基于Tensorflow高阶读写教程


Posted in Python onFebruary 10, 2020

前言

tensorflow提供了多种读写方式,我们最常见的就是使用tf.placeholder()这种方法,使用这个方法需要我们提前处理好数据格式,不过这种处理方法也有缺陷:不便于存储和不利于分布式处理,因此,TensorFlow提供了一个标准的读写格式和存储协议,不仅如此,TensorFlow也提供了基于多线程队列的读取方式,高效而简洁,读取速度也更快,据一个博主说速度能提高10倍,相当的诱人.【下面的实验均是在tensorflow1.0的环境下进行】

tensorflow的example解析

example协议

在TensorFlow官方github文档里面,有个example.proto的文件,这个文件详细说明了TensorFlow里面的example协议,下面我将简要叙述一下。

tensorflow的example包含的是基于key-value对的存储方法,其中key是一个字符串,其映射到的是feature信息,feature包含三种类型:

BytesList:字符串列表

FloatList:浮点数列表

Int64List:64位整数列表

以上三种类型都是列表类型,意味着都能够进行拓展,但是也是因为这种弹性格式,所以在解析的时候,需要制定解析参数,这个稍后会讲。

在TensorFlow中,example是按照行读的,这个需要时刻记住,比如存储 基于Tensorflow高阶读写教程 矩阵,使用ByteList存储的话,需要 基于Tensorflow高阶读写教程 大小的列表,按照每一行的读取方式存放。

tf.tain.example

官方给了一个example的例子:

An Example for a movie recommendation application:
 features {
 feature {
 key: "age"
 value { float_list {
  value: 29.0
 }}
 }
 feature {
 key: "movie"
 value { bytes_list {
  value: "The Shawshank Redemption"
  value: "Fight Club"
 }}
 }
 feature {
 key: "movie_ratings"
 value { float_list {
  value: 9.0
  value: 9.7
 }}
 }
 feature {
 key: "suggestion"
 value { bytes_list {
  value: "Inception"
 }}
 }

上面的例子中包含一个features,features里面包含一些feature,和之前说的一样,每个feature都是由键值对组成的,其key是一个字符串,其value是上面提到的三种类型之一。

Example中有几个一致性规则需要注意:

如果一个example的feature K 的数据类型是 TT,那么所有其他的所有feature K都应该是这个数据类型

feature K 的value list的item个数可能在不同的example中是不一样多的,这个取决于你的需求

如果在一个example中没有feature k,那么如果在解析的时候指定一个默认值的话,那么将会返回一个默认值

如果一个feature k 不包含任何的value值,那么将会返回一个空的tensor而不是默认值

tf.train.SequenceExample

sequence_example表示的是一个或者多个sequences,同时还包括上下文context,其中,context表示的是feature_lists的总体特征,如数据集的长度等,feature_list包含一个key,一个value,value表示的是features集合(feature_lists),同样,官方源码也给出了sequence_example的例子:

//ontext: {
 feature: {
 key : "locale"
 value: {
 bytes_list: {
  value: [ "pt_BR" ]
 }
 }
 }
 feature: {
 key : "age"
 value: {
 float_list: {
  value: [ 19.0 ]
 }
 }
 }
 feature: {
 key : "favorites"
 value: {
 bytes_list: {
  value: [ "Majesty Rose", "Savannah Outen", "One Direction" ]
 }
 }
 }
 }
 feature_lists: {
 feature_list: {
 key : "movie_ratings"
 value: {
 feature: {
  float_list: {
  value: [ 4.5 ]
  }
 }
 feature: {
  float_list: {
  value: [ 5.0 ]
  }
 }
 }
 }
 feature_list: {
 key : "movie_names"
 value: {
 feature: {
  bytes_list: {
  value: [ "The Shawshank Redemption" ]
  }
 }
 feature: {
  bytes_list: {
  value: [ "Fight Club" ]
  }
 }
 }
 }
 feature_list: {
 key : "actors"
 value: {
 feature: {
  bytes_list: {
  value: [ "Tim Robbins", "Morgan Freeman" ]
  }
 }
 feature: {
  bytes_list: {
  value: [ "Brad Pitt", "Edward Norton", "Helena Bonham Carter" ]
  }
 }
 }
 }
 }

一致性的sequence_example遵循以下规则:

1、context中,所有feature k要保持数据类型一致性

2、一些example中的某些feature_lists L可能会丢失,如果在解析的时候允许为空的话,那么在解析的时候回返回一个空的list

3、feature_lists可能是空的

4、如果一个feature_list是非空的,那么其里面的所有feature都必须是一个数据类型

5、如果一个feature_list是非空的,那么对于里面的feature的长度是不是需要一样的,这个取决于解析时候的参数

tensorflow 的parse example解析

在官方代码*[parsing_ops.py]*中有关于parse example的详细介绍,我在这里再叙述一下。

tf.parse_example

来看tf.parse_example的方法定义:

def parse_example(serialized, features, name=None, example_names=None)

parse_example是把example解析为词典型的tensor

参数含义:

serialized:一个batch的序列化的example

features:解析example的规则

name:当前操作的名字

example_name:当前解析example的proto名称

这里重点要说的是第二个参数,也就是features,features是把serialized的example中按照键值映射到三种tensor: 1,VarlenFeature 2, SparseFeature 3,FixedLenFeature

下面对这三种映射方式做一个简要的叙述:

VarlenFeature

是按照键值把example的value映射到SpareTensor对象,假设我们有如下的serialized数据:

serialized = [
 features
 { feature { key: "ft" value { float_list { value: [1.0, 2.0] } } } },
 features
 { feature []},
 features
 { feature { key: "ft" value { float_list { value: [3.0] } } }
 ]

使用VarLenFeatures方法:

features={
 "ft":tf.VarLenFeature(tf.float32)
}

那么我们将得到的是:

{"ft": SparseTensor(indices=[[0, 0], [0, 1], [2, 0]],
   values=[1.0, 2.0, 3.0],
   dense_shape=(3, 2)) }

可见,显示的indices是ft值的索引,values是值,dense_shape是indices的shape

FixedLenFeature

而FixedLenFeature是按照键值对将features映射到大小为[serilized.size(),df.shape]的矩阵,这里的FixLenFeature指的是每个键值对应的feature的size是一样的。对于上面的例子,如果使用:

features: {
 "ft": FixedLenFeature([2], dtype=tf.float32, default_value=-1),
 }

那么我们将得到:

{"ft": [[1.0, 2.0], [3.0, -1.0]]}

可见返回的值是一个[2,2]的矩阵,如果返回的长度不足给定的长度,那么将会使用默认值去填充。

【注意:】

事实上,在TensorFlow1.0环境下,根据官方文档上的内容,我们是能够得到VarLenFeature的值,但是得不到FixLenFeature的值,因此建议如果使用定长的FixedLenFeature,一定要保证对应的数据是等长的。

做个试验来说明:

#coding=utf-8

import tensorflow as tf
import os
keys=[[1.0],[],[2.0,3.0]]
sess=tf.InteractiveSession()
sess.run(tf.global_variables_initializer())

def make_example(key):
 example = tf.train.Example(features=tf.train.Features(
 feature={
  'ft':tf.train.Feature(float_list=tf.train.FloatList(value=key))
 }
 ))
 return example

filename="tmp.tfrecords"
if os.path.exists(filename):
 os.remove(filename)
writer = tf.python_io.TFRecordWriter(filename)
for key in keys:
 ex = make_example(key)
 writer.write(ex.SerializeToString())
writer.close()

reader = tf.TFRecordReader()
filename_queue = tf.train.string_input_producer(["tmp.tfrecords"],num_epochs=1)
_,serialized_example =reader.read(filename_queue)

# coord = tf.train.Coordinator()
# threads = tf.train.start_queue_runners(sess=sess,coord=coord)

batch = tf.train.batch(tensors=[serialized_example],batch_size=3)

features={
 "ft":tf.VarLenFeature(tf.float32)
}
#key_parsed = tf.parse_single_example(make_example([1,2,3]).SerializeToString(),features)
key_parsed = tf.parse_example(batch,features)
#start the queue
print tf.contrib.learn.run_n(key_parsed)

#[]means scalar

features={
 "ft":tf.FixedLenFeature(shape=[2],dtype=tf.float32)
}

key_parsed = tf.parse_example(batch,features)

print tf.contrib.learn.run_n(key_parsed)

结果返回如下:

[{'ft': SparseTensorValue(indices=array([[0, 0],
 [2, 0],
 [2, 1]]), values=array([ 1., 2., 3.], dtype=float32), dense_shape=array([3, 2]))}]

InvalidArgumentError (see above for traceback): Name: <unknown>, Key: ft, Index: 0. Number of float values != expected. Values size: 1 but output shape: [2]

可见,对于VarLenFeature,是能返回正常结果的,但是对于FixedLenFeature则返回size不对,可见如果对于边长的数据还是不要使用FixedLenFeature为好。

如果把数据设置为[[1.0,2.0],[2.0,3.0]],那么FixedLenFeature返回的是:

[{'ft': array([[ 1., 2.],
 [ 2., 3.]], dtype=float32)}]

这是正确的结果。

SparseFeature可以从下面的例子来说明:

`serialized`:
 ```
 [
 features {
 feature { key: "val" value { float_list { value: [ 0.5, -1.0 ] } } }
 feature { key: "ix" value { int64_list { value: [ 3, 20 ] } } }
 },
 features {
 feature { key: "val" value { float_list { value: [ 0.0 ] } } }
 feature { key: "ix" value { int64_list { value: [ 42 ] } } }
 }
 ]
 ```
 And arguments
 ```
 example_names: ["input0", "input1"],
 features: {
 "sparse": SparseFeature(
  index_key="ix", value_key="val", dtype=tf.float32, size=100),
 }
 ```
 Then the output is a dictionary:
 ```python
 {
 "sparse": SparseTensor(
 indices=[[0, 3], [0, 20], [1, 42]],
 values=[0.5, -1.0, 0.0]
 dense_shape=[2, 100]),
 }
 ```

现在明白了Example的协议和tf.parse_example的方法之后,我们再看看看几个简单的parse_example

tf.parse_single_example

区别于tf.parse_example,tf.parse_single_example只是少了一个batch而已,其余的都是一样的,我们看代码:

#coding=utf-8

import tensorflow as tf
import os

sess=tf.InteractiveSession()
sess.run(tf.global_variables_initializer())

def make_example(key):
 example = tf.train.Example(features=tf.train.Features(
 feature={
  'ft':tf.train.Feature(float_list=tf.train.FloatList(value=key))
 }
 ))
 return example

features={
 "ft":tf.FixedLenFeature(shape=[3],dtype=tf.float32)
}

key_parsed = tf.parse_single_example(make_example([1.0,2.0,3.0]).SerializeToString(),features)

print tf.contrib.learn.run_n(key_parsed)

结果返回为:

[{'ft': array([ 1., 2., 3.], dtype=float32)}]

tf.parse_single_sequence_example

tf.parse_single_sequence_example对应的是tf.train,SequenceExample,我们以下面代码说明,single_sequence_example的用法:

#coding=utf-8

import tensorflow as tf
import os
keys=[[1.0,2.0],[2.0,3.0]]
sess=tf.InteractiveSession()
sess.run(tf.global_variables_initializer())

def make_example(locale,age,score,times):

 example = tf.train.SequenceExample(
 context=tf.train.Features(
  feature={
  "locale":tf.train.Feature(bytes_list=tf.train.BytesList(value=[locale])),
  "age":tf.train.Feature(int64_list=tf.train.Int64List(value=[age]))
 }),
 feature_lists=tf.train.FeatureLists(
  feature_list={
  "movie_rating":tf.train.FeatureList(feature=[tf.train.Feature(float_list=tf.train.FloatList(value=score)) for i in range(times)])
  }
 )
 )
 return example.SerializeToString()

context_features = {
 "locale": tf.FixedLenFeature([],dtype=tf.string),
 "age": tf.FixedLenFeature([],dtype=tf.int64)
}
sequence_features = {
 "movie_rating": tf.FixedLenSequenceFeature([3], dtype=tf.float32,allow_missing=True)
}

context_parsed, sequence_parsed = tf.parse_single_sequence_example(make_example("china",24,[1.0,3.5,4.0],2),context_features=context_features,sequence_features=sequence_features)

print tf.contrib.learn.run_n(context_parsed)
print tf.contrib.learn.run_n(sequence_parsed)

结果打印为:

[{'locale': 'china', 'age': 24}]

[{'movie_rating': array([[ 1. , 3.5, 4. ],
 [ 1. , 3.5, 4. ]], dtype=float32)}]

tf.parse_single_sequence_example的自动补齐

在常用的文本处理方面,由于文本经常是非定长的,因此需要经常补齐操作,例如使用CNN进行文本分类的时候就需要进行padding操作,通常我们把padding的索引设置为0,而且在文本预处理的时候也需要额外的代码进行处理,而TensorFlow提供了一个比较好的自动补齐工具,就是在tf.train.batch里面把参数dynamic_pad设置成True,样例如下:

#coding=utf-8

import tensorflow as tf
import os
keys=[[1,2],[2]]
sess=tf.InteractiveSession()
sess.run(tf.global_variables_initializer())



def make_example(key):

 example = tf.train.SequenceExample(
 context=tf.train.Features(
  feature={
  "length":tf.train.Feature(int64_list=tf.train.Int64List(value=[len(key)]))
 }),
 feature_lists=tf.train.FeatureLists(
  feature_list={
  "index":tf.train.FeatureList(feature=[tf.train.Feature(int64_list=tf.train.Int64List(value=[key[i]])) for i in range(len(key))])
  }
 )
 )
 return example.SerializeToString()


filename="tmp.tfrecords"
if os.path.exists(filename):
 os.remove(filename)
writer = tf.python_io.TFRecordWriter(filename)
for key in keys:
 ex = make_example(key)
 writer.write(ex)
writer.close()

reader = tf.TFRecordReader()
filename_queue = tf.train.string_input_producer(["tmp.tfrecords"],num_epochs=1)
_,serialized_example =reader.read(filename_queue)

# coord = tf.train.Coordinator()
# threads = tf.train.start_queue_runners(sess=sess,coord=coord)

context_features={
 "length":tf.FixedLenFeature([],dtype=tf.int64)
}
sequence_features={
 "index":tf.FixedLenSequenceFeature([],dtype=tf.int64)
}

context_parsed, sequence_parsed = tf.parse_single_sequence_example(
 serialized=serialized_example,
 context_features=context_features,
 sequence_features=sequence_features
)

batch_data = tf.train.batch(tensors=[sequence_parsed['index']],batch_size=2,dynamic_pad=True)
result = tf.contrib.learn.run_n({"index":batch_data})

print result

打印结果如下:

[{'index': array([[1, 2],
 [2, 0]])}]

可见还是比较好用的功能

tensorflow的TFRecords读取

在上面的部分,我们展示了关于tensorflow的example的用法和解析过程,那么我们该如何使用它们呢?其实在上面的几段代码里面也有体现,就是TFRecords进行读写,TFRecords读写其实很简单,tensorflow提供了两个方法:

tf.TFRecordReader

tf.TFRecordWriter

首先我们看下第二个,也就是tf.TFRecordWritre,之所以先看第二个的原因是第一个Reader将和batch一起在下一节讲述。

关于TFRecordWriter,可以用下面代码说明,假设serilized_object是一个已经序列化好的example,那么其写的过程如下:

writer = tf.python_io.TFRecordWriter(filename)
writer.write(serilized_object)
writer.close()

tensorflow的多线程batch读取

这一节主要关注的是基于TFRecords的读取的方法和batch操作,我们可以回看一下之前的文章的batch操作:

Batching

def read_my_file_format(filename_queue):
 reader = tf.SomeReader()
 key, record_string = reader.read(filename_queue)
 example, label = tf.some_decoder(record_string)
 processed_example = some_processing(example)
 return processed_example, label

def input_pipeline(filenames, batch_size, num_epochs=None):
 filename_queue = tf.train.string_input_producer(
 filenames, num_epochs=num_epochs, shuffle=True)
 example, label = read_my_file_format(filename_queue)
 # min_after_dequeue defines how big a buffer we will randomly sample
 # from -- bigger means better shuffling but slower start up and more
 # memory used.
 # capacity must be larger than min_after_dequeue and the amount larger
 # determines the maximum we will prefetch. Recommendation:
 # min_after_dequeue + (num_threads + a small safety margin) * batch_size
 min_after_dequeue = 10000
 capacity = min_after_dequeue + 3 * batch_size
 example_batch, label_batch = tf.train.shuffle_batch(
 [example, label], batch_size=batch_size, capacity=capacity,
 min_after_dequeue=min_after_dequeue)
 return example_batch, label_batch

这里我们把tf.SomeReader()换成tf.TFRecordReader()即可,然后再把tf.some_decoder换成我们自定义的decoder,当然在decoder里面我们可以自己指定parser(也就是上文提到的内容),然后我们使用tf.train.batch或者tf.train.shuffle_batch等操作获取到我们需要送入网络训练的batch参数即可。

多线程读取batch实例

我使用了softmax回归做一个简单的示例,下面是一个多线程读取batch的实例主要代码:

#coding=utf-8
"""
author:luchi
date:24/4/2017
desc:training logistic regression
"""
import tensorflow as tf
from model import Logistic

def read_my_file_format(filename_queue):
 reader = tf.TFRecordReader()
 _,serilized_example = reader.read(filename_queue)

 #parsing example
 features = tf.parse_single_example(serilized_example,
 features={
  "data":tf.FixedLenFeature([2],tf.float32),
  "label":tf.FixedLenFeature([],tf.int64)
 }

 )

 #decode from raw data,there indeed do not to change ,but to show common step , i write a case here

 # data = tf.cast(features['data'],tf.float32)
 # label = tf.cast(features['label'],tf.int64)

 return features['data'],features['label']


def input_pipeline(filenames, batch_size, num_epochs=100):


 filename_queue = tf.train.string_input_producer([filenames],num_epochs=num_epochs)
 data,label=read_my_file_format(filename_queue)

 datas,labels = tf.train.shuffle_batch([data,label],batch_size=batch_size,num_threads=5,
      capacity=1000+3*batch_size,min_after_dequeue=1000)
 return datas,labels

class config():
 data_dim=2
 label_num=2
 learining_rate=0.1
 init_scale=0.01

def run_training():

 with tf.Graph().as_default(), tf.Session() as sess:

 datas,labels = input_pipeline("reg.tfrecords",32)

 c = config()
 initializer = tf.random_uniform_initializer(-1*c.init_scale,1*c.init_scale)

 with tf.variable_scope("model",initializer=initializer):
  model = Logistic(config=c,data=datas,label=labels)

 fetches = [model.train_op,model.accuracy,model.loss]
 feed_dict={}

 #init
 init_op = tf.group(tf.global_variables_initializer(),
   tf.local_variables_initializer())
 sess.run(init_op)

 coord = tf.train.Coordinator()
 threads = tf.train.start_queue_runners(sess=sess,coord=coord)
 try:
  while not coord.should_stop():

  # fetches = [model.train_op,model.accuracy,model.loss]
  # feed_dict={}
  # feed_dict[model.data]=sess.run(datas)
  # feed_dict[model.label]=sess.run(labels)
  # _,accuracy,loss= sess.run(fetches,feed_dict)
  _,accuracy,loss= sess.run(fetches,feed_dict)
  print("the loss is %f and the accuracy is %f"%(loss,accuracy))
 except tf.errors.OutOfRangeError:
  print("done training")
 finally:
  coord.request_stop()
 coord.join(threads)
 sess.close()

def main():
 run_training()

if __name__=='__main__':
 main()

这里有几个坑需要说明一下:

使用了string_input_producer指定num_epochs之后,在初始化的时候需要使用:

init_op = tf.group(tf.global_variables_initializer(),
   tf.local_variables_initializer())
sess.run(init_op)

要不然会报错

2. 使用了从文件读取batch之后,就不需要设置tf.placeholder了【非常重要】,我在这个坑里呆了好久,如果使用了tf.placeholder一是会报错为tensor对象能送入到tf.placeholder中,另外一个是就算使用sess.run(batch_data),也会存在模型不能收敛的问题,所以切记切记

结果显示如下:

the loss is 0.156685 and the accuracy is 0.937500
the loss is 0.185438 and the accuracy is 0.968750
the loss is 0.092628 and the accuracy is 0.968750
the loss is 0.059271 and the accuracy is 1.000000
the loss is 0.088685 and the accuracy is 0.968750
the loss is 0.271341 and the accuracy is 0.968750
the loss is 0.244190 and the accuracy is 0.968750
the loss is 0.136841 and the accuracy is 0.968750
the loss is 0.115607 and the accuracy is 0.937500
the loss is 0.080254 and the accuracy is 1.000000

完整的代码见我的GitHub

以上这篇基于Tensorflow高阶读写教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python 实现一个颜色色值转换的小工具
Dec 06 Python
用python写个自动SSH登录远程服务器的小工具(实例)
Jun 17 Python
关于Django外键赋值问题详解
Aug 13 Python
基于Python的文件类型和字符串详解
Dec 21 Python
python爬虫简单的添加代理进行访问的实现代码
Apr 04 Python
详解Python 爬取13个旅游城市,告诉你五一大家最爱去哪玩?
May 07 Python
Python unittest框架操作实例解析
Apr 13 Python
如何更换python默认编辑器的背景色
Aug 10 Python
python爬虫多次请求超时的几种重试方法(6种)
Dec 01 Python
Python tkinter之Bind(绑定事件)的使用示例
Feb 05 Python
python 如何在测试中使用 Mock
Mar 01 Python
解决python绘图使用subplots出现标题重叠的问题
Apr 30 Python
python集合删除多种方法详解
Feb 10 #Python
pandas中的数据去重处理的实现方法
Feb 10 #Python
对tensorflow中cifar-10文档的Read操作详解
Feb 10 #Python
基于Tensorflow:CPU性能分析
Feb 10 #Python
python sorted函数原理解析及练习
Feb 10 #Python
python pprint模块中print()和pprint()两者的区别
Feb 10 #Python
python yield和Generator函数用法详解
Feb 10 #Python
You might like
PHP 字符截取 解决中文的截取问题,不用mb系列
2009/09/29 PHP
php url地址栏传中文乱码解决方法集合
2010/06/25 PHP
PHP实现的memcache环形队列类实例
2015/07/28 PHP
thinkPHP自动验证机制详解
2016/12/05 PHP
laravel 解决后端无法获取到前端Post过来的值问题
2019/10/22 PHP
laravel框架中间件简单使用方法示例
2020/01/25 PHP
php array_map()函数实例用法
2021/03/03 PHP
js中将具有数字属性名的对象转换为数组
2011/03/06 Javascript
JavaScript入门之事件、cookie、定时等
2011/10/21 Javascript
js showModalDialog 弹出对话框的简单实例(子窗体)
2014/01/07 Javascript
JavaScript中的正则表达式简明总结
2014/04/04 Javascript
javascript包装对象实例分析
2015/03/27 Javascript
ajax图片上传,图片异步上传,更新实例
2016/12/30 Javascript
RequireJS 依赖关系的实例(推荐)
2017/01/21 Javascript
js实现悬浮窗效果(支持拖动)
2017/03/09 Javascript
json2.js 入门教程之使用方法与实例分析
2017/09/14 Javascript
Vue前后端不同端口的实现方法
2018/09/19 Javascript
layer iframe 设置关闭按钮的方法
2019/09/12 Javascript
Python学生成绩管理系统简洁版
2020/04/05 Python
Python实现模拟浏览器请求及会话保持操作示例
2018/07/30 Python
python实现决策树分类
2018/08/30 Python
对python中的乘法dot和对应分量相乘multiply详解
2018/11/14 Python
python读取各种文件数据方法解析
2018/12/29 Python
关于PyTorch源码解读之torchvision.models
2019/08/17 Python
python连接、操作mongodb数据库的方法实例详解
2019/09/11 Python
Python绘制热力图示例
2019/09/27 Python
Pytorch 实现冻结指定卷积层的参数
2020/01/06 Python
python 回溯法模板详解
2020/02/26 Python
python初步实现word2vec操作
2020/06/09 Python
解决Keras 自定义层时遇到版本的问题
2020/06/16 Python
亚马逊加拿大网站:Amazon.ca
2020/01/06 全球购物
奥巴马英文演讲稿
2014/05/15 职场文书
读书月活动方案
2014/05/22 职场文书
小学教师师德师风演讲稿
2014/08/22 职场文书
2015年除四害工作总结
2015/07/23 职场文书
opencv检测动态物体的实现
2021/07/21 Python