详解Python牛顿插值法


Posted in Python onMay 11, 2021

一、牛顿多项式

拉格朗日多项式的公式不具备递推性,每个多项式需要单独构造。但很多时候我们需要从若干个逼近多项式选择一个。这个时候我们就需要一个具有递推关系的方法来构造——牛顿多项式

详解Python牛顿插值法

这里的的a0,a1…等可以通过逐一带入点的值来求得。但是当项数多起来时,会发现式子变得很大,这个时候我们便要引入差商的概念(利用差分思想)具体见式子能更好理解

详解Python牛顿插值法
详解Python牛顿插值法

这里在编程实现中我们可以推出相应的差商推导方程

d(k,0)=y(k)
d(k,j)=(d(k,j-1)-d(k-1,j-1)) / (x(k)-x(k-j))

二、例题

【问题描述】考虑[0,3]内的函数y=f(x)=cos(x)。利用多个(最多为6个)节点构造牛顿插值多项式。
【输入形式】在屏幕上依次输入在区间[0,3]内的一个值x*,构造插值多项式后求其P(x*)值,和多个节点的x坐标。
【输出形式】输出牛顿插值多项式系数向量,差商矩阵,P(x*)值(保留6位有效数字),和与真实值的绝对误差(使用科学计数法,保留小数点后6位有数字)。
【样例1输入】
0.8
0 0.5 1
【样例1输出】
-0.429726
-0.0299721
1
1 0 0
0.877583 -0.244835 0
0.540302 -0.674561 -0.429726
0.700998
4.291237e-03
【样例1说明】
输入:x为0.8,3个节点为(k, cos(k)),其中k = 0, 0.5, 1。
输出:
牛顿插值多项式系数向量,表示P2(x)=-0.429726x^2 - 0.0299721x + 1;
3行3列的差商矩阵;
当x
为0.8时,P2(0.8)值为0.700998
与真实值的绝对误差为:4.291237*10^(-3)
【评分标准】根据输入得到的输出准确

三、ACcode:

C++(后面还有python代码)

/*
 * @Author: csc
 * @Date: 2021-04-30 08:52:45
 * @LastEditTime: 2021-04-30 11:57:46
 * @LastEditors: Please set LastEditors
 * @Description: In User Settings Edit
 * @FilePath: \code_formal\course\cal\newton_quo.cpp
 */
#include <bits/stdc++.h>
#define pr printf
#define sc scanf
#define for0(i, n) for (i = 0; i < n; i++)
#define for1n(i, n) for (i = 1; i <= n; i++)
#define forab(i, a, b) for (i = a; i <= b; i++)
#define forba(i, a, b) for (i = b; i >= a; i--)
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
#define int long long
#define pii pair<int, int>
#define vi vector<int>
#define vii vector<vector<int>>
#define vt3 vector<tuple<int, int, int>>
#define mem(ara, n) memset(ara, n, sizeof(ara))
#define memb(ara) memset(ara, false, sizeof(ara))
#define all(x) (x).begin(), (x).end()
#define sq(x) ((x) * (x))
#define sz(x) x.size()
const int N = 2e5 + 100;
const int mod = 1e9 + 7;
namespace often
{
    inline void input(int &res)
    {
        char c = getchar();
        res = 0;
        int f = 1;
        while (!isdigit(c))
        {
            f ^= c == '-';
            c = getchar();
        }
        while (isdigit(c))
        {
            res = (res << 3) + (res << 1) + (c ^ 48);
            c = getchar();
        }
        res = f ? res : -res;
    }
    inline int qpow(int a, int b)
    {
        int ans = 1, base = a;
        while (b)
        {
            if (b & 1)
                ans = (ans * base % mod + mod) % mod;
            base = (base * base % mod + mod) % mod;
            b >>= 1;
        }
        return ans;
    }
    int fact(int n)
    {
        int res = 1;
        for (int i = 1; i <= n; i++)
            res = res * 1ll * i % mod;
        return res;
    }
    int C(int n, int k)
    {
        return fact(n) * 1ll * qpow(fact(k), mod - 2) % mod * 1ll * qpow(fact(n - k), mod - 2) % mod;
    }
    int exgcd(int a, int b, int &x, int &y)
    {
        if (b == 0)
        {
            x = 1, y = 0;
            return a;
        }
        int res = exgcd(b, a % b, x, y);
        int t = y;
        y = x - (a / b) * y;
        x = t;
        return res;
    }
    int invmod(int a, int mod)
    {
        int x, y;
        exgcd(a, mod, x, y);
        x %= mod;
        if (x < 0)
            x += mod;
        return x;
    }
}
using namespace often;
using namespace std;

int n;

signed main()
{
    auto polymul = [&](vector<double> &v, double er) {
        v.emplace_back(0);
        vector<double> _ = v;
        int m = sz(v);
        for (int i = 1; i < m; i++)
            v[i] += er * _[i - 1];
    };
    auto polyval = [&](vector<double> const &c, double const &_x) -> double {
        double res = 0.0;
        int m = sz(c);
        for (int ii = 0; ii < m; ii++)
            res += c[ii] * pow(_x, (double)(m - ii - 1));
        return res;
    };

    int __ = 1;
    //input(_);
    while (__--)
    {
        double _x, temp;
        cin >> _x;
        vector<double> x, y;
        while (cin >> temp)
            x.emplace_back(temp), y.emplace_back(cos(temp));
        n = x.size();
        vector<vector<double>> a(n, vector<double>(n));
        int i, j;
        for0(i, n) a[i][0] = y[i];
        forab(j, 1, n - 1) forab(i, j, n - 1) a[i][j] = (a[i][j - 1] - a[i - 1][j - 1]) / (x[i] - x[i - j]);
        vector<double> v;
        v.emplace_back(a[n - 1][n - 1]);
        forba(i, 0, n - 2)
        {
            polymul(v, -x[i]);
            int l = sz(v);
            v[l - 1] += a[i][i];
        }

        for0(i, n)
            pr("%g\n", v[i]);
        for0(i, n)
        {
            for0(j, n)
                pr("%g ", a[i][j]);
            puts("");
        }
        double _y =  polyval(v, _x);
        pr("%g\n", _y);
        pr("%.6e",fabs(_y-cos(_x)));
    }

    return 0;
}

python代码

'''
Author: csc
Date: 2021-04-29 23:00:57
LastEditTime: 2021-04-30 09:58:07
LastEditors: Please set LastEditors
Description: In User Settings Edit
FilePath: \code_py\newton_.py
'''
import numpy as np


def difference_quotient(x, y):
    n = len(x)
    a = np.zeros([n, n], dtype=float)
    for i in range(n):
        a[i][0] = y[i]
    for j in range(1, n):
        for i in range(j, n):
            a[i][j] = (a[i][j-1]-a[i-1][j-1])/(x[i]-x[i-j])
    return a


def newton(x, y, _x):
    a = difference_quotient(x, y)
    n = len(x)
    s = a[n-1][n-1]
    j = n-2
    while j >= 0:
        s = np.polyadd(np.polymul(s, np.poly1d(
            [x[j]], True)), np.poly1d([a[j][j]]))
        j -= 1
    for i in range(n):
        print('%g' % s[n-1-i])
    for i in range(n):
        for j in range(n):
            print('%g' % a[i][j], end=' ')
        print()
    _y = np.polyval(s, _x)
    print('%g' % _y)
    # re_err
    real_y = np.cos(_x)
    err = abs(_y-real_y)
    print('%.6e' % err)


def main():
    _x = float(input())
    x = list(map(float, input().split()))
    y = np.cos(x)
    newton(x, y, _x)


if __name__ == '__main__':
    main()

到此这篇关于详解Python牛顿插值法的文章就介绍到这了,更多相关Python牛顿插值法内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python实现文件路径和url相互转换的方法
Jul 06 Python
Python创建xml文件示例
Mar 22 Python
python select.select模块通信全过程解析
Sep 20 Python
更换Django默认的模板引擎为jinja2的实现方法
May 28 Python
python实现电子产品商店
Feb 26 Python
详解Python解决抓取内容乱码问题(decode和encode解码)
Mar 29 Python
深入浅析python 协程与go协程的区别
May 09 Python
python用win32gui遍历窗口并设置窗口位置的方法
Jul 26 Python
Python+unittest+DDT实现数据驱动测试
Nov 30 Python
解决Jupyter-notebook不弹出默认浏览器的问题
Mar 30 Python
Python selenium的这三种等待方式一定要会!
Jun 10 Python
详解在OpenCV中如何使用图像像素
Mar 03 Python
Python中使用subprocess库创建附加进程
有趣的二维码:使用MyQR和qrcode来制作二维码
python保存大型 .mat 数据文件报错超出 IO 限制的操作
May 10 #Python
Python批量将csv文件转化成xml文件的实例
python基础之爬虫入门
python设置 matplotlib 正确显示中文的四种方式
提取视频中的音频 Python只需要三行代码!
You might like
PHP通过正则表达式下载图片到本地的实现代码
2011/09/19 PHP
PHP 抽象方法与抽象类abstract关键字介绍及应用
2014/10/16 PHP
Yii框架实现的验证码、登录及退出功能示例
2017/05/20 PHP
Script的加载方法小结
2011/01/12 Javascript
jQuery 1.7.2中getAll方法的疑惑分析
2012/05/23 Javascript
jquery实现每个数字上都带进度条的幻灯片
2013/02/20 Javascript
用nodejs实现PHP的print_r函数代码
2014/03/14 NodeJs
JavaScript实现的链表数据结构实例
2015/04/02 Javascript
微信浏览器内置JavaScript对象WeixinJSBridge使用实例
2015/05/25 Javascript
Jquery+Ajax+PHP+MySQL实现分类列表管理(上)
2015/10/28 Javascript
input点击后placeholder中的提示消息消失
2016/01/15 Javascript
原生JS实现匀速图片轮播动画
2016/10/18 Javascript
Vue Spa切换页面时更改标题的实例代码
2017/07/15 Javascript
JavaScript实现的浏览器下载文件的方法
2017/08/09 Javascript
深入理解Vue Computed计算属性原理
2018/05/29 Javascript
JavaScript函数节流和函数去抖知识点学习
2018/07/31 Javascript
梳理一下vue中的生命周期
2020/12/30 Vue.js
python list语法学习(带例子)
2013/11/01 Python
python冒泡排序算法的实现代码
2013/11/21 Python
Python中用Decorator来简化元编程的教程
2015/04/13 Python
Python函数式编程
2017/07/20 Python
python使用Plotly绘图工具绘制散点图、线形图
2019/04/02 Python
Django框架orM与自定义SQL语句混合事务控制操作
2019/06/27 Python
python中update的基本使用方法详解
2019/07/17 Python
Python 自由定制表格的实现示例
2020/03/20 Python
来自世界各地的饮料:Flavourly
2019/05/06 全球购物
如何在Cookie里面保存Unicode和国际化字符
2013/05/25 面试题
shell的种类有哪些
2015/04/15 面试题
大一期末自我鉴定
2013/12/13 职场文书
经济管理自荐书
2014/06/09 职场文书
法院四风对照检查材料思想汇报
2014/10/06 职场文书
老乡聚会通知
2015/04/23 职场文书
nginx 多个location转发任意请求或访问静态资源文件的实现
2021/03/31 Servers
Linux安装apache服务器的配置过程
2021/11/27 Servers
MySQL三种方式实现递归查询
2022/04/18 MySQL
pnpm对npm及yarn降维打击详解
2022/08/05 Javascript