建模的编程方案,下面我们仍以上节中的固定费用问题为例进行介绍。本例中的问题、条件和参数都与上节完全相同,以便读者进行对照比较快捷方法的具体内容。

(0)导入 PuLP 库函数

import pulp

(1)定义一个规划问题

FixedCostP2 = pulp.LpProblem("Fixed_cost_problem", sense=pulp.LpMaximize)  # 定义问题,求最大值

(2)定义决策变量

types = ['A', 'B', 'C']  # 定义产品种类
status = pulp.LpVariable.dicts("生产决策", types, cat='Binary')  # 定义 0/1 变量,是否生产该产品
yields = pulp.LpVariable.dicts("生产数量", types, lowBound=0, upBound=600, cat='Integer')  # 定义整型变量

本例中的快捷方法使用列表 types 定义 0/1 变量 status 和 整型变量 yields,不论产品的品种有多少,都只有以上几句,从而使程序大为简化。

(3)添加目标函数

fixedCost = {'A':5000, 'B':2000, 'C':2000}  # 各产品的 固定费用
unitProfit = {'A':120, 'B':10, 'C':100}  # 各产品的 单位利润
FixedCostP2 += pulp.lpSum([(yields[i]*unitProfit[i]- status[i]*fixedCost[i]) for i in types])

虽然看起来本例中定义目标函数的程序语句较长,但由于使用字典定义参数、使用 for 循环定义目标函数,因此程序更加清晰、简明、便于修改参数、不容易输入错误。

(4)添加约束条件

humanHours = {'A':5, 'B':1, 'C':4}  # 各产品的 单位人工工时
machineHours = {'A':3.0, 'B':0.5, 'C':2.0}  # 各产品的 单位设备工时
maxHours = {'A':300, 'B':300, 'C':300}  # 各产品的 最大设备工时
FixedCostP2 += pulp.lpSum([humanHours[i] * yields[i] for i in types]) <= 2000  # 不等式约束
for i in types:
    FixedCostP2 += (yields[i]*machineHours[i] - status[i]*maxHours[i] <= 0)  # 不等式约束

快捷方法对于约束条件的定义与对目标函数的定义相似,使用字典定义参数,使用循环定义约束条件,使程序简单、结构清楚。

注意本例使用了两种不同的循环表达方式:语句内使用 for 循环遍历列表实现所有变量的线性组合,标准的 for 循环结构实现多组具有相似结构的约束条件。读者可以对照数学模型及上例的例程,理解这两种定义约束条件的快捷方法。

(5)求解和结果的输出

# (5) 求解
FixedCostP2.solve()
# (6) 打印结果
print(FixedCostP2.name)
temple = "品种 %(type)s 的决策是:%(status)s,生产数量为:%(yields)d"
if pulp.LpStatus[FixedCostP2.status] == "Optimal":  # 获得最优解
    for i in types:
        output = {'type': i,
                    'status': '同意' if status[i].varValue else '否决',
                    'yields': yields[i].varValue}
        print(temple % output) # youcans@qq.com
    print("最大利润 = ", pulp.value(FixedCostP2.objective))  # 输出最优解的目标函数值

由于快捷方法使用列表或字典定义变量,对求解的优化结果也便于实现结构化的输出。

 

2.2、Python 例程:PuLP 快捷方法

import pulp      # 导入 pulp 库


# 主程序
def main():
    # 2. 问题同上,PuLP 快捷方法示例
    # (1) 建立优化问题 FixedCostP2: 求最大值(LpMaximize)
    FixedCostP2 = pulp.LpProblem("Fixed_cost_problem_2", sense=pulp.LpMaximize)  # 定义问题,求最大值
    # (2) 建立变量
    types = ['A', 'B', 'C']  # 定义产品种类
    status = pulp.LpVariable.dicts("生产决策", types, cat='Binary')  # 定义 0/1 变量,是否生产该产品
    yields = pulp.LpVariable.dicts("生产数量", types, lowBound=0, upBound=600, cat='Integer')  # 定义整型变量
    # (3) 设置目标函数
    fixedCost = {'A':5000, 'B':2000, 'C':2000}  # 各产品的 固定费用
    unitProfit = {'A':120, 'B':10, 'C':100}  # 各产品的 单位利润
    FixedCostP2 += pulp.lpSum([(yields[i]*unitProfit[i]- status[i]*fixedCost[i]) for i in types])
    # (4) 设置约束条件
    humanHours = {'A':5, 'B':1, 'C':4}  # 各产品的 单位人工工时
    machineHours = {'A':3.0, 'B':0.5, 'C':2.0}  # 各产品的 单位设备工时
    maxHours = {'A':300, 'B':300, 'C':300}  # 各产品的 最大设备工时
    FixedCostP2 += pulp.lpSum([humanHours[i] * yields[i] for i in types]) <= 2000  # 不等式约束
    for i in types:
        FixedCostP2 += (yields[i]*machineHours[i] - status[i]*maxHours[i] <= 0)  # 不等式约束
    # (5) 求解 youcans
    FixedCostP2.solve()
    # (6) 打印结果
    print(FixedCostP2.name)
    temple = "品种 %(type)s 的决策是:%(status)s,生产数量为:%(yields)d"
    if pulp.LpStatus[FixedCostP2.status] == "Optimal":  # 获得最优解
        for i in types:
            output = {'type': i,
                      'status': '同意' if status[i].varValue else '否决',
                      'yields': yields[i].varValue}
            print(temple % output)
        print("最大利润 = ", pulp.value(FixedCostP2.objective))  # 输出最优解的目标函数值

    return

if __name__ == '__main__':  # Copyright 2021 YouCans, XUPT
    main()

 

2.3、Python 例程运行结果

Welcome to the CBC MILP Solver 

Version: 2.9.0 

Build Date: Feb 12 2015 

 

Result - Optimal solution found

 

Fixed_cost_problem_2

品种 A 的决策是:同意,生产数量为:100

品种 B 的决策是:同意,生产数量为:600

品种 C 的决策是:同意,生产数量为:150

最大利润 =  24000.0

本例的问题、条件和参数都与上节完全相同,只是采用 PuLP 提供的快捷建模的编程方案,优化结果也与 PuLP 标准方法完全相同,但本例使用了结构化的输出显示,使输出结果更为直观。

以上就是浅谈Python数学建模之固定费用问题的详细内容,更多关于Python 数学建模 固定费用的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
python实现应用程序在右键菜单中添加打开方式功能
Jan 09 Python
Python 将RGB图像转换为Pytho灰度图像的实例
Nov 14 Python
Python快速排序算法实例分析
Nov 29 Python
python时间日期函数与利用pandas进行时间序列处理详解
Mar 13 Python
详解TensorFlow查看ckpt中变量的几种方法
Jun 19 Python
pyqt实现.ui文件批量转换为对应.py文件脚本
Jun 19 Python
基于sklearn实现Bagging算法(python)
Jul 11 Python
django框架F&amp;Q 聚合与分组操作示例
Dec 12 Python
使用Python实现将多表分批次从数据库导出到Excel
May 15 Python
matlab、python中矩阵的互相导入导出方式
Jun 01 Python
PyCharm安装PyQt5及其工具(Qt Designer、PyUIC、PyRcc)的步骤详解
Nov 02 Python
Python中使用Selenium环境安装的方法步骤
Feb 22 Python
浅谈Python数学建模之整数规划
浅谈Python数学建模之数据导入
Jun 23 #Python
python四种出行路线规划的实现
浅谈Python数学建模之线性规划
Jun 23 #Python
教你如何用Python实现人脸识别(含源代码)
python 对图片进行简单的处理
DjangoRestFramework 使用 simpleJWT 登陆认证完整记录
You might like
PHP+MYSQL的文章管理系统(一)
2006/10/09 PHP
PHP中HTTP方式下的Gzip压缩传输方法举偶
2007/02/15 PHP
一个简单的PHP&amp;MYSQL留言板源码
2020/07/19 PHP
PHP漏洞全解(详细介绍)
2012/11/13 PHP
PHP使用HTML5 FileApi实现Ajax上传文件功能示例
2019/07/01 PHP
Firefox中autocomplete=&quot;off&quot; 设置不起作用Bug的解决方法
2011/03/25 Javascript
jQuery 1.8 Release版本发布了
2012/08/14 Javascript
Array.prototype.concat不是通用方法反驳[译]
2012/09/20 Javascript
使用js实现雪花飘落效果
2013/08/26 Javascript
javascript事件冒泡详解和捕获、阻止方法
2014/04/12 Javascript
jQuery函数map()和each()介绍及异同点分析
2014/11/08 Javascript
JQuery实现展开关闭层的方法
2015/02/17 Javascript
javascript的变量、传值、传址、参数之间关系
2015/07/26 Javascript
jQuery ajax提交Form表单实例(附demo源码)
2016/04/06 Javascript
基于KO+BootStrap+MVC实现的分页控件代码分享
2016/11/07 Javascript
Vue 2.0 服务端渲染入门介绍
2017/03/29 Javascript
使用vs code开发Nodejs程序的使用方法
2017/09/21 NodeJs
基于Vuejs的搜索匹配功能实现方法
2018/03/03 Javascript
Vue头像处理方案小结
2018/07/26 Javascript
JavaScript常见事件处理程序实例总结
2019/01/05 Javascript
跟老齐学Python之不要红头文件(2)
2014/09/28 Python
老生常谈进程线程协程那些事儿
2017/07/24 Python
Python实现读写INI配置文件的方法示例
2018/06/09 Python
python+tkinter实现学生管理系统
2019/08/20 Python
python 字典有序并写入json文件过程解析
2019/09/30 Python
python从zip中删除指定后缀文件(推荐)
2019/12/05 Python
python网络编程socket实现服务端、客户端操作详解
2020/03/24 Python
解决Jupyter Notebook开始菜单栏Anaconda下消失的问题
2020/04/13 Python
Django 用户登陆访问限制实例 @login_required
2020/05/13 Python
python 制作本地应用搜索工具
2021/02/27 Python
N:Philanthropy官网:美国洛杉矶基础款服装
2020/06/09 全球购物
美国床垫连锁店:Mattress Firm
2021/02/13 全球购物
大学毕业感言
2014/01/10 职场文书
主题班会演讲稿
2014/05/22 职场文书
后备干部推荐材料
2014/12/24 职场文书
浅谈TypeScript 索引签名的理解
2021/10/16 Javascript