Pytorch - TORCH.NN.INIT 参数初始化的操作


Posted in Python onFebruary 27, 2021

路径:

https://pytorch.org/docs/master/nn.init.html#nn-init-doc

初始化函数:torch.nn.init

# -*- coding: utf-8 -*-
"""
Created on 2019
@author: fancp
"""
import torch 
import torch.nn as nn
w = torch.empty(3,5)
#1.均匀分布 - u(a,b)
#torch.nn.init.uniform_(tensor, a=0.0, b=1.0)
print(nn.init.uniform_(w))
# =============================================================================
# tensor([[0.9160, 0.1832, 0.5278, 0.5480, 0.6754],
#     [0.9509, 0.8325, 0.9149, 0.8192, 0.9950],
#     [0.4847, 0.4148, 0.8161, 0.0948, 0.3787]])
# =============================================================================
#2.正态分布 - N(mean, std)
#torch.nn.init.normal_(tensor, mean=0.0, std=1.0)
print(nn.init.normal_(w))
# =============================================================================
# tensor([[ 0.4388, 0.3083, -0.6803, -1.1476, -0.6084],
#     [ 0.5148, -0.2876, -1.2222, 0.6990, -0.1595],
#     [-2.0834, -1.6288, 0.5057, -0.5754, 0.3052]])
# =============================================================================
#3.常数 - 固定值 val
#torch.nn.init.constant_(tensor, val)
print(nn.init.constant_(w, 0.3))
# =============================================================================
# tensor([[0.3000, 0.3000, 0.3000, 0.3000, 0.3000],
#     [0.3000, 0.3000, 0.3000, 0.3000, 0.3000],
#     [0.3000, 0.3000, 0.3000, 0.3000, 0.3000]])
# =============================================================================
#4.全1分布
#torch.nn.init.ones_(tensor)
print(nn.init.ones_(w))
# =============================================================================
# tensor([[1., 1., 1., 1., 1.],
#     [1., 1., 1., 1., 1.],
#     [1., 1., 1., 1., 1.]])
# =============================================================================
#5.全0分布
#torch.nn.init.zeros_(tensor)
print(nn.init.zeros_(w))
# =============================================================================
# tensor([[0., 0., 0., 0., 0.],
#     [0., 0., 0., 0., 0.],
#     [0., 0., 0., 0., 0.]])
# =============================================================================
#6.对角线为 1,其它为 0
#torch.nn.init.eye_(tensor)
print(nn.init.eye_(w))
# =============================================================================
# tensor([[1., 0., 0., 0., 0.],
#     [0., 1., 0., 0., 0.],
#     [0., 0., 1., 0., 0.]])
# =============================================================================
#7.xavier_uniform 初始化
#torch.nn.init.xavier_uniform_(tensor, gain=1.0)
#From - Understanding the difficulty of training deep feedforward neural networks - Bengio 2010
print(nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain('relu')))
# =============================================================================
# tensor([[-0.1270, 0.3963, 0.9531, -0.2949, 0.8294],
#     [-0.9759, -0.6335, 0.9299, -1.0988, -0.1496],
#     [-0.7224, 0.2181, -1.1219, 0.8629, -0.8825]])
# =============================================================================
#8.xavier_normal 初始化
#torch.nn.init.xavier_normal_(tensor, gain=1.0)
print(nn.init.xavier_normal_(w))
# =============================================================================
# tensor([[ 1.0463, 0.1275, -0.3752, 0.1858, 1.1008],
#     [-0.5560, 0.2837, 0.1000, -0.5835, 0.7886],
#     [-0.2417, 0.1763, -0.7495, 0.4677, -0.1185]])
# =============================================================================
#9.kaiming_uniform 初始化
#torch.nn.init.kaiming_uniform_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu')
#From - Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification - HeKaiming 2015
print(nn.init.kaiming_uniform_(w, mode='fan_in', nonlinearity='relu'))
# =============================================================================
# tensor([[-0.7712, 0.9344, 0.8304, 0.2367, 0.0478],
#     [-0.6139, -0.3916, -0.0835, 0.5975, 0.1717],
#     [ 0.3197, -0.9825, -0.5380, -1.0033, -0.3701]])
# =============================================================================
#10.kaiming_normal 初始化
#torch.nn.init.kaiming_normal_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu')
print(nn.init.kaiming_normal_(w, mode='fan_out', nonlinearity='relu'))
# =============================================================================
# tensor([[-0.0210, 0.5532, -0.8647, 0.9813, 0.0466],
#     [ 0.7713, -1.0418, 0.7264, 0.5547, 0.7403],
#     [-0.8471, -1.7371, 1.3333, 0.0395, 1.0787]])
# =============================================================================
#11.正交矩阵 - (semi)orthogonal matrix
#torch.nn.init.orthogonal_(tensor, gain=1)
#From - Exact solutions to the nonlinear dynamics of learning in deep linear neural networks - Saxe 2013
print(nn.init.orthogonal_(w))
# =============================================================================
# tensor([[-0.0346, -0.7607, -0.0428, 0.4771, 0.4366],
#     [-0.0412, -0.0836, 0.9847, 0.0703, -0.1293],
#     [-0.6639, 0.4551, 0.0731, 0.1674, 0.5646]])
# =============================================================================
#12.稀疏矩阵 - sparse matrix 
#torch.nn.init.sparse_(tensor, sparsity, std=0.01)
#From - Deep learning via Hessian-free optimization - Martens 2010
print(nn.init.sparse_(w, sparsity=0.1))
# =============================================================================
# tensor([[ 0.0000, 0.0000, -0.0077, 0.0000, -0.0046],
#     [ 0.0152, 0.0030, 0.0000, -0.0029, 0.0005],
#     [ 0.0199, 0.0132, -0.0088, 0.0060, 0.0000]])
# =============================================================================

补充:【pytorch参数初始化】 pytorch默认参数初始化以及自定义参数初始化

本文用两个问题来引入

1.pytorch自定义网络结构不进行参数初始化会怎样,参数值是随机的吗?

2.如何自定义参数初始化?

先回答第一个问题

在pytorch中,有自己默认初始化参数方式,所以在你定义好网络结构以后,不进行参数初始化也是可以的。

1.Conv2d继承自_ConvNd,在_ConvNd中,可以看到默认参数就是进行初始化的,如下图所示

Pytorch - TORCH.NN.INIT 参数初始化的操作

Pytorch - TORCH.NN.INIT 参数初始化的操作

2.torch.nn.BatchNorm2d也一样有默认初始化的方式

Pytorch - TORCH.NN.INIT 参数初始化的操作

3.torch.nn.Linear也如此

Pytorch - TORCH.NN.INIT 参数初始化的操作

现在来回答第二个问题。

pytorch中对神经网络模型中的参数进行初始化方法如下:

from torch.nn import init
#define the initial function to init the layer's parameters for the network
def weigth_init(m):
  if isinstance(m, nn.Conv2d):
    init.xavier_uniform_(m.weight.data)
    init.constant_(m.bias.data,0.1)
  elif isinstance(m, nn.BatchNorm2d):
    m.weight.data.fill_(1)
    m.bias.data.zero_()
  elif isinstance(m, nn.Linear):
    m.weight.data.normal_(0,0.01)
    m.bias.data.zero_()

首先定义了一个初始化函数,接着进行调用就ok了,不过要先把网络模型实例化:

#Define Network
  model = Net(args.input_channel,args.output_channel)
  model.apply(weigth_init)

此上就完成了对模型中训练参数的初始化。

在知乎上也有看到一个类似的版本,也相应的贴上来作为参考了:

def initNetParams(net):
  '''Init net parameters.'''
  for m in net.modules():
    if isinstance(m, nn.Conv2d):
      init.xavier_uniform(m.weight)
      if m.bias:
        init.constant(m.bias, 0)
    elif isinstance(m, nn.BatchNorm2d):
      init.constant(m.weight, 1)
      init.constant(m.bias, 0)
    elif isinstance(m, nn.Linear):
      init.normal(m.weight, std=1e-3)
      if m.bias:
        init.constant(m.bias, 0) 
initNetParams(net)

再说一下关于模型的保存及加载

1.保存有两种方式,第一种是保存模型的整个结构信息和参数,第二种是只保存模型的参数

#保存整个网络模型及参数
 torch.save(net, 'net.pkl') 
 
 #仅保存模型参数
 torch.save(net.state_dict(), 'net_params.pkl')

2.加载对应保存的两种网络

# 保存和加载整个模型 
torch.save(model_object, 'model.pth') 
model = torch.load('model.pth') 
 
# 仅保存和加载模型参数 
torch.save(model_object.state_dict(), 'params.pth') 
model_object.load_state_dict(torch.load('params.pth'))

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。如有错误或未考虑完全的地方,望不吝赐教。

Python 相关文章推荐
python自动格式化json文件的方法
Mar 11 Python
python用模块zlib压缩与解压字符串和文件的方法
Dec 16 Python
python使用turtle库绘制时钟
Mar 25 Python
Python图像处理实现两幅图像合成一幅图像的方法【测试可用】
Jan 04 Python
python实现在遍历列表时,直接对dict元素增加字段的方法
Jan 15 Python
pymysql 开启调试模式的实现
Sep 24 Python
Python爬虫设置ip代理过程解析
Jul 20 Python
python speech模块的使用方法
Sep 09 Python
python 5个实用的技巧
Sep 27 Python
python 利用toapi库自动生成api
Oct 19 Python
python 实现德洛内三角剖分的操作
Apr 22 Python
梳理总结Python开发中需要摒弃的18个坏习惯
Jan 22 Python
python FTP编程基础入门
Feb 27 #Python
python SOCKET编程基础入门
Feb 27 #Python
python 对xml解析的示例
Feb 27 #Python
python如何发送带有附件、正文为HTML的邮件
Feb 27 #Python
pytorch __init__、forward与__call__的用法小结
Feb 27 #Python
python 实现有道翻译功能
Feb 26 #Python
Python爬取酷狗MP3音频的步骤
Feb 26 #Python
You might like
PHP跨时区(UTC时间)应用解决方案
2013/01/11 PHP
PHP实用小技巧之调用录像的方法
2019/12/05 PHP
showModelessDialog()使用详解
2006/09/07 Javascript
Javascript操纵Cookie实现购物车程序
2006/11/23 Javascript
ie和firefox中img对象区别的困惑
2006/12/27 Javascript
JavaScript 私有成员分析
2009/01/13 Javascript
使用jQuery简化Ajax开发 Ajax开发入门
2009/10/14 Javascript
jquery 图片轮换效果
2010/07/29 Javascript
javascript 获取所有id中包含某关键字的控件的实现代码
2010/11/25 Javascript
两种常用的javascript数组去重方法思路及代码
2013/03/26 Javascript
jQuery插件实现控制网页元素动态居中显示
2015/03/24 Javascript
JavaScript对象反射用法实例
2015/04/17 Javascript
jQuery中$.ajax()和$.getJson()同步处理详解
2015/08/12 Javascript
微信小程序 slider的简单实例
2017/04/19 Javascript
jQuery实现当拉动滚动条到底部加载数据的方法分析
2019/01/24 jQuery
jquery向后台提交数组的代码分析
2020/02/20 jQuery
JavaScript事件循环及宏任务微任务原理解析
2020/09/02 Javascript
微信小程序实现底部弹出模态框
2020/11/18 Javascript
[05:26]2014DOTA2西雅图国际邀请赛 iG战队巡礼
2014/07/07 DOTA
[50:01]Ti4 冒泡赛第二天 NEWBEE vs Titan
2014/07/15 DOTA
tornado框架blog模块分析与使用
2013/11/21 Python
跟老齐学Python之print详解
2014/09/28 Python
在windows下Python打印彩色字体的方法
2018/05/15 Python
python中break、continue 、exit() 、pass终止循环的区别详解
2019/07/08 Python
利用pytorch实现对CIFAR-10数据集的分类
2020/01/14 Python
python实现扫雷游戏
2020/03/03 Python
Jupyter 无法下载文件夹如何实现曲线救国
2020/04/22 Python
英国领先的大码时装品牌之一:Elvi
2018/08/26 全球购物
倡导文明标语
2014/06/16 职场文书
2014年转正工作总结
2014/11/08 职场文书
2015年机关后勤工作总结
2015/05/26 职场文书
2019年教师节活动策划方案
2019/09/09 职场文书
2019年圣诞节祝福语集锦
2019/12/25 职场文书
Python requests库参数提交的注意事项总结
2021/03/29 Python
Python常用配置文件ini、json、yaml读写总结
2021/07/09 Python
canvas 中如何实现物体的框选
2022/08/05 Javascript