使用Python对微信好友进行数据分析


Posted in Python onJune 27, 2018

1、准备工作

1.1 库介绍

只有登录微信才能获取到微信好友的信息,本文采用wxpy该第三方库进行微信的登录以及信息的获取。

wxpy 在 itchat 的基础上,通过大量接口优化提升了模块的易用性,并进行丰富的功能扩展。

wxpy一些常见的场景:

•控制路由器、智能家居等具有开放接口的玩意儿
•运行脚本时自动把日志发送到你的微信
•加群主为好友,自动拉进群中
•跨号或跨群转发消息
•自动陪人聊天
•逗人玩

总而言之,可用来实现各种微信个人号的自动化操作。

1.2 wxpy库安装

wxpy 支持 Python 3.4-3.6,以及 2.7 版本

将下方命令中的 “pip” 替换为 “pip3” 或 “pip2”,可确保安装到对应的 Python 版本中

1.从 PYPI 官方源下载安装 (在国内可能比较慢或不稳定):

pip install -U wxpy1

1.从豆瓣 PYPI 镜像源下载安装 (推荐国内用户选用):

pip install -U wxpy -i "https://pypi.doubanio.com/simple/"1

1.3 登录微信

wxpy中有一个机器人对象,机器人 Bot 对象可被理解为一个 Web 微信客户端。Bot 在初始化时便会执行登陆操作,需要手机扫描登陆。

通过机器人对象 Bot 的 chats(), friends(),groups(), mps() 方法, 可分别获取到当前机器人的 所有聊天对象、好友、群聊,以及公众号列表。

本文主要通过friends()获取到所有好友信息,然后进行数据的处理。

from wxpy import *
# 初始化机器人,扫码登陆
bot = Bot()
# 获取所有好友
my_friends = bot.friends()
print(type(my_friends))

以下为输出消息:

Getting uuid of QR code.
Downloading QR code.
Please scan the QR code to log in.
Please press confirm on your phone.
Loading the contact, this may take a little while.
<Login successfully as 王强?>
<class 'wxpy.api.chats.chats.Chats'>

wxpy.api.chats.chats.Chats对象是多个聊天对象的合集,可用于搜索或统计,可以搜索和统计的信息包括sex(性别)、province(省份)、city(城市)和signature(个性签名)等。

2、微信好友男女比例

2.1 数据统计

使用一个字典sex_dict来统计好友中男性和女性的数量。

# 使用一个字典统计好友男性和女性的数量
sex_dict = {'male': 0, 'female': 0}
for friend in my_friends:
 # 统计性别
 if friend.sex == 1:
 sex_dict['male'] += 1
 elif friend.sex == 2:
 sex_dict['female'] += 1
print(sex_dict)

以下为输出结果:

{'male': 255, 'female': 104}

2.2 数据呈现

本文采用 ECharts饼图 进行数据的呈现,打开链接http://echarts.baidu.com/echarts2/doc/example/pie1.html,可以看到如下内容:

使用Python对微信好友进行数据分析

1、echarts饼图原始内容

从图中可以看到左侧为数据,右侧为呈现的数据图,其他的形式的图也是这种左右结构。看一下左边的数据:

option = {
 title : {
 text: '某站点用户访问来源',
 subtext: '纯属虚构',
 x:'center'
 },
 tooltip : {
 trigger: 'item',
 formatter: "{a} <br/>{b} : {c} ({d}%)"
 },
 legend: {
 orient : 'vertical',
 x : 'left',
 data:['直接访问','邮件营销','联盟广告','视频广告','搜索引擎']
 },
 toolbox: {
 show : true,
 feature : {
 mark : {show: true},
 dataView : {show: true, readOnly: false},
 magicType : {
 show: true, 
 type: ['pie', 'funnel'],
 option: {
  funnel: {
  x: '25%',
  width: '50%',
  funnelAlign: 'left',
  max: 1548
  }
 }
 },
 restore : {show: true},
 saveAsImage : {show: true}
 }
 },
 calculable : true,
 series : [
 {
 name:'访问来源',
 type:'pie',
 radius : '55%',
 center: ['50%', '60%'],
 data:[
 {value:335, name:'直接访问'},
 {value:310, name:'邮件营销'},
 {value:234, name:'联盟广告'},
 {value:135, name:'视频广告'},
 {value:1548, name:'搜索引擎'}
 ]
 }
 ]
};

可以看到option =后面的大括号里是JSON格式的数据,接下来分析一下各项数据:

•title:标题
•text:标题内容
•subtext:子标题
•x:标题位置
•tooltip:提示,将鼠标放到饼状图上就可以看到提示
•legend:图例
•orient:方向
•x:图例位置
•data:图例内容
•toolbox:工具箱,在饼状图右上方横向排列的图标
•mark:辅助线开关
•dataView:数据视图,点击可以查看饼状图数据
•magicType:饼图(pie)切换和漏斗图(funnel)切换
•restore:还原
•saveAsImage:保存为图片
•calculable:暂时不知道它有什么用
•series:主要数据
•data:呈现的数据

其它类型的图数据格式类似,后面不再详细分析。只需要修改data、l**egend->data**、series->data即可,修改后的数据为:

option = {
 title : {
 text: '微信好友性别比例',
 subtext: '真实数据',
 x:'center'
 },
 tooltip : {
 trigger: 'item',
 formatter: "{a} <br/>{b} : {c} ({d}%)"
 },
 legend: {
 orient : 'vertical',
 x : 'left',
 data:['男性','女性']
 },
 toolbox: {
 show : true,
 feature : {
 mark : {show: true},
 dataView : {show: true, readOnly: false},
 magicType : {
 show: true, 
 type: ['pie', 'funnel'],
 option: {
  funnel: {
  x: '25%',
  width: '50%',
  funnelAlign: 'left',
  max: 1548
  }
 }
 },
 restore : {show: true},
 saveAsImage : {show: true}
 }
 },
 calculable : true,
 series : [
 {
 name:'访问来源',
 type:'pie',
 radius : '55%',
 center: ['50%', '60%'],
 data:[
 {value:255, name:'男性'},
 {value:104, name:'女性'}
 ]
 }
 ]
};

数据修改完成后,点击页面中绿色的刷新按钮,可以得到饼图如下(可以根据自己的喜好修改主题):

使用Python对微信好友进行数据分析

2、好友性别比例

将鼠标放到饼图上可以看到详细数据:

使用Python对微信好友进行数据分析

3、好友性别比例查看数据

3、微信好友全国分布图

3.1 数据统计

# 使用一个字典统计各省好友数量
province_dict = {'北京': 0, '上海': 0, '天津': 0, '重庆': 0,
 '河北': 0, '山西': 0, '吉林': 0, '辽宁': 0, '黑龙江': 0,
 '陕西': 0, '甘肃': 0, '青海': 0, '山东': 0, '福建': 0,
 '浙江': 0, '台湾': 0, '河南': 0, '湖北': 0, '湖南': 0,
 '江西': 0, '江苏': 0, '安徽': 0, '广东': 0, '海南': 0,
 '四川': 0, '贵州': 0, '云南': 0,
 '内蒙古': 0, '新疆': 0, '宁夏': 0, '广西': 0, '西藏': 0,
 '香港': 0, '澳门': 0}
# 统计省份
for friend in my_friends:
 if friend.province in province_dict.keys():
 province_dict[friend.province] += 1
# 为了方便数据的呈现,生成JSON Array格式数据
data = []
for key, value in province_dict.items():
 data.append({'name': key, 'value': value})
print(data)

以下为输出结果:

[{'name': '北京', 'value': 91}, {'name': '上海', 'value': 12}, {'name': '天津', 'value': 15}, {'name': '重庆', 'value': 1}, {'name': '河北', 'value': 53}, {'name': '山西', 'value': 2}, {'name': '吉林', 'value': 1}, {'name': '辽宁', 'value': 1}, {'name': '黑龙江', 'value': 2}, {'name': '陕西', 'value': 3}, {'name': '甘肃', 'value': 0}, {'name': '青海', 'value': 0}, {'name': '山东', 'value': 7}, {'name': '福建', 'value': 3}, {'name': '浙江', 'value': 4}, {'name': '台湾', 'value': 0}, {'name': '河南', 'value': 1}, {'name': '湖北', 'value': 4}, {'name': '湖南', 'value': 4}, {'name': '江西', 'value': 4}, {'name': '江苏', 'value': 9}, {'name': '安徽', 'value': 2}, {'name': '广东', 'value': 63}, {'name': '海南', 'value': 0}, {'name': '四川', 'value': 2}, {'name': '贵州', 'value': 0}, {'name': '云南', 'value': 1}, {'name': '内蒙古', 'value': 0}, {'name': '新疆', 'value': 2}, {'name': '宁夏', 'value': 0}, {'name': '广西', 'value': 1}, {'name': '西藏', 'value': 0}, {'name': '香港', 'value': 0}, {'name': '澳门', 'value': 0}]

可以看出,好友最多的省份为北京。那么问题来了:为什么要把数据重组成这种格式?因为ECharts的地图需要这种格式的数据。

3.2 数据呈现

采用ECharts地图 来进行好友分布的数据呈现。打开该网址,将左侧数据修改为:

option = {
 title : {
 text: '微信好友全国分布图',
 subtext: '真实数据',
 x:'center'
 },
 tooltip : {
 trigger: 'item'
 },
 legend: {
 orient: 'vertical',
 x:'left',
 data:['好友数量']
 },
 dataRange: {
 min: 0,
 max: 100,
 x: 'left',
 y: 'bottom',
 text:['高','低'], // 文本,默认为数值文本
 calculable : true
 },
 toolbox: {
 show: true,
 orient : 'vertical',
 x: 'right',
 y: 'center',
 feature : {
 mark : {show: true},
 dataView : {show: true, readOnly: false},
 restore : {show: true},
 saveAsImage : {show: true}
 }
 },
 roamController: {
 show: true,
 x: 'right',
 mapTypeControl: {
 'china': true
 }
 },
 series : [
 {
 name: '好友数量',
 type: 'map',
 mapType: 'china',
 roam: false,
 itemStyle:{
 normal:{label:{show:true}},
 emphasis:{label:{show:true}}
 },
 data:[
 {'name': '北京', 'value': 91},
 {'name': '上海', 'value': 12},
 {'name': '天津', 'value': 15}, 
 {'name': '重庆', 'value': 1}, 
 {'name': '河北', 'value': 53},
 {'name': '山西', 'value': 2}, 
 {'name': '吉林', 'value': 1},
 {'name': '辽宁', 'value': 1}, 
 {'name': '黑龙江', 'value': 2},
 {'name': '陕西', 'value': 3},
 {'name': '甘肃', 'value': 0},
 {'name': '青海', 'value': 0}, 
 {'name': '山东', 'value': 7},
 {'name': '福建', 'value': 3}, 
 {'name': '浙江', 'value': 4},
 {'name': '台湾', 'value': 0},
 {'name': '河南', 'value': 1},
 {'name': '湖北', 'value': 4}, 
 {'name': '湖南', 'value': 4},
 {'name': '江西', 'value': 4},
 {'name': '江苏', 'value': 9},
 {'name': '安徽', 'value': 2},
 {'name': '广东', 'value': 63}, 
 {'name': '海南', 'value': 0},
 {'name': '四川', 'value': 2},
 {'name': '贵州', 'value': 0}, 
 {'name': '云南', 'value': 1},
 {'name': '内蒙古', 'value': 0},
 {'name': '新疆', 'value': 2}, 
 {'name': '宁夏', 'value': 0},
 {'name': '广西', 'value': 1},
 {'name': '西藏', 'value': 0},
 {'name': '香港', 'value': 0},
 {'name': '澳门', 'value': 0}
 ]
 }
 ]
};

注意两点:

•dataRange->max 根据统计数据适当调整
•series->data 的数据格式

点击刷新按钮后,可以生成如下地图:

使用Python对微信好友进行数据分析

4、好友全国分布图

从图中可以看出我的好友主要分布在北京、河北和广东。

有趣的是,地图左边有一个滑块,代表地图数据的范围,我们将上边的滑块拉到最下面可以看到没有微信好友分布的省份:

5、没有微信好友的省份

使用Python对微信好友进行数据分析

按照这个思路,我们可以在地图上看到确切数量好友分布的省份,读者可以动手试试。

4、好友签名统计

4.1 数据统计

def write_txt_file(path, txt):
 '''
 写入txt文本
 '''
 with open(path, 'a', encoding='gb18030', newline='') as f:
 f.write(txt) 
# 统计签名
for friend in my_friends:
 # 对数据进行清洗,将标点符号等对词频统计造成影响的因素剔除
 pattern = re.compile(r'[一-?]+')
 filterdata = re.findall(pattern, friend.signature)
 write_txt_file('signatures.txt', ''.join(filterdata))

上面代码实现了对好友签名进行清洗以及保存的功能,执行完成之后会在当前目录生成signatures.txt文件。

4.2 数据呈现

数据呈现采用词频统计和词云展示,通过词频可以了解到微信好友的生活态度。

词频统计用到了 jieba、numpy、pandas、scipy、wordcloud库。如果电脑上没有这几个库,执行安装指令:

•pip install jieba
•pip install pandas
•pip install numpy
•pip install scipy
•pip install wordcloud

4.2.1 读取txt文件

前面已经将好友签名保存到txt文件里了,现在我们将其读出:

def read_txt_file(path):
 '''
 读取txt文本
 '''
 with open(path, 'r', encoding='gb18030', newline='') as f:
 return f.read()

4.2.2 stop word

下面引入一个概念:stop word, 在网站里面存在大量的常用词比如:“在”、“里面”、“也”、“的”、“它”、“为”这些词都是停止词。这些词因为使用频率过高,几乎每个网页上都存在,所以搜索引擎开发人员都将这一类词语全部忽略掉。如果我们的网站上存在大量这样的词语,那么相当于浪费了很多资源。

在百度搜索stpowords.txt进行下载,放到py文件同级目录。

content = read_txt_file(txt_filename)
segment = jieba.lcut(content)
words_df=pd.DataFrame({'segment':segment})
stopwords=pd.read_csv("stopwords.txt",index_col=False,quoting=3,sep=" ",names=['stopword'],encoding='utf-8')
words_df=words_df[~words_df.segment.isin(stopwords.stopword)]

4.2.3 词频统计

重头戏来了,词频统计使用numpy:

import numpy
words_stat = words_df.groupby(by=['segment'])['segment'].agg({"计数":numpy.size})
 words_stat = words_stat.reset_index().sort_values(by=["计数"],ascending=False)

4.2.4 词频可视化:词云

词频统计虽然出来了,可以看出排名,但是不完美,接下来我们将它可视化。使用到wordcloud库,详细介绍见 github 。

from scipy.misc import imread
from wordcloud import WordCloud, ImageColorGenerator
# 设置词云属性
color_mask = imread('background.jfif')
wordcloud = WordCloud(font_path="simhei.ttf", # 设置字体可以显示中文
 background_color="white", # 背景颜色
 max_words=100,  # 词云显示的最大词数
 mask=color_mask, # 设置背景图片
 max_font_size=100, # 字体最大值
 random_state=42,
 width=1000, height=860, margin=2,# 设置图片默认的大小,但是如果使用背景图片的话,    # 那么保存的图片大小将会按照其大小保存,margin为词语边缘距离
 )
# 生成词云, 可以用generate输入全部文本,也可以我们计算好词频后使用generate_from_frequencies函数
word_frequence = {x[0]:x[1]for x in words_stat.head(100).values}
print(word_frequence)
word_frequence_dict = {}
for key in word_frequence:
 word_frequence_dict[key] = word_frequence[key]

wordcloud.generate_from_frequencies(word_frequence_dict)
# 从背景图片生成颜色值 
image_colors = ImageColorGenerator(color_mask) 
# 重新上色
wordcloud.recolor(color_func=image_colors)
# 保存图片
wordcloud.to_file('output.png')
plt.imshow(wordcloud)
plt.axis("off")
plt.show()

运行效果图如下(左图为背景图,右图为生成词云图片):

使用Python对微信好友进行数据分析

6、背景图和词云图对比

从词云图可以分析好友特点:

•做——————?行动派
•人生、生活——?热爱生活
•快乐—————?乐观
•选择—————?决断
•专业—————?专业
•爱——————?爱

5、总结

至此,微信好友的分析工作已经完成,wxpy的功能还有很多,比如聊天、查看公众号信息等,有意的读者请自行查阅官方文档。

6、完整代码

上面的代码比较松散,下面展示的完整代码我将各功能模块封装成函数:

#-*- coding: utf-8 -*-
import re
from wxpy import *
import jieba
import numpy
import pandas as pd
import matplotlib.pyplot as plt
from scipy.misc import imread
from wordcloud import WordCloud, ImageColorGenerator
def write_txt_file(path, txt):
 '''
 写入txt文本
 '''
 with open(path, 'a', encoding='gb18030', newline='') as f:
 f.write(txt)
def read_txt_file(path):
 '''
 读取txt文本
 '''
 with open(path, 'r', encoding='gb18030', newline='') as f:
 return f.read()
def login():
 # 初始化机器人,扫码登陆
 bot = Bot()
 # 获取所有好友
 my_friends = bot.friends()
 print(type(my_friends))
 return my_friends
def show_sex_ratio(friends):
 # 使用一个字典统计好友男性和女性的数量
 sex_dict = {'male': 0, 'female': 0}
 for friend in friends:
 # 统计性别
 if friend.sex == 1:
 sex_dict['male'] += 1
 elif friend.sex == 2:
 sex_dict['female'] += 1
 print(sex_dict)
def show_area_distribution(friends):
 # 使用一个字典统计各省好友数量
 province_dict = {'北京': 0, '上海': 0, '天津': 0, '重庆': 0,
 '河北': 0, '山西': 0, '吉林': 0, '辽宁': 0, '黑龙江': 0,
 '陕西': 0, '甘肃': 0, '青海': 0, '山东': 0, '福建': 0,
 '浙江': 0, '台湾': 0, '河南': 0, '湖北': 0, '湖南': 0,
 '江西': 0, '江苏': 0, '安徽': 0, '广东': 0, '海南': 0,
 '四川': 0, '贵州': 0, '云南': 0,
 '内蒙古': 0, '新疆': 0, '宁夏': 0, '广西': 0, '西藏': 0,
 '香港': 0, '澳门': 0}
 # 统计省份
 for friend in friends:
 if friend.province in province_dict.keys():
 province_dict[friend.province] += 1
 # 为了方便数据的呈现,生成JSON Array格式数据
 data = []
 for key, value in province_dict.items():
 data.append({'name': key, 'value': value})
 print(data)
def show_signature(friends):
 # 统计签名
 for friend in friends:
 # 对数据进行清洗,将标点符号等对词频统计造成影响的因素剔除
 pattern = re.compile(r'[一-?]+')
 filterdata = re.findall(pattern, friend.signature)
 write_txt_file('signatures.txt', ''.join(filterdata))
 # 读取文件
 content = read_txt_file('signatures.txt')
 segment = jieba.lcut(content)
 words_df = pd.DataFrame({'segment':segment})
 # 读取stopwords
 stopwords = pd.read_csv("stopwords.txt",index_col=False,quoting=3,sep=" ",names=['stopword'],encoding='utf-8')
 words_df = words_df[~words_df.segment.isin(stopwords.stopword)]
 print(words_df)
 words_stat = words_df.groupby(by=['segment'])['segment'].agg({"计数":numpy.size})
 words_stat = words_stat.reset_index().sort_values(by=["计数"],ascending=False)
 # 设置词云属性
 color_mask = imread('background.jfif')
 wordcloud = WordCloud(font_path="simhei.ttf", # 设置字体可以显示中文
  background_color="white", # 背景颜色
  max_words=100,  # 词云显示的最大词数
  mask=color_mask, # 设置背景图片
  max_font_size=100, # 字体最大值
  random_state=42,
  width=1000, height=860, margin=2,# 设置图片默认的大小,但是如果使用背景图片的话,    # 那么保存的图片大小将会按照其大小保存,margin为词语边缘距离
  )
 # 生成词云, 可以用generate输入全部文本,也可以我们计算好词频后使用generate_from_frequencies函数
 word_frequence = {x[0]:x[1]for x in words_stat.head(100).values}
 print(word_frequence)
 word_frequence_dict = {}
 for key in word_frequence:
 word_frequence_dict[key] = word_frequence[key]
 wordcloud.generate_from_frequencies(word_frequence_dict)
 # 从背景图片生成颜色值 
 image_colors = ImageColorGenerator(color_mask) 
 # 重新上色
 wordcloud.recolor(color_func=image_colors)
 # 保存图片
 wordcloud.to_file('output.png')
 plt.imshow(wordcloud)
 plt.axis("off")
 plt.show()
def main():
 friends = login()
 show_sex_ratio(friends)
 show_area_distribution(friends)
 show_signature(friends)
if __name__ == '__main__':
 main()

总结

以上所述是小编给大家介绍的使用Python对微信好友进行数据分析,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对三水点靠木网站的支持!

Python 相关文章推荐
Python的ORM框架中SQLAlchemy库的查询操作的教程
Apr 25 Python
Python ldap实现登录实例代码
Sep 30 Python
Python实现模拟分割大文件及多线程处理的方法
Oct 10 Python
python破解zip加密文件的方法
May 31 Python
使用50行Python代码从零开始实现一个AI平衡小游戏
Nov 21 Python
python中的tcp示例详解
Dec 09 Python
Python 中Django安装和使用教程详解
Jul 03 Python
Python编程中类与类的关系详解
Aug 08 Python
Python-Flask:动态创建表的示例详解
Nov 22 Python
如何基于python操作json文件获取内容
Dec 24 Python
Pycharm Plugins加载失败问题解决方案
Nov 28 Python
Python数据模型与Python对象模型的相关总结
Jan 26 Python
python实现列表中由数值查到索引的方法
Jun 27 #Python
numpy返回array中元素的index方法
Jun 27 #Python
Python 查看list中是否含有某元素的方法
Jun 27 #Python
python寻找list中最大值、最小值并返回其所在位置的方法
Jun 27 #Python
Python实现爬虫抓取与读写、追加到excel文件操作示例
Jun 27 #Python
python numpy和list查询其中某个数的个数及定位方法
Jun 27 #Python
python3解析库lxml的安装与基本使用
Jun 27 #Python
You might like
php格式化工具Beautify PHP小小BUG
2008/04/24 PHP
Zend Studio for Eclipse的java.lang.NullPointerException错误的解决方法
2008/12/06 PHP
PHP二维数组的去重问题解析
2011/07/17 PHP
PHP调用wsdl文件类型的接口代码分享
2014/11/19 PHP
php阿拉伯数字转中文人民币大写
2015/12/21 PHP
PHP面向对象学习之parent::关键字
2017/01/18 PHP
如何用javascript控制上传文件的大小
2006/10/26 Javascript
JAVASCRIPT IE 与 FF中兼容问题小结
2009/02/18 Javascript
基于jquery的高性能td和input切换并可修改内容实现代码
2011/01/09 Javascript
jquery放大镜效果超漂亮噢
2013/11/15 Javascript
浅谈轻量级js模板引擎simplite
2015/02/13 Javascript
浅析Node.js 中 Stream API 的使用
2015/10/23 Javascript
基于jquery实现最简单的选项卡切换效果
2016/05/08 Javascript
JavaScript中instanceof运算符的使用示例
2016/06/08 Javascript
JavaScript 限制文本框不可输入英文单双引号的方法
2016/12/20 Javascript
Vue实现动态创建和删除数据的方法
2018/03/17 Javascript
JavaScript中关于base64的一些事
2019/05/06 Javascript
vue-cli脚手架打包静态资源请求出错的原因与解决
2019/06/06 Javascript
浅谈Python数据类型之间的转换
2016/06/08 Python
Python2.7读取PDF文件的方法示例
2017/07/13 Python
解读! Python在人工智能中的作用
2017/11/14 Python
对PyQt5基本窗口控件 QMainWindow的使用详解
2019/06/19 Python
python 实现在shell窗口中编写print不向屏幕输出
2020/02/19 Python
python生成xml时规定dtd实例方法
2020/09/21 Python
python 利用openpyxl读取Excel表格中指定的行或列教程
2021/02/06 Python
CSS3下的渐变文字效果实现示例
2018/03/02 HTML / CSS
HelloFresh奥地利:立即订购烹饪盒
2019/02/22 全球购物
Unineed中文官网:高端护肤美妆与时尚配饰,英国直邮
2020/07/23 全球购物
既然说Ruby中一切都是对象,那么Ruby中类也是对象吗
2013/01/26 面试题
园林系毕业生求职信
2014/06/23 职场文书
英语四级考试作弊检讨书
2014/09/29 职场文书
初婚未育证明样本
2014/10/24 职场文书
优秀少先队员事迹材料
2014/12/24 职场文书
党风廉政建设调研报告
2015/01/01 职场文书
电气工程师岗位职责
2015/02/12 职场文书
导游词之丽江普济寺
2019/10/22 职场文书