使用Keras训练好的.h5模型来测试一个实例


Posted in Python onJuly 06, 2020

环境:python 3.6 +opencv3+Keras

训练集:MNIST

下面划重点:因为MNIST使用的是黑底白字的图片,所以你自己手写数字的时候一定要注意把得到的图片也改成黑底白字的,否则会识别错(至少我得到的结论是这样的 ,之前用白底黑字的图总是识别出错)

注意:需要测试图片需要为与训练模时相同大小的图片,RGB图像需转为gray

代码:

import cv2
import numpy as np
from keras.models import load_model

model = load_model('fm_cnn_BN.h5') #选取自己的.h模型名称
image = cv2.imread('6_b.png')
img = cv2.cvtColor(image,cv2.COLOR_RGB2GRAY) # RGB图像转为gray

#需要用reshape定义出例子的个数,图片的 通道数,图片的长与宽。具体的参加keras文档
img = (img.reshape(1, 1, 28, 28)).astype('int32')/255 
predict = model.predict_classes(img)
print ('识别为:')
print (predict)

cv2.imshow("Image1", image)
cv2.waitKey(0)

补充知识:keras转tf并加速(1)Keras转TensorFlow,并调用转换后模型进行预测

由于方便快捷,所以先使用Keras来搭建网络并进行训练,得到比较好的模型后,这时候就该考虑做成服务使用的问题了,TensorFlow的serving就很合适,所以需要把Keras保存的模型转为TensorFlow格式来使用。

Keras模型转TensorFlow

其实由于TensorFlow本身以及把Keras作为其高层简化API,且也是建议由浅入深地来研究应用,TensorFlow本身就对Keras的模型格式转化有支持,所以核心的代码很少。这里给出一份代码:https://github.com/amir-abdi/keras_to_tensorflow,作者提供了一份很好的工具,能够满足绝大多数人的需求了。原理很简单:原理很简单,首先用 Keras 读取 .h5 模型文件,然后用 tensorflow 的 convert_variables_to_constants 函数将所有变量转换成常量,最后再 write_graph 就是一个包含了网络以及参数值的 .pb 文件了。

如果你的Keras模型是一个包含了网络结构和权重的h5文件,那么使用下面的命令就可以了:

python keras_to_tensorflow.py 
 --input_model="path/to/keras/model.h5" 
 --output_model="path/to/save/model.pb"

两个参数,一个输入路径,一个输出路径。输出路径即使你没创建好,代码也会帮你创建。建议使用绝对地址。此外作者还做了很多选项,比如如果你的keras模型文件分为网络结构和权重两个文件也可以支持,或者你想给转化后的网络节点编号,或者想在TensorFlow下继续训练等等,这份代码都是支持的,只是使用上需要输入不同的参数来设置。

如果转换成功则输出如下:

begin====================================================
I1229 14:29:44.819010 140709034264384 keras_to_tf.py:119] Input nodes names are: [u'input_1']
I1229 14:29:44.819385 140709034264384 keras_to_tf.py:137] Converted output node names are: [u'dense_2/Sigmoid']
INFO:tensorflow:Froze 322 variables.
I1229 14:29:47.091161 140709034264384 tf_logging.py:82] Froze 322 variables.
Converted 322 variables to const ops.
I1229 14:29:48.504235 140709034264384 keras_to_tf.py:170] Saved the freezed graph at /path/to/save/model.pb

这里首先把输入的层和输出的层名字给出来了,也就是“input_1”和“dense_2/Sigmoid”,这两个下面会用到。另外还告诉你冻结了多少个变量,以及你输出的模型路径,pb文件就是TensorFlow下的模型文件。

使用TensorFlow模型

转换后我们当然要使用一下看是否转换成功,其实也就是TensorFlow的常见代码,如果只用过Keras的,可以参考一下:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
from tensorflow.python.platform import gfile
import cv2
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "6"
 
# img = cv2.imread(os.path.expanduser('/test_imgs/img_1.png'))
# img = cv2.resize(img, dsize=(1000, 1000), interpolation=cv2.INTER_LINEAR)
# img = img.astype(float)
# img /= 255
# img = np.array([img])
 
# 初始化TensorFlow的session
with tf.Session() as sess:
 # 读取得到的pb文件加载模型
 with gfile.FastGFile("/path/to/save/model.pb",'rb') as f:
 graph_def = tf.GraphDef()
 graph_def.ParseFromString(f.read())
 # 把图加到session中
 tf.import_graph_def(graph_def, name='')
 
 # 获取当前计算图
 graph = tf.get_default_graph()
 
 # 从图中获输出那一层
 pred = graph.get_tensor_by_name("dense_2/Sigmoid:0")
 
 # 运行并预测输入的img
 res = sess.run(pred, feed_dict={"input_1:0": img})
 
 # 执行得到结果
 pred_index = res[0][0]
 print('Predict:', pred_index)

在代码中可以看到,我们用到了上面得到的输入层和输出层的名称,但是在后面加了一个“:0”,也就是索引,因为名称只是指定了一个层,大部分层的输出都是一个tensor,但依然有输出多个tensor的层,所以需要制定是第几个输出,对于一个输出的情况,那就是索引0了。输入同理。

如果你输出res,会得到这样的结果:

('Predict:', array([[0.9998584]], dtype=float32))

这也就是为什么我们要取res[0][0]了,这个输出其实取决于具体的需求,因为这里我是对一张图做二分类预测,所以会得到这样一个结果

运行的结果如果和使用Keras模型时一样,那就说明转换成功了!

以上这篇使用Keras训练好的.h5模型来测试一个实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
wxpython 学习笔记 第一天
Feb 09 Python
Python实现的爬虫功能代码
Jun 24 Python
selenium + python 获取table数据的示例讲解
Oct 13 Python
Python文件常见操作实例分析【读写、遍历】
Dec 10 Python
PyCharm导入python项目并配置虚拟环境的教程详解
Oct 13 Python
python颜色随机生成器的实例代码
Jan 10 Python
python多进程下的生产者和消费者模型
May 07 Python
Python环境管理virtualenv&virtualenvwrapper的配置详解
Jul 01 Python
为什么说python更适合树莓派编程
Jul 20 Python
python实现逻辑回归的示例
Oct 09 Python
Python+MySQL随机试卷及答案生成程序的示例代码
Feb 01 Python
python实现经典排序算法的示例代码
Feb 07 Python
Keras实现DenseNet结构操作
Jul 06 #Python
基于Python和C++实现删除链表的节点
Jul 06 #Python
基于Python 的语音重采样函数解析
Jul 06 #Python
python interpolate插值实例
Jul 06 #Python
基于Python实现2种反转链表方法代码实例
Jul 06 #Python
简单了解Django项目应用创建过程
Jul 06 #Python
如何在mac下配置python虚拟环境
Jul 06 #Python
You might like
做一个有下拉功能的留言版
2006/10/09 PHP
PIGCMS 如何关闭聊天机器人
2015/02/12 PHP
PHP开发之用微信远程遥控服务器
2018/01/25 PHP
Javascript Select操作大集合
2009/05/26 Javascript
js取两个数组的交集|差集|并集|补集|去重示例代码
2013/08/07 Javascript
鼠标选择动态改变网页背景颜色的JS代码
2013/12/10 Javascript
在javascript中实现函数数组的方法
2013/12/25 Javascript
JavaScript中跨域调用Flash的方法
2014/08/11 Javascript
Javascript中arguments和arguments.callee的区别浅析
2015/04/24 Javascript
javascript中mouseover、mouseout使用详解
2015/07/19 Javascript
JS实现table表格数据排序功能(可支持动态数据+分页效果)
2016/05/26 Javascript
老生常谈JavaScript 正则表达式语法
2016/08/20 Javascript
js中作用域的实例解析
2017/03/16 Javascript
jQuery遮罩层实例讲解
2017/05/11 jQuery
深入浅析JavaScript中的RegExp对象
2017/09/18 Javascript
two.js之实现动画效果示例
2017/11/06 Javascript
Vue 指令实现按钮级别权限管理功能
2019/04/23 Javascript
vue组件间通信六种方式(总结篇)
2019/05/15 Javascript
浅谈Vue SSR中的Bundle的具有使用
2019/11/21 Javascript
vue使用lodop打印控件实现浏览器兼容打印的方法
2021/02/07 Vue.js
python定时器使用示例分享
2014/02/16 Python
Python中Collection的使用小技巧
2014/08/18 Python
浅析python函数式编程
2020/09/26 Python
python关于倒排列的知识点总结
2020/10/13 Python
CSS3制作酷炫的三维相册效果
2016/07/01 HTML / CSS
世界第一曲奇连锁店:Mrs. Fields Cookies
2017/02/04 全球购物
澳大利亚首屈一指的鞋类品牌:Tony Bianco
2018/03/13 全球购物
菲律宾购物网站:Lazada菲律宾
2018/04/05 全球购物
Tom Dixon官网:英国照明及家具设计和制造公司
2019/03/01 全球购物
下面关于"联合"的题目的输出是什么
2013/08/06 面试题
办公室副主任岗位职责
2013/11/25 职场文书
九月份红领巾广播稿
2014/01/22 职场文书
给老婆道歉的话
2015/01/20 职场文书
2015年预防青少年违法犯罪工作总结
2015/05/22 职场文书
百善孝为先:关于孝道的经典语录
2019/10/18 职场文书
python解决12306登录验证码的实现
2021/04/18 Python