Python机器学习之PCA降维算法详解


Posted in Python onMay 19, 2021

一、算法概述

  • 主成分分析 (Principal ComponentAnalysis,PCA)是一种掌握事物主要矛盾的统计分析方法,它可以从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂的问题。
  • PCA 是最常用的一种降维方法,它的目标是通过某种线性投影,将高维的数据映射到低维的空间中,并期望在所投影的维度上数据的方差最大,以此使用较少的维度,同时保留较多原数据的维度。
  • PCA 算法目标是求出样本数据协方差矩阵的特征值和特征向量,而协方差矩阵的特征向量的方向就是PCA需要投影的方向。使样本数据向低维投影后,能尽可能表征原始的数据。
  • PCA 可以把具有相关性的高维变量合成为线性无关的低维变量,称为主成分。主成分能够尽可能的保留原始数据的信息。
  • PCA 通常用于高维数据集的探索与可视化,还可以用作数据压缩和预处理等。

二、算法步骤

Python机器学习之PCA降维算法详解

1.将原始数据按行组成m行n列的矩阵X

2.将X的每一列(代表一个属性字段)进行零均值化,即减去这一列的均值

3.求出协方差矩阵

4.求出协方差矩阵的特征值及对应的特征向量r

5.将特征向量按对应特征值大小从左到右按列排列成矩阵,取前k列组成矩阵P

6.计算降维到k维的数据

三、相关概念

  • 方差:描述一个数据的离散程度

Python机器学习之PCA降维算法详解

  • 协方差:描述两个数据的相关性,接近1就是正相关,接近-1就是负相关,接近0就是不相关

Python机器学习之PCA降维算法详解

  • 协方差矩阵:协方差矩阵是一个对称的矩阵,而且对角线是各个维度的方差

Python机器学习之PCA降维算法详解

  • 特征值:用于选取降维的K个特征值
  • 特征向量:用于选取降维的K个特征向量

四、算法优缺点

优点

  • 仅仅需要以方差衡量信息量,不受数据集以外的因素影响。
  • 各主成分之间正交,可消除原始数据成分间的相互影响的因素。
  • 计算方法简单,主要运算是特征值分解,易于实现。

缺点

  • 主成分各个特征维度的含义具有一定的模糊性,不如原始样本特征的解释性强。
  • 方差小的非主成分也可能含有对样本差异的重要信息,降维丢弃的数据可能对后续数据处理有影响。

五、算法实现

自定义实现

import numpy as np


# 对初始数据进行零均值化处理
def zeroMean(dataMat):
    # 求列均值
    meanVal = np.mean(dataMat, axis=0)
    # 求列差值
    newData = dataMat - meanVal
    return newData, meanVal


# 对初始数据进行降维处理
def pca(dataMat, percent=0.19):
    newData, meanVal = zeroMean(dataMat)

    # 求协方差矩阵
    covMat = np.cov(newData, rowvar=0)

    # 求特征值和特征向量
    eigVals, eigVects = np.linalg.eig(np.mat(covMat))

    # 抽取前n个特征向量
    n = percentage2n(eigVals, percent)
    print("数据降低到:" + str(n) + '维')

    # 将特征值按从小到大排序
    eigValIndice = np.argsort(eigVals)
    # 取最大的n个特征值的下标
    n_eigValIndice = eigValIndice[-1:-(n + 1):-1]
    # 取最大的n个特征值的特征向量
    n_eigVect = eigVects[:, n_eigValIndice]

    # 取得降低到n维的数据
    lowDataMat = newData * n_eigVect
    reconMat = (lowDataMat * n_eigVect.T) + meanVal

    return reconMat, lowDataMat, n


# 通过方差百分比确定抽取的特征向量的个数
def percentage2n(eigVals, percentage):
    # 按降序排序
    sortArray = np.sort(eigVals)[-1::-1]
    # 求和
    arraySum = sum(sortArray)

    tempSum = 0
    num = 0
    for i in sortArray:
        tempSum += i
        num += 1
        if tempSum >= arraySum * percentage:
            return num


if __name__ == '__main__':
    # 初始化原始数据(行代表样本,列代表维度)
    data = np.random.randint(1, 20, size=(6, 8))
    print(data)

    # 对数据降维处理
    fin = pca(data, 0.9)
    mat = fin[1]
    print(mat)

利用Sklearn库实现

import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris

# 加载数据
data = load_iris()
x = data.data
y = data.target

# 设置数据集要降低的维度
pca = PCA(n_components=2)
# 进行数据降维
reduced_x = pca.fit_transform(x)

red_x, red_y = [], []
green_x, green_y = [], []
blue_x, blue_y = [], []

# 对数据集进行分类
for i in range(len(reduced_x)):
    if y[i] == 0:
        red_x.append(reduced_x[i][0])
        red_y.append(reduced_x[i][1])
    elif y[i] == 1:
        green_x.append(reduced_x[i][0])
        green_y.append(reduced_x[i][1])
    else:
        blue_x.append(reduced_x[i][0])
        blue_y.append(reduced_x[i][1])

plt.scatter(red_x, red_y, c='r', marker='x')
plt.scatter(green_x, green_y, c='g', marker='D')
plt.scatter(blue_x, blue_y, c='b', marker='.')
plt.show()

六、算法优化

PCA是一种线性特征提取算法,通过计算将一组特征按重要性从小到大重新排列得到一组互不相关的新特征,但该算法在构造子集的过程中采用等权重的方式,忽略了不同属性对分类的贡献是不同的。

  • KPCA算法

KPCA是一种改进的PCA非线性降维算法,它利用核函数的思想,把样本数据进行非线性变换,然后在变换空间进行PCA,这样就实现了非线性PCA。

  • 局部PCA算法

局部PCA是一种改进的PCA局部降维算法,它在寻找主成分时加入一项具有局部光滑性的正则项,从而使主成分保留更多的局部性信息。

到此这篇关于Python机器学习之PCA降维算法详解的文章就介绍到这了,更多相关Python PCA降维算法内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
由Python运算π的值深入Python中科学计算的实现
Apr 17 Python
Python获取linux主机ip的简单实现方法
Apr 18 Python
详解Python中 __get__和__getattr__和__getattribute__的区别
Jun 16 Python
python正则表达式的使用
Jun 12 Python
Python登录注册验证功能实现
Jun 18 Python
Python 经典面试题 21 道【不可错过】
Sep 21 Python
对python中的iter()函数与next()函数详解
Oct 18 Python
使用pandas把某一列的字符值转换为数字的实例
Jan 29 Python
Tensorflow 1.0之后模型文件、权重数值的读取方式
Feb 12 Python
python3中sorted函数里cmp参数改变详解
Mar 12 Python
python 深度学习中的4种激活函数
Sep 18 Python
Python数据可视化之用Matplotlib绘制常用图形
Jun 03 Python
Python 批量下载阴阳师网站壁纸
May 19 #Python
python 如何将两个实数矩阵合并为一个复数矩阵
May 19 #Python
python使用pywinauto驱动微信客户端实现公众号爬虫
python基于tkinter实现gif录屏功能
Python 读写 Matlab Mat 格式数据的操作
May 19 #Python
python3 hdf5文件 遍历代码
May 19 #Python
Python基础之元组与文件知识总结
You might like
php获取英文姓名首字母的方法
2015/07/13 PHP
php进程间通讯实例分析
2016/07/11 PHP
弹出模态框modal的实现方法及实例
2017/09/19 PHP
基于prototype的validation.js发布2.3.4新版本,让你彻底脱离表单验证的烦恼
2006/12/06 Javascript
jQuery中append、insertBefore、after与insertAfter的简单用法与注意事项
2020/04/04 Javascript
html文档中的location对象属性理解及常见的用法
2014/08/13 Javascript
nodejs中实现阻塞实例
2015/03/24 NodeJs
jQuery使用append在html元素后同时添加多项内容的方法
2015/03/26 Javascript
10条建议帮助你创建更好的jQuery插件
2015/05/18 Javascript
jQuery实现弹出窗口中切换登录与注册表单
2015/06/05 Javascript
JS实现网页标题随机显示名人名言的方法
2015/11/03 Javascript
浅谈vue-lazyload实现的详细过程
2017/08/22 Javascript
Angular使用Md5加密的解决方法
2017/09/16 Javascript
信息滚动效果的实例讲解
2017/09/18 Javascript
微信小程序自动客服功能
2017/11/02 Javascript
AngularJS实现的锚点楼层跳转功能示例
2018/01/02 Javascript
vue页面离开后执行函数的实例
2018/03/13 Javascript
jquery拖拽自动排序插件使用方法详解
2020/07/20 jQuery
微信公众号获取用户地理位置并列出附近的门店的示例代码
2019/07/25 Javascript
超轻量级的js时间库miment使用解析
2019/08/02 Javascript
Python最火、R极具潜力 2017机器学习调查报告
2017/12/11 Python
Python中顺序表的实现简单代码分享
2018/01/09 Python
python实现多线程网页下载器
2018/04/15 Python
使用Python快速搭建HTTP服务和文件共享服务的实例讲解
2018/06/04 Python
解决Python下json.loads()中文字符出错的问题
2018/12/19 Python
python使用xlrd模块读取xlsx文件中的ip方法
2019/01/11 Python
pip安装python库的方法总结
2019/08/02 Python
Django结合ajax进行页面实时更新的例子
2019/08/12 Python
浅谈python print(xx, flush = True) 全网最清晰的解释
2020/02/21 Python
python判断是空的实例分享
2020/07/06 Python
英国在线发型和美容产品商店:Beauty Cutie
2019/04/27 全球购物
Napapijri西班牙在线商店:夹克、外套、运动衫等
2020/11/05 全球购物
中学生学雷锋演讲稿
2014/04/26 职场文书
三月学雷锋活动总结
2014/06/26 职场文书
2015法院个人工作总结范文
2015/05/25 职场文书
Python图像处理之图像拼接
2021/04/28 Python