端午节将至,用Python爬取粽子数据并可视化,看看网友喜欢哪种粽子吧!


Posted in Python onJune 11, 2021

一、前言

本文就从数据爬取数据清洗数据可视化,这三个方面入手,但你简单完成一个小型的数据分析项目,让你对知识能够有一个综合的运用。

整个思路如下:

  • 爬取网页:https://www.jd.com/
  • 爬取说明: 基于京东网站,我们搜索网站“粽子”数据,大概有100页。我们爬取的字段,既有一级页面的相关信息,还有二级页面的部分信息;
  • 爬取思路: 先针对某一页数据的一级页面做一个解析,然后再进行二级页面做一个解析,最后再进行翻页操作;
  • 爬取字段: 分别是粽子的名称(标题)、价格、品牌(店铺)、类别(口味);
  • 使用工具: requests+lxml+pandas+time+re+pyecharts
  • 网站解析方式: xpath

最终的效果如下:

端午节将至,用Python爬取粽子数据并可视化,看看网友喜欢哪种粽子吧!

二、数据爬取

京东网站,一般是动态加载的,也就是说,采用一般方式只能爬取到某个页面的前30个数据(一个页面一共60个数据)。

基于本文,我仅用最基本的方法,爬取了每个页面的前30条数据(如果大家有兴趣,可以自行下去爬取所有的数据)。

那么,本文究竟爬取了哪些字段呢?我给大家做一个展示,大家有兴趣,可以爬取更多的字段,做更为详细的分析。

端午节将至,用Python爬取粽子数据并可视化,看看网友喜欢哪种粽子吧!

下面为大家展示爬虫代码:

import pandas as pd
import requests
from lxml import etree
import chardet
import time
import re
 
def get_CI(url):
    headers = {'User-Agent':'Mozilla/5.0 (Windows NT 6.1; Win64; X64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.80 Safari/537.36'}
    rqg = requests.get(url,headers=headers)
    rqg.encoding = chardet.detect(rqg.content)['encoding']
    html = etree.HTML(rqg.text)
    
    # 价格
    p_price = html.xpath('//div/div[@class="p-price"]/strong/i/text()')
    
    # 名称
    p_name = html.xpath('//div/div[@class="p-name p-name-type-2"]/a/em')
    p_name = [str(p_name[i].xpath('string(.)')) for i in range(len(p_name))]
    
    # 深层url
    deep_ur1 = html.xpath('//div/div[@class="p-name p-name-type-2"]/a/@href')
    deep_url = ["http:" + i for i in deep_ur1]
    
    # 从这里开始,我们获取“二级页面”的信息           
    brands_list = []
    kinds_list = []
    for i in deep_url:
        rqg = requests.get(i,headers=headers)
        rqg.encoding = chardet.detect(rqg.content)['encoding']
        html = etree.HTML(rqg.text)
                          
        # 品牌
        brands = html.xpath('//div/div[@class="ETab"]//ul[@id="parameter-brand"]/li/@title')
        brands_list.append(brands)
                        
        # 类别
        kinds = re.findall('>类别:(.*?)</li>',rqg.text)
        kinds_list.append(kinds)
                           
    data = pd.DataFrame({'名称':p_name,'价格':p_price,'品牌':brands_list,'类别':kinds_list})
    return(data)
                           
x = "https://search.jd.com/Search?keyword=%E7%B2%BD%E5%AD%90&qrst=1&wq=%E7%B2%BD%E5%AD%90&stock=1&page="
url_list = [x + str(i) for i in range(1,200,2)]
res = pd.DataFrame(columns=['名称','价格','品牌','类别'])
 
# 这里进行“翻页”操作
for url in url_list:
    res0 = get_CI(url)
    res = pd.concat([res,res0])
    time.sleep(3)
 
# 保存数据
res.to_csv('aliang.csv',encoding='utf_8_sig')

最终爬取到的数据:

端午节将至,用Python爬取粽子数据并可视化,看看网友喜欢哪种粽子吧!

三、数据清洗

从上图可以看到,整个数据算是很整齐的,不是特别乱,我们只做一些简单的操作即可。

先使用pandas库,来读取数据。

import pandas as pd
 
df = pd.read_excel("粽子.xlsx",index_col=False)
df.head()

结果如下:

端午节将至,用Python爬取粽子数据并可视化,看看网友喜欢哪种粽子吧!

我们分别针对 “品牌”“类别 两个字段,去掉中括号。

df["品牌"] = df["品牌"].apply(lambda x: x[1:-1])
df["类别"] = df["类别"].apply(lambda x: x[1:-1])
df.head()

结果如下:

端午节将至,用Python爬取粽子数据并可视化,看看网友喜欢哪种粽子吧!

①  粽子品牌排名前10的店铺

df["品牌"].value_counts()[:10]

结果如下:

端午节将至,用Python爬取粽子数据并可视化,看看网友喜欢哪种粽子吧!

② 粽子口味排名前5的味道

def func1(x):
    if x.find("甜") > 0:
        return "甜粽子"
    else:
        return x
df["类别"] = df["类别"].apply(func1)
df["类别"].value_counts()[1:6]

结果如下:

端午节将至,用Python爬取粽子数据并可视化,看看网友喜欢哪种粽子吧!

③ 粽子售卖价格区间划分

def price_range(x): # 按照我的购物习惯,划分价格
    if x <= 50:
        return '<50元'
    elif x <= 100:
        return '50-100元'
    elif x <= 300:
        return '100-300元'
    elif x <= 500:
        return '300-500元'
    elif x <= 1000:
        return '500-1000元'
    else:
        return '>1000元'
 
df["价格区间"] = df["价格"].apply(price_range)
df["价格区间"].value_counts()

结果如下:

端午节将至,用Python爬取粽子数据并可视化,看看网友喜欢哪种粽子吧!

由于数据不是很多,没有很多字段,也就没有很多乱数据。因此,这里也没有做数据去重、缺失值填充等操作。所以,大家可以下去获取更多字段,更多数据,用于数据分析。

四、数据可视化

俗话说:字不如表,表不如图。通过可视化分析,我们可以将数据背后 “隐藏” 的信息,给展现出来。

拓展: 当然,这里只是 “抛砖引玉”,我并没有获取太多的数据,也没有获取太多的字段。这里给学习的朋友当一个作业题,自己下去用更多的数据、更多的字段,做更透彻的分析。

在这里,我们基于以下几个问题,做一个可视化展示,分别是:

  • ① 粽子销售店铺Top10柱形图;
  • ② 粽子口味排名Top5柱形图;
  • ③ 粽子销售价格区间划分饼图;
  • ④ 粽子商品名称词云图;

① 粽子销售店铺Top10柱形图

端午节将至,用Python爬取粽子数据并可视化,看看网友喜欢哪种粽子吧!

结论分析:去年,我们分析了一些月饼的数据,“五芳斋”“北京稻香村” 这几个牌子记忆犹新,可谓是做月饼、粽子的老店。像 “三全” 和 “思念”,在我印象中一直以为它们只做水饺和汤圆,粽子是否值得一试呢?当然,这里还有一些新的牌子,像 “诸老大”“稻香私房” 等一些牌子,大家都可以下去搜索一下。买东西,就是要精挑细选,品牌也重要。

② 粽子口味排名Top5柱形图

端午节将至,用Python爬取粽子数据并可视化,看看网友喜欢哪种粽子吧!

结论分析:在我印象中,小时候一直吃的最多的就是 “甜粽子”,直到我上了初中才知道,粽子还可以有肉?当然,从图中可以看出,卖 “鲜肉粽” 的店铺还是居多,毕竟这个送人,还是显得高端、大气一些。这里还有一些口味,像 “蜜枣粽”“豆沙粽”,我基本没吃过。如果你送人,你会送什么口味的呢?

③ 粽子销售价格区间划分饼图

端午节将至,用Python爬取粽子数据并可视化,看看网友喜欢哪种粽子吧!

结论分析:这里,我故意把价格区间细分。这个饼图也很符合实际,毕竟每年就过一次端午节,还是以薄利多销为主,接近80%的粽子,售价都在100元以下。当然,还有一些中档的粽子,价格在100-300元。大于300元,我觉得也没有吃的必要,反正我是不会花这么多钱去买粽子。

④ 粽子商品名称词云图

端午节将至,用Python爬取粽子数据并可视化,看看网友喜欢哪种粽子吧!

结论分析:从图中,可以大致看出商家的卖点了。毕竟是节日,“送礼”“礼品” 体现了节日氛围。“猪肉”“豆沙” 体现了粽子口味。当然,它是否是 “早餐” 好选择呢?购买的话,还支持 “团购” 哦。这些字眼,多多少少都会各自吸引一部分人的眼球。

⑤ 图形组合为大屏

端午节将至,用Python爬取粽子数据并可视化,看看网友喜欢哪种粽子吧!

​到此这篇关于端午节将至,用Python将粽子数据可视化,看看网友喜欢哪种吧!的文章就介绍到这了,更多相关Python数据可视化内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python数据结构树和二叉树简介
Apr 29 Python
python返回昨天日期的方法
May 13 Python
Python正则表达式教程之一:基础篇
Mar 02 Python
python执行使用shell命令方法分享
Nov 08 Python
Python实现屏幕截图的两种方式
Feb 05 Python
Python实现的读取/更改/写入xml文件操作示例
Aug 30 Python
python画图的函数用法以及技巧
Jun 28 Python
使用Filter过滤python中的日志输出的实现方法
Jul 17 Python
详解python中的生成器、迭代器、闭包、装饰器
Aug 22 Python
如何在python中判断变量的类型
Jul 29 Python
Python提取视频中图片的示例(按帧、按秒)
Oct 22 Python
Python机器学习之基础概述
May 19 Python
Python-OpenCV实现图像缺陷检测的实例
Python中OpenCV实现简单车牌字符切割
Python排序算法之插入排序及其优化方案详解
Python下opencv库的安装过程及问题汇总
Jun 11 #Python
Python实现信息轰炸工具(再也不怕说不过别人了)
撤回我也能看到!教你用Python制作微信防撤回脚本
用Python创建简易网站图文教程
You might like
《Re:从零开始的异世界生活》剧情体验,手游新作定名
2020/04/09 日漫
PHP易混淆函数的区别及用法汇总
2014/11/22 PHP
浅析Yii2缓存的使用
2016/05/10 PHP
PHP生成唯一ID之SnowFlake算法
2016/12/17 PHP
基于jquery+thickbox仿校内登录注册框
2010/06/07 Javascript
网站内容禁止复制和粘贴、另存为的js代码
2014/02/26 Javascript
Angularjs2不同组件间的通信实例代码
2017/05/06 Javascript
jQuery实现页码跳转式动态数据分页
2017/12/31 jQuery
在Vue中使用echarts的方法
2018/02/05 Javascript
详解vue axios二次封装
2018/07/22 Javascript
jQuery实现高级检索功能
2019/05/28 jQuery
vue实现数字动态翻牌的效果(开箱即用)
2019/12/08 Javascript
webpack中的模式(mode)使用详解
2020/02/20 Javascript
ant design 日期格式化的实现
2020/10/27 Javascript
Python自动化开发学习之三级菜单制作
2017/07/14 Python
python如何使用正则表达式的前向、后向搜索及前向搜索否定模式详解
2017/11/08 Python
python交互式图形编程实例(二)
2017/11/17 Python
Python生成8位随机字符串的方法分析
2017/12/05 Python
Python列表解析配合if else的方法
2018/06/23 Python
PyQt5实现QLineEdit添加clicked信号的方法
2019/06/25 Python
在python中用url_for构造URL的方法
2019/07/25 Python
在python中利用try..except来代替if..else的用法
2019/12/19 Python
Django import export实现数据库导入导出方式
2020/04/03 Python
Python通过Schema实现数据验证方式
2020/11/12 Python
CSS3的Flexbox布局的简明入门指南
2016/04/08 HTML / CSS
css3边框_动力节点Java学院整理
2017/07/11 HTML / CSS
欧洲有机婴儿食品最大的市场:Organic Baby Food(供美国和加拿大)
2018/03/28 全球购物
在SQL Server中创建数据库主要有那种方式
2013/09/10 面试题
五好党支部事迹材料
2014/02/06 职场文书
最新结婚典礼主持词
2014/03/14 职场文书
洗发露广告词
2014/03/14 职场文书
产品销售计划书
2014/05/04 职场文书
党委书记群众路线对照检查材料思想汇报
2014/10/04 职场文书
寒假生活随笔
2015/08/15 职场文书
创业计划书之熟食店
2019/10/16 职场文书
MySQL 自定义变量的概念及特点
2021/05/13 MySQL