TensorFlow损失函数专题详解


Posted in Python onApril 26, 2018

一、分类问题损失函数——交叉熵(crossentropy)

交叉熵刻画了两个概率分布之间的距离,是分类问题中使用广泛的损失函数。给定两个概率分布p和q,交叉熵刻画的是两个概率分布之间的距离:

TensorFlow损失函数专题详解

我们可以通过Softmax回归将神经网络前向传播得到的结果变成交叉熵要求的概率分布得分。在TensorFlow中,Softmax回归的参数被去掉了,只是一个额外的处理层,将神经网络的输出变成一个概率分布。

代码实现:

import tensorflow as tf 
 
y_ = tf.constant([[1.0, 0, 0]]) # 正确标签 
y1 = tf.constant([[0.9, 0.06, 0.04]]) # 预测结果1 
y2 = tf.constant([[0.5, 0.3, 0.2]]) # 预测结果2 
# 以下为未经过Softmax处理的类别得分 
y3 = tf.constant([[10.0, 3.0, 2.0]]) 
y4 = tf.constant([[5.0, 3.0, 1.0]]) 
 
# 自定义交叉熵 
cross_entropy1 = -tf.reduce_mean(y_ * tf.log(tf.clip_by_value(y1, 1e-10, 1.0))) 
cross_entropy2 = -tf.reduce_mean(y_ * tf.log(tf.clip_by_value(y2, 1e-10, 1.0))) 
# TensorFlow提供的集成交叉熵 
# 注:该操作应该施加在未经过Softmax处理的logits上,否则会产生错误结果 
# labels为期望输出,且必须采用labels=y_, logits=y的形式将参数传入 
cross_entropy_v2_1 = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y3) 
cross_entropy_v2_2 = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y4) 
 
sess = tf.InteractiveSession() 
print('[[0.9, 0.06, 0.04]]:', cross_entropy1.eval()) 
print('[[0.5, 0.3, 0.2]]:', cross_entropy2.eval()) 
print('v2_1', cross_entropy_v2_1.eval()) 
print('v2_2',cross_entropy_v2_2.eval()) 
sess.close() 
 
''''' 
[[0.9, 0.06, 0.04]]: 0.0351202 
[[0.5, 0.3, 0.2]]: 0.231049 
v2_1 [ 0.00124651] 
v2_2 [ 0.1429317] 
'''

tf.clip_by_value()函数可将一个tensor的元素数值限制在指定范围内,这样可防止一些错误运算,起到数值检查作用。

* 乘法操作符是元素之间直接相乘,tensor中是每个元素对应相乘,要去别去tf.matmul()函数的矩阵相乘。

tf.nn.softmax_cross_entropy_with_logits(labels=y_,logits=y)是TensorFlow提供的集成交叉熵函数。该操作应该施加在未经过Softmax处理的logits上,否则会产生错误结果;labels为期望输出,且必须采用labels=y_, logits=y3的形式将参数传入。

二、回归问题损失函数——均方误差(MSE,mean squared error)

均方误差亦可用于分类问题的损失函数,其定义为:

TensorFlow损失函数专题详解

三、自定义损失函数

对于理想的分类问题和回归问题,可采用交叉熵或者MSE损失函数,但是对于一些实际的问题,理想的损失函数可能在表达上不能完全表达损失情况,以至于影响对结果的优化。例如:对于产品销量预测问题,表面上是一个回归问题,可使用MSE损失函数。可实际情况下,当预测值大于实际值时,损失值应是正比于商品成本的函数;当预测值小于实际值,损失值是正比于商品利润的函数,多数情况下商品成本和利润是不对等的。自定义损失函数如下:

TensorFlow损失函数专题详解

TensorFlow中,通过以下代码实现loss= tf.reduce_sum(tf.where(tf.greater(y, y_), (y-y_)*loss_more,(y_-y)*loss_less))。

tf.greater(x,y),返回x>y的判断结果的bool型tensor,当tensor x, y的维度不一致时,采取广播(broadcasting)机制。

tf.where(condition,x=None, y=None, name=None),根据condition选择x (if true) or y (if false)。

代码实现:

import tensorflow as tf 
from numpy.random import RandomState 
 
batch_size = 8 
x = tf.placeholder(tf.float32, shape=(None, 2), name='x-input') 
y_ = tf.placeholder(tf.float32, shape=(None, 1), name='y-input') 
 
w1 = tf.Variable(tf.random_normal([2,1], stddev=1, seed=1)) 
y = tf.matmul(x, w1) 
 
# 根据实际情况自定义损失函数 
loss_less = 10 
loss_more = 1 
# tf.select()在1.0以后版本中已删除,tf.where()替代 
loss = tf.reduce_sum(tf.where(tf.greater(y, y_), 
        (y-y_)*loss_more, (y_-y)*loss_less)) 
train_step = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss) 
 
rdm = RandomState(seed=1) # 定义一个随机数生成器并设定随机种子 
dataset_size = 128 
X = rdm.rand(dataset_size, 2) 
Y = [[x1 + x2 +rdm.rand()/10.0 - 0.05] for (x1, x2) in X] # 增加一个-0.05~0.05的噪声 
 
sess = tf.InteractiveSession() 
tf.global_variables_initializer().run() 
for i in range(5000): 
 start = (i * batch_size) % dataset_size 
 end = min(start+batch_size, dataset_size) 
 train_step.run({x: X[start: end], y_: Y[start: end]}) 
 if i % 500 == 0: 
  print('step%d:\n' % i, w1.eval()) 
print('final w1:\n', w1.eval()) 
sess.close() 
 
''''' 
loss_less = 10 
loss_more = 1 
final w1: 
 [[ 1.01934695] 
 [ 1.04280889]] 
 
loss_less = 1 
loss_more = 10 
final w1: 
 [[ 0.95525807] 
 [ 0.9813394 ]] 
 
loss_less = 1 
loss_more = 1 
final w1: 
 [[ 0.9846065 ] 
 [ 1.01486754]] 
'''

根据程序输出可见,当我们将loss_less=10时,表明我们对预测值过小表征的损失值更大,优化得到的参数均略大于1;当loss_more=10时,表明我们对预测值过大表征的损失值更大,优化得到的参数均略小于1;当两者均设为1时,得到的参数约等于1。

四、TensorFlow的Cross_Entropy实现

1. tf.nn.softmax_cross_entropy_with_logits(_sentinel=None,labels=None, logits=None, dim=-1, name=None)

该函数的功能是自动计算logits(未经过Softmax)与labels之间的cross_entropy交叉熵。

该操作应该施加在未经过Softmax处理的logits上,否则会产生错误结果;labels为期望输出,且必须采用labels=y_,logits=y3的形式将参数传入。

第一个参数logits:就是神经网络最后一层的输出,如果有batch的话,它的大小就是[batchsize,num_classes],单样本的话,大小就是num_classes

第二个参数labels:实际的标签,大小同上。

注意:如果labels的每一行是one-hot表示,也就是只有一个地方为1,其他地方为0,可以使用tf.sparse_softmax_cross_entropy_with_logits()

警告: (1)这个操作的输入logits是未经缩放的,该操作内部会对logits使用softmax操作;(2)参数labels,logits必须有相同的形状 [batch_size, num_classes] 和相同的类型(float16, float32,float64)中的一种。

该函数具体的执行过程分两步:首先对logits做一个Softmax,

TensorFlow损失函数专题详解

第二步就是将第一步的输出与样本的实际标签labels做一个交叉熵。

TensorFlow损失函数专题详解

注意!!!这个函数的返回值并不是一个数,而是一个向量,如果要求交叉熵,我们要再做一步tf.reduce_sum操作,就是对向量里面所有元素求和,最后才得到交叉熵,如果求loss,则要做一步tf.reduce_mean操作,对向量求均值!

2. tf.nn.sparse_softmax_cross_entropy_with_logits(_sentinel=None,labels=None, logits=None, name=None)

该函数与tf.nn.softmax_cross_entropy_with_logits(_sentinel=None,labels=None, logits=None, dim=-1, name=None)十分相似,唯一的区别在于labels,该函数的标签labels要求是排他性的即只有一个正确类别,labels的形状要求是[batch_size] 而值必须是从0开始编码的int32或int64,而且值范围是[0, num_class),对比于tf.nn.softmax_cross_entropy_with_logits的[batchsize,num_classes]格式的得分编码。

其他使用注意事项参见tf.nn.softmax_cross_entropy_with_logits的说明。

3. tf.nn.sigmoid_cross_entropy_with_logits(_sentinel=None,labels=None, logits=None, name=None)

sigmoid_cross_entropy_with_logits是TensorFlow最早实现的交叉熵算法。这个函数的输入是logits和labels,logits就是神经网络模型中的 W * X矩阵,注意不需要经过sigmoid,而labels的shape和logits相同,就是正确的标签值,例如这个模型一次要判断100张图是否包含10种动物,这两个输入的shape都是[100, 10]。注释中还提到这10个分类之间是独立的、不要求是互斥,这种问题我们称为多目标(多标签)分类,例如判断图片中是否包含10种动物中的一种或几种,标签值可以包含多个1或0个1。

4. tf.nn.weighted_cross_entropy_with_logits(targets, logits, pos_weight, name=None)

weighted_sigmoid_cross_entropy_with_logits是sigmoid_cross_entropy_with_logits的拓展版,多支持一个pos_weight参数,在传统基于sigmoid的交叉熵算法上,正样本算出的值乘以某个系数。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
tornado框架blog模块分析与使用
Nov 21 Python
python dict.get()和dict['key']的区别详解
Jun 30 Python
Python实现的选择排序算法原理与用法实例分析
Nov 22 Python
对Python中DataFrame按照行遍历的方法
Apr 08 Python
Python学习小技巧总结
Jun 10 Python
Django如何自定义分页
Sep 25 Python
python面向对象入门教程之从代码复用开始(一)
Dec 11 Python
python multiprocessing模块用法及原理介绍
Aug 20 Python
Python使用指定字符长度切分数据示例
Dec 05 Python
基于python爬取有道翻译过程图解
Mar 31 Python
python实现简单猜单词游戏
Dec 24 Python
Python爬取某平台短视频的方法
Feb 08 Python
浅谈Tensorflow模型的保存与恢复加载
Apr 26 #Python
Python实现爬取百度贴吧帖子所有楼层图片的爬虫示例
Apr 26 #Python
Python实现的计算器功能示例
Apr 26 #Python
python email smtplib模块发送邮件代码实例
Apr 26 #Python
Python利用正则表达式实现计算器算法思路解析
Apr 25 #Python
Python实现随机生成手机号及正则验证手机号的方法
Apr 25 #Python
Python实现按中文排序的方法示例
Apr 25 #Python
You might like
PHP 中文乱码解决办法总结分析
2009/07/30 PHP
对text数据类型不支持代码页转换 从: 1252 到: 936
2011/04/23 PHP
PHP错误Cannot use object of type stdClass as array in错误的解决办法
2014/06/12 PHP
ThinkPHP模板之变量输出、自定义函数与判断语句用法
2014/11/01 PHP
php 删除cookie方法详解
2014/12/01 PHP
php 升级到 5.3+ 后出现的一些错误,如 ereg(); ereg_replace(); 函数报错
2015/12/07 PHP
9个比较实用的php代码片段
2016/03/15 PHP
PHP中如何判断exec函数执行成功?
2016/08/04 PHP
Laravel validate error处理,ajax,json示例
2019/10/25 PHP
javascript之锁定表格栏位
2007/06/29 Javascript
禁用键盘上的(全局)指定键兼容iE、Chrome、火狐
2013/05/14 Javascript
js实现checkbox全选和反选示例
2014/05/01 Javascript
多种JQuery循环滚动文字图片效果代码
2020/06/23 Javascript
jQuery中实现prop()函数控制多选框(全选,反选)
2016/08/19 Javascript
JavaScript 中 avalon绑定属性总结
2016/10/19 Javascript
jQuery无缝轮播图代码
2016/12/22 Javascript
基于jQuery实现瀑布流页面
2017/04/11 jQuery
旺旺在线客服代码 旺旺客服代码生成器
2018/01/09 Javascript
使用ESLint禁止项目导入特定模块的方法步骤
2019/03/04 Javascript
巧妙运用v-model实现父子组件传值的方法示例
2019/04/07 Javascript
教你搭建按需加载的Vue组件库(小结)
2019/07/29 Javascript
使用Vue-Awesome-Swiper实现旋转叠加轮播效果&平移轮播效果
2019/08/16 Javascript
浅谈Vue为什么不能检测数组变动
2019/10/14 Javascript
python实现得到一个给定类的虚函数
2014/09/28 Python
Python中的作用域规则详解
2015/01/30 Python
深入理解Python中装饰器的用法
2016/06/28 Python
Python实现全排列的打印
2018/08/18 Python
python实现比对美团接口返回数据和本地mongo数据是否一致示例
2019/08/09 Python
Python中函数的返回值示例浅析
2019/08/28 Python
Python编程快速上手——强口令检测算法案例分析
2020/02/29 Python
Django 构建模板form表单的两种方法
2020/06/14 Python
抽象类和接口的区别
2012/09/19 面试题
高中运动会广播稿
2015/08/19 职场文书
MySQL数据库查询进阶之多表查询详解
2022/04/08 MySQL
微软团队与 NASA 科学家和惠普企业(HPE)的工程师合作
2022/04/21 数码科技
什么是clearfix (一文搞清楚css清除浮动clearfix)
2023/05/21 HTML / CSS