使用Keras训练好的.h5模型来测试一个实例


Posted in Python onJuly 06, 2020

环境:python 3.6 +opencv3+Keras

训练集:MNIST

下面划重点:因为MNIST使用的是黑底白字的图片,所以你自己手写数字的时候一定要注意把得到的图片也改成黑底白字的,否则会识别错(至少我得到的结论是这样的 ,之前用白底黑字的图总是识别出错)

注意:需要测试图片需要为与训练模时相同大小的图片,RGB图像需转为gray

代码:

import cv2
import numpy as np
from keras.models import load_model

model = load_model('fm_cnn_BN.h5') #选取自己的.h模型名称
image = cv2.imread('6_b.png')
img = cv2.cvtColor(image,cv2.COLOR_RGB2GRAY) # RGB图像转为gray

#需要用reshape定义出例子的个数,图片的 通道数,图片的长与宽。具体的参加keras文档
img = (img.reshape(1, 1, 28, 28)).astype('int32')/255 
predict = model.predict_classes(img)
print ('识别为:')
print (predict)

cv2.imshow("Image1", image)
cv2.waitKey(0)

补充知识:keras转tf并加速(1)Keras转TensorFlow,并调用转换后模型进行预测

由于方便快捷,所以先使用Keras来搭建网络并进行训练,得到比较好的模型后,这时候就该考虑做成服务使用的问题了,TensorFlow的serving就很合适,所以需要把Keras保存的模型转为TensorFlow格式来使用。

Keras模型转TensorFlow

其实由于TensorFlow本身以及把Keras作为其高层简化API,且也是建议由浅入深地来研究应用,TensorFlow本身就对Keras的模型格式转化有支持,所以核心的代码很少。这里给出一份代码:https://github.com/amir-abdi/keras_to_tensorflow,作者提供了一份很好的工具,能够满足绝大多数人的需求了。原理很简单:原理很简单,首先用 Keras 读取 .h5 模型文件,然后用 tensorflow 的 convert_variables_to_constants 函数将所有变量转换成常量,最后再 write_graph 就是一个包含了网络以及参数值的 .pb 文件了。

如果你的Keras模型是一个包含了网络结构和权重的h5文件,那么使用下面的命令就可以了:

python keras_to_tensorflow.py 
 --input_model="path/to/keras/model.h5" 
 --output_model="path/to/save/model.pb"

两个参数,一个输入路径,一个输出路径。输出路径即使你没创建好,代码也会帮你创建。建议使用绝对地址。此外作者还做了很多选项,比如如果你的keras模型文件分为网络结构和权重两个文件也可以支持,或者你想给转化后的网络节点编号,或者想在TensorFlow下继续训练等等,这份代码都是支持的,只是使用上需要输入不同的参数来设置。

如果转换成功则输出如下:

begin====================================================
I1229 14:29:44.819010 140709034264384 keras_to_tf.py:119] Input nodes names are: [u'input_1']
I1229 14:29:44.819385 140709034264384 keras_to_tf.py:137] Converted output node names are: [u'dense_2/Sigmoid']
INFO:tensorflow:Froze 322 variables.
I1229 14:29:47.091161 140709034264384 tf_logging.py:82] Froze 322 variables.
Converted 322 variables to const ops.
I1229 14:29:48.504235 140709034264384 keras_to_tf.py:170] Saved the freezed graph at /path/to/save/model.pb

这里首先把输入的层和输出的层名字给出来了,也就是“input_1”和“dense_2/Sigmoid”,这两个下面会用到。另外还告诉你冻结了多少个变量,以及你输出的模型路径,pb文件就是TensorFlow下的模型文件。

使用TensorFlow模型

转换后我们当然要使用一下看是否转换成功,其实也就是TensorFlow的常见代码,如果只用过Keras的,可以参考一下:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
from tensorflow.python.platform import gfile
import cv2
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "6"
 
# img = cv2.imread(os.path.expanduser('/test_imgs/img_1.png'))
# img = cv2.resize(img, dsize=(1000, 1000), interpolation=cv2.INTER_LINEAR)
# img = img.astype(float)
# img /= 255
# img = np.array([img])
 
# 初始化TensorFlow的session
with tf.Session() as sess:
 # 读取得到的pb文件加载模型
 with gfile.FastGFile("/path/to/save/model.pb",'rb') as f:
 graph_def = tf.GraphDef()
 graph_def.ParseFromString(f.read())
 # 把图加到session中
 tf.import_graph_def(graph_def, name='')
 
 # 获取当前计算图
 graph = tf.get_default_graph()
 
 # 从图中获输出那一层
 pred = graph.get_tensor_by_name("dense_2/Sigmoid:0")
 
 # 运行并预测输入的img
 res = sess.run(pred, feed_dict={"input_1:0": img})
 
 # 执行得到结果
 pred_index = res[0][0]
 print('Predict:', pred_index)

在代码中可以看到,我们用到了上面得到的输入层和输出层的名称,但是在后面加了一个“:0”,也就是索引,因为名称只是指定了一个层,大部分层的输出都是一个tensor,但依然有输出多个tensor的层,所以需要制定是第几个输出,对于一个输出的情况,那就是索引0了。输入同理。

如果你输出res,会得到这样的结果:

('Predict:', array([[0.9998584]], dtype=float32))

这也就是为什么我们要取res[0][0]了,这个输出其实取决于具体的需求,因为这里我是对一张图做二分类预测,所以会得到这样一个结果

运行的结果如果和使用Keras模型时一样,那就说明转换成功了!

以上这篇使用Keras训练好的.h5模型来测试一个实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python中使用item()方法遍历字典的例子
Aug 26 Python
Python多进程编程技术实例分析
Sep 16 Python
多版本Python共存的配置方法
May 22 Python
numpy中索引和切片详解
Dec 15 Python
Tensorflow中使用tfrecord方式读取数据的方法
Jun 19 Python
Flask框架URL管理操作示例【基于@app.route】
Jul 23 Python
Python实现计算字符串中出现次数最多的字符示例
Jan 21 Python
详解python中sort排序使用
Mar 23 Python
详解python执行shell脚本创建用户及相关操作
Apr 11 Python
解决Python数据可视化中文部分显示方块问题
May 16 Python
pycharm 使用tab跳出正在编辑的括号(){}{}等问题
Feb 26 Python
浅谈Python中的函数(def)及参数传递操作
May 25 Python
Keras实现DenseNet结构操作
Jul 06 #Python
基于Python和C++实现删除链表的节点
Jul 06 #Python
基于Python 的语音重采样函数解析
Jul 06 #Python
python interpolate插值实例
Jul 06 #Python
基于Python实现2种反转链表方法代码实例
Jul 06 #Python
简单了解Django项目应用创建过程
Jul 06 #Python
如何在mac下配置python虚拟环境
Jul 06 #Python
You might like
PHP 代码规范小结
2012/03/08 PHP
php禁止某ip或ip地址段访问的方法
2015/02/25 PHP
PHP文字转图片功能原理与实现方法分析
2017/08/31 PHP
基于ThinkPHP删除目录及目录文件函数
2020/10/28 PHP
用JavaScript脚本实现Web页面信息交互
2006/10/11 Javascript
用jQuery中的ajax分页实现代码
2011/09/20 Javascript
基于JQuery的类似新浪微博展示信息效果的代码
2012/07/23 Javascript
js日期相关函数总结分享
2013/10/15 Javascript
JavaScript实现查找字符串中第一个不重复的字符
2014/12/29 Javascript
基于JS实现的倒计时程序实例
2015/07/24 Javascript
详解Wondows下Node.js使用MongoDB的环境配置
2016/03/01 Javascript
jqGrid用法汇总(全经典)
2016/06/28 Javascript
js从数组中删除指定值(不是指定位置)的元素实现代码
2016/09/13 Javascript
聊一聊JS中的prototype
2016/09/29 Javascript
微信小程序  网络请求API详解
2016/10/25 Javascript
Vue 固定头 固定列 点击表头可排序的表格组件
2016/11/25 Javascript
JavaScript中的子窗口与父窗口的互相调用问题
2017/02/08 Javascript
VUE2.0中Jsonp的使用方法
2018/05/22 Javascript
JS 遍历 json 和 JQuery 遍历json操作完整示例
2019/11/11 jQuery
js实现双人五子棋小游戏
2020/05/28 Javascript
Javascript call及apply应用场景及实例
2020/08/26 Javascript
基于原生JS封装的Modal对话框插件的示例代码
2020/09/09 Javascript
python获取当前时间对应unix时间戳的方法
2015/05/15 Python
Python基于dom操作xml数据的方法示例
2018/05/12 Python
python列表生成器迭代器实例解析
2019/12/19 Python
pycharm激活码有效到2020年11月底
2020/09/18 Python
关于HTML5的22个初级技巧(图文教程)
2012/06/21 HTML / CSS
Html5游戏开发之乒乓Ping Pong游戏示例(二)
2013/01/21 HTML / CSS
申报职称专业技术个人的自我评价
2013/12/12 职场文书
大学运动会入场词
2014/02/22 职场文书
蛋糕店创业计划书
2014/05/06 职场文书
预备党员期盼十八届四中全会召开思想汇报
2014/10/17 职场文书
开场白怎么写
2015/06/01 职场文书
工商局调档介绍信
2015/10/22 职场文书
员工试用期工作总结
2019/06/20 职场文书
一劳永逸彻底解决pip install慢的办法
2021/05/24 Python