详解如何减少python内存的消耗


Posted in Python onAugust 09, 2019

Python 打算删除大量涉及像C和C++语言那样的复杂内存管理。当对象离开范围,就会被自动垃圾收集器回收。然而,对于由 Python 开发的大型且长期运行的系统来说,内存管理是不容小觑的事情。

在这篇博客中,我将会分享关于减少 Python 内存消耗的方法和分析导致内存消耗/膨胀根源的问题。这些都是从实际操作中总结的经验,我们正在构建 Datos IO 的 RecoverX 分布式备份和恢复平台,这里主要要介绍的是在 Python(在 C++ ,Java 和 bash 中也有一些类似的组件) 中的开发。

Python 垃圾收集

Python解释器对正在使用的对象保持计数。当对象不再被引用指向的时候,垃圾收集器可以释放该对象,获取分配的内存。例如,如果你使用常规的Python(CPython, 不是JPython)时,Python的垃圾收集器将调用free()/delete() 。

实用工具

资源(resource)

resource 模块用来查看项目当前得的固有的)内存消耗(固有内存是项目实际使用的RAM),注意resource库只在linux系统下有效

>>> import resource
>>> resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
443

对象(objgraph)

objgraph 是一个实用模块,可以展示当前内存中存在的对象

来看看objgraph的简单用法:

import objgraph
import random
import inspect

class Foo(object):

  def __init__(self):
    self.val = None

  def __str__(self):
    return "foo - val: {0}".format(self.val)

def f():

  l = []

  for i in range(3):
    foo = Foo()
    l.append(foo)

  return l


def main():

  d = {}

  l = f()

  d['k'] = l

  print "list l has {0} objectsoftype Foo()".format(len(l))

pythontest1.py

输出:

list l has 10000 objectsoftype Foo()
dict 10423
Foo 10000 ————> Guiltyas charged!
tuple 3349
wrapper_descriptor 945
function 860
builtin_function_or_method 616
method_descriptor 338
weakref 199
member_descriptor 161
getset_descriptor 107

注意,我们在内存中还持有10,423个‘dict'的实例对象。

可视化objgraph依赖项

Objgraph有个不错的功能,可以显示Foo()对象在内存中存在的因素,即,显示谁持有对它的引用 (在这个例子中是list l)。

在RedHat/Centos上, 你可以使用sudo yum install graphviz*安装graphviz
在Ubunbu等系统上使用sudo apt-get install graphviz*安装graphviz

如需查看对象字典 d,请参考:

objgraph.show_refs(d, filename='sample-graph.png')

详解如何减少python内存的消耗

从内存使用角度来看,我们惊奇地发现——为什么对象没有释放?这是因为有人在持有对它的引用。

这个小片段展示了objgraph怎样提供相关信息:

objgraph.show_backrefs(random.choice(objgraph.by_type('Foo')), filename="foo_refs.png")

详解如何减少python内存的消耗

在这一案例中, 我们查看了Foo类型的随机对象。我们知道该特定对象被保存在内存中,因其引用链接在指定范围内。

有时,以上技巧能帮助我们理解,为什么当我们不再使用某对象时,Python垃圾回收器没有将垃圾回收。

难处理的是,有时候我们会发现Foo()占用了很多内存的类。这时我们可以用heapy()来回答以上问题。

Heapy

heapy 是一个实用的,用于调试内存消耗/泄漏的工具。通常,我将objgraph和heapy搭配使用:用 heapy 查看分配对象随时间增长的差异,heapy能够显示对象持有的最大内存等;用Objgraph找backref链(例如:前4节),尝试获取它们不能被释放的原因。

Heapy的典型用法是在不同地方的代码中调用一个函数,试图为内存使用量提供大量收集线索,找到可能会引发的问题:

from guppyimport hpy


def dump_heap(h, i):
  """
  @param h: Theheap (from hp = hpy(), h = hp.heap())
  @param i: Identifierstr
  """

  print "Dumpingstatsat: {0}".format(i)

  print 'Memoryusage: {0}(MB)'.format(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024)

  print "Mostcommontypes:"
  objgraph.show_most_common_types()

  print "heapis:"
  print "{0}".format(h)

  by_refs = h.byrcs
  print "byreferences: {0}".format(by_refs)
  print "Morestatsfor topelement.."
  print "Byclodo (class or dict owner): {0}".format(by_refs[0].byclodo)
  print "Bysize: {0}".format(by_refs[0].bysize)
  print "Byid: {0}".format(by_refs[0].byid)

减少内存消耗小技巧

在这一部分,我会介绍一些自己发现的可减少内存消耗的小窍门.

Slots

当你有许多对象时候可以使用Slots。Slotting传达给Python解释器:你的对象不需要动态的字典(从上面的例子2.2中,我们看到每个Foo()对象内部包含一个字典)

用slots定义你的对象,让python解释器知道你的类属性/成员是固定的.。这样可以有效地节约内存!

参考以下代码:

import resource

class Foo(object):
  #__slots__ = ('val1', 'val2', 'val3', 'val4', 'val5', 'val6')

  def __init__(self, val):
    self.val1 = val+1
    self.val2 = val+2
    self.val3 = val+3
    self.val4 = val+4
    self.val5 = val+5
    self.val6 = val+6

def f(count):
  l = []
  for i in range(count):
    foo = Foo(i)
    l.append(foo)

  return l

def main():
  count = 10000
  l = f(count)

  mem = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss

  print "Memoryusageis: {0} KB”.format(mem)

  print "Sizeperfooobj: {0} KB”.format(float(mem)/count)

if __name__ == "__main__”:
  main()

[vagrant@datosdevtemp]$ pythontest2.py

输出:

Memoryusageis: 16672 KB
Sizeperfooobj: 1.6672 KB
Nowun-commentthisline: #__slots__ = (‘val1', ‘val2', ‘val3', ‘val4', ‘val5', ‘val6')
[vagrant@datosdevtemp]$ pythontest2.py
Memoryusageis: 6576 KB
Sizeperfooobj: 0.6576 KB

在这个例子中,减少了60%的内存消耗!

驻留:谨防驻留字符串!

Python会记录如字符串等不可改变的值(其每个值的大小依赖于实现方法),这称为驻留。

>>> t = "abcdefghijklmnopqrstuvwxyz"
>>>> p = "abcdefghijklmnopqrstuvwxyz"
>>>> id(t)
139863272322872
>>> id(p)
139863272322872

这是由python解析器完成的,这样做可以节省内存,并加快比较速度。例如,如果两个字符串拥有相同的ID或引用?他们就是全等的。

然而,如果你的程序创建了许多小的字符串,你的内存就会出现膨胀。

生成字符串时使用Format来代替“+”

接下来,在构造字符串时,使用Format来代替“+”构建字符串。

亦即,

st = "{0}_{1}_{2}_{3}".format(a,b,c,d) # 对内存更好,不创建临时变量
st2 = a + '_' + b + '_' + c + '_' + d # 在每个"+"时创建一个临时str,这些都是驻留在内存中的。

在我们的系统中,当我们将某些字符串构造从“+”变为使用format时,内存会明显被节省。

关于系统级别

上面我们讨论的技巧可以帮助你找出系统内存消耗的问题。但是,随着时间的推移,python进程产生的内存消耗会持续增加。这似乎与以下问题有关:

  1. 为什么C中内存分配能够在Python内部起作用,这本质上是内存碎片导致的。因为,除非整个内存没有使用过,否则该分配过程不能调用‘free'方法。但需要注意的是,内存的使用不是根据你所创建和使用的对象来进行排列。
  2. 内存增加也和上面讨论的“Interning” 有关。

以我的经验来看,减少python中内存消耗的比例是可行的。在Datos IO中,我曾经针对指定的内存消耗进程实现过一个工作模块。对于序列化的工作单元,我们运行了一个工作进程。当工作进程完成后, 它会被移除了——这是返回系统全部内存的唯一可以有效方法 :)。好的内存管理允许增加分配内存的大小,即允许工作进程长时间运行。

总结

我归纳了一些减少python进程消耗内存的技巧,当我们在代码中寻找内存泄漏时,一种方法是通过使用Heapy找出哪些Obj占用了较多内存,然后通过使用Objgraph找出内存被释放的原因(除非你认为他们本应该被释放)。

总的来说,我觉得在python中寻找内存问题是一种修行。随着时间的积累,对于系统中的内存膨胀和泄漏问题,你能产生一种直觉判断,并能更快地解决它们。愿你在发现问题的过程中找到乐趣!

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python修改操作系统时间的方法
May 18 Python
在双python下设置python3为默认的方法
Oct 31 Python
使用Python将字符串转换为格式化的日期时间字符串
Sep 01 Python
使用Rasterio读取栅格数据的实例讲解
Nov 26 Python
Python基础之函数原理与应用实例详解
Jan 03 Python
python对象销毁实例(垃圾回收)
Jan 16 Python
Python写出新冠状病毒确诊人数地图的方法
Feb 12 Python
selenium+python配置chrome浏览器的选项的实现
Mar 18 Python
Python虚拟环境库virtualenvwrapper安装及使用
Jun 17 Python
python 安装移动复制第三方库操作
Jul 13 Python
学会迭代器设计模式,帮你大幅提升python性能
Jan 03 Python
利用Python实现模拟登录知乎
May 25 Python
Django命名URL和反向解析URL实现解析
Aug 09 #Python
利用python list完成最简单的DB连接池方法
Aug 09 #Python
python使用requests.session模拟登录
Aug 09 #Python
如何在Cloud Studio上执行Python代码?
Aug 09 #Python
python切片(获取一个子列表(数组))详解
Aug 09 #Python
Python多叉树的构造及取出节点数据(treelib)的方法
Aug 09 #Python
一行python实现树形结构的方法
Aug 09 #Python
You might like
PHP求最大子序列和的算法实现
2011/06/24 PHP
php检测用户是否用手机(Mobile)访问网站的类
2014/01/09 PHP
基于yaf框架和uploadify插件,做的一个导入excel文件,查看并保存数据的功能
2017/01/24 PHP
php+ajax实现无刷新文件上传功能(ajaxuploadfile)
2018/02/11 PHP
详解JavaScript函数绑定
2013/08/18 Javascript
JS实现两个大数(整数)相乘
2014/04/28 Javascript
项目中常用的JS方法整理
2015/01/30 Javascript
jquery.gridrotator实现响应式图片展示画廊效果
2015/06/23 Javascript
基于Node.js的JavaScript项目构建工具gulp的使用教程
2016/05/20 Javascript
angularjs封装bootstrap时间插件datetimepicker
2016/06/20 Javascript
快速解决js动态改变dom元素属性后页面及时渲染的问题
2016/07/06 Javascript
nodejs的HTML分析利器node-jquery用法浅析
2016/11/08 NodeJs
探究JavaScript中的五种事件处理程序方式
2016/12/07 Javascript
神级程序员JavaScript300行代码搞定汉字转拼音
2017/05/20 Javascript
解决BootStrap Fileinput手机图片上传显示旋转问题
2017/06/01 Javascript
js图片放大镜实例讲解(必看篇)
2017/07/17 Javascript
Vue页面跳转动画效果的实现方法
2018/09/23 Javascript
this在vue和小程序中的使用详解
2019/01/28 Javascript
微信小程序实现同时上传多张图片
2020/02/03 Javascript
python 自动提交和抓取网页
2009/07/13 Python
零基础写python爬虫之抓取百度贴吧代码分享
2014/11/06 Python
Python导入txt数据到mysql的方法
2015/04/08 Python
Python中的默认参数实例分析
2018/01/29 Python
python实现自主查询实时天气
2018/06/22 Python
Django ModelForm组件原理及用法详解
2020/10/12 Python
瑞典领先的汽车零部件网上零售商:bildelaronline24.se
2017/01/12 全球购物
Allsole美国/加拿大:英国一家专门出售品牌鞋子的网站
2018/10/21 全球购物
XD健身器材:Kevlar球、Crossfit健身球
2019/03/26 全球购物
GWebs公司笔试题
2012/05/04 面试题
秘书英文求职信范文
2014/01/31 职场文书
服装设计师求职信
2014/06/04 职场文书
小学生放飞梦想演讲稿
2014/08/26 职场文书
出国签证在职证明范本
2014/11/24 职场文书
2014年设计师工作总结
2014/11/25 职场文书
情人节活动总结范文
2015/02/05 职场文书
企业管理制度设计时要注意的几种“常见病”!
2019/04/19 职场文书