详解Python牛顿插值法


Posted in Python onMay 11, 2021

一、牛顿多项式

拉格朗日多项式的公式不具备递推性,每个多项式需要单独构造。但很多时候我们需要从若干个逼近多项式选择一个。这个时候我们就需要一个具有递推关系的方法来构造——牛顿多项式

详解Python牛顿插值法

这里的的a0,a1…等可以通过逐一带入点的值来求得。但是当项数多起来时,会发现式子变得很大,这个时候我们便要引入差商的概念(利用差分思想)具体见式子能更好理解

详解Python牛顿插值法
详解Python牛顿插值法

这里在编程实现中我们可以推出相应的差商推导方程

d(k,0)=y(k)
d(k,j)=(d(k,j-1)-d(k-1,j-1)) / (x(k)-x(k-j))

二、例题

【问题描述】考虑[0,3]内的函数y=f(x)=cos(x)。利用多个(最多为6个)节点构造牛顿插值多项式。
【输入形式】在屏幕上依次输入在区间[0,3]内的一个值x*,构造插值多项式后求其P(x*)值,和多个节点的x坐标。
【输出形式】输出牛顿插值多项式系数向量,差商矩阵,P(x*)值(保留6位有效数字),和与真实值的绝对误差(使用科学计数法,保留小数点后6位有数字)。
【样例1输入】
0.8
0 0.5 1
【样例1输出】
-0.429726
-0.0299721
1
1 0 0
0.877583 -0.244835 0
0.540302 -0.674561 -0.429726
0.700998
4.291237e-03
【样例1说明】
输入:x为0.8,3个节点为(k, cos(k)),其中k = 0, 0.5, 1。
输出:
牛顿插值多项式系数向量,表示P2(x)=-0.429726x^2 - 0.0299721x + 1;
3行3列的差商矩阵;
当x
为0.8时,P2(0.8)值为0.700998
与真实值的绝对误差为:4.291237*10^(-3)
【评分标准】根据输入得到的输出准确

三、ACcode:

C++(后面还有python代码)

/*
 * @Author: csc
 * @Date: 2021-04-30 08:52:45
 * @LastEditTime: 2021-04-30 11:57:46
 * @LastEditors: Please set LastEditors
 * @Description: In User Settings Edit
 * @FilePath: \code_formal\course\cal\newton_quo.cpp
 */
#include <bits/stdc++.h>
#define pr printf
#define sc scanf
#define for0(i, n) for (i = 0; i < n; i++)
#define for1n(i, n) for (i = 1; i <= n; i++)
#define forab(i, a, b) for (i = a; i <= b; i++)
#define forba(i, a, b) for (i = b; i >= a; i--)
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
#define int long long
#define pii pair<int, int>
#define vi vector<int>
#define vii vector<vector<int>>
#define vt3 vector<tuple<int, int, int>>
#define mem(ara, n) memset(ara, n, sizeof(ara))
#define memb(ara) memset(ara, false, sizeof(ara))
#define all(x) (x).begin(), (x).end()
#define sq(x) ((x) * (x))
#define sz(x) x.size()
const int N = 2e5 + 100;
const int mod = 1e9 + 7;
namespace often
{
    inline void input(int &res)
    {
        char c = getchar();
        res = 0;
        int f = 1;
        while (!isdigit(c))
        {
            f ^= c == '-';
            c = getchar();
        }
        while (isdigit(c))
        {
            res = (res << 3) + (res << 1) + (c ^ 48);
            c = getchar();
        }
        res = f ? res : -res;
    }
    inline int qpow(int a, int b)
    {
        int ans = 1, base = a;
        while (b)
        {
            if (b & 1)
                ans = (ans * base % mod + mod) % mod;
            base = (base * base % mod + mod) % mod;
            b >>= 1;
        }
        return ans;
    }
    int fact(int n)
    {
        int res = 1;
        for (int i = 1; i <= n; i++)
            res = res * 1ll * i % mod;
        return res;
    }
    int C(int n, int k)
    {
        return fact(n) * 1ll * qpow(fact(k), mod - 2) % mod * 1ll * qpow(fact(n - k), mod - 2) % mod;
    }
    int exgcd(int a, int b, int &x, int &y)
    {
        if (b == 0)
        {
            x = 1, y = 0;
            return a;
        }
        int res = exgcd(b, a % b, x, y);
        int t = y;
        y = x - (a / b) * y;
        x = t;
        return res;
    }
    int invmod(int a, int mod)
    {
        int x, y;
        exgcd(a, mod, x, y);
        x %= mod;
        if (x < 0)
            x += mod;
        return x;
    }
}
using namespace often;
using namespace std;

int n;

signed main()
{
    auto polymul = [&](vector<double> &v, double er) {
        v.emplace_back(0);
        vector<double> _ = v;
        int m = sz(v);
        for (int i = 1; i < m; i++)
            v[i] += er * _[i - 1];
    };
    auto polyval = [&](vector<double> const &c, double const &_x) -> double {
        double res = 0.0;
        int m = sz(c);
        for (int ii = 0; ii < m; ii++)
            res += c[ii] * pow(_x, (double)(m - ii - 1));
        return res;
    };

    int __ = 1;
    //input(_);
    while (__--)
    {
        double _x, temp;
        cin >> _x;
        vector<double> x, y;
        while (cin >> temp)
            x.emplace_back(temp), y.emplace_back(cos(temp));
        n = x.size();
        vector<vector<double>> a(n, vector<double>(n));
        int i, j;
        for0(i, n) a[i][0] = y[i];
        forab(j, 1, n - 1) forab(i, j, n - 1) a[i][j] = (a[i][j - 1] - a[i - 1][j - 1]) / (x[i] - x[i - j]);
        vector<double> v;
        v.emplace_back(a[n - 1][n - 1]);
        forba(i, 0, n - 2)
        {
            polymul(v, -x[i]);
            int l = sz(v);
            v[l - 1] += a[i][i];
        }

        for0(i, n)
            pr("%g\n", v[i]);
        for0(i, n)
        {
            for0(j, n)
                pr("%g ", a[i][j]);
            puts("");
        }
        double _y =  polyval(v, _x);
        pr("%g\n", _y);
        pr("%.6e",fabs(_y-cos(_x)));
    }

    return 0;
}

python代码

'''
Author: csc
Date: 2021-04-29 23:00:57
LastEditTime: 2021-04-30 09:58:07
LastEditors: Please set LastEditors
Description: In User Settings Edit
FilePath: \code_py\newton_.py
'''
import numpy as np


def difference_quotient(x, y):
    n = len(x)
    a = np.zeros([n, n], dtype=float)
    for i in range(n):
        a[i][0] = y[i]
    for j in range(1, n):
        for i in range(j, n):
            a[i][j] = (a[i][j-1]-a[i-1][j-1])/(x[i]-x[i-j])
    return a


def newton(x, y, _x):
    a = difference_quotient(x, y)
    n = len(x)
    s = a[n-1][n-1]
    j = n-2
    while j >= 0:
        s = np.polyadd(np.polymul(s, np.poly1d(
            [x[j]], True)), np.poly1d([a[j][j]]))
        j -= 1
    for i in range(n):
        print('%g' % s[n-1-i])
    for i in range(n):
        for j in range(n):
            print('%g' % a[i][j], end=' ')
        print()
    _y = np.polyval(s, _x)
    print('%g' % _y)
    # re_err
    real_y = np.cos(_x)
    err = abs(_y-real_y)
    print('%.6e' % err)


def main():
    _x = float(input())
    x = list(map(float, input().split()))
    y = np.cos(x)
    newton(x, y, _x)


if __name__ == '__main__':
    main()

到此这篇关于详解Python牛顿插值法的文章就介绍到这了,更多相关Python牛顿插值法内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
小小聊天室Python代码实现
Aug 17 Python
Python中XlsxWriter模块简介与用法分析
Apr 24 Python
tensorflow更改变量的值实例
Jul 30 Python
浅谈python新式类和旧式类区别
Apr 26 Python
python3 动态模块导入与全局变量使用实例
Dec 22 Python
python判断变量是否为int、字符串、列表、元组、字典的方法详解
Feb 13 Python
在echarts中图例legend和坐标系grid实现左右布局实例
May 16 Python
推荐技术人员一款Python开源库(造数据神器)
Jul 08 Python
python爬虫看看虎牙女主播中谁最“顶”步骤详解
Dec 01 Python
Python OpenCV 彩色与灰度图像的转换实现
Jun 05 Python
Python基于百度AI实现抓取表情包
Jun 27 Python
Pandas 稀疏数据结构的实现
Jul 25 Python
Python中使用subprocess库创建附加进程
有趣的二维码:使用MyQR和qrcode来制作二维码
python保存大型 .mat 数据文件报错超出 IO 限制的操作
May 10 #Python
Python批量将csv文件转化成xml文件的实例
python基础之爬虫入门
python设置 matplotlib 正确显示中文的四种方式
提取视频中的音频 Python只需要三行代码!
You might like
PHP 文件上传全攻略
2010/04/28 PHP
php中取得文件的后缀名?
2012/02/20 PHP
php缓冲 output_buffering和ob_start使用介绍
2014/01/30 PHP
CodeIgniter记录错误日志的方法全面总结
2016/05/17 PHP
php实现给二维数组中所有一维数组添加值的方法
2017/02/04 PHP
php中array_fill函数的实例用法
2021/03/02 PHP
jquery实现翻动fadeIn显示的方法
2015/03/05 Javascript
js获得当前系统日期时间的方法
2015/05/06 Javascript
javascript实现网页端解压并查看zip文件
2015/12/15 Javascript
vue jsx 使用指南及vue.js 使用jsx语法的方法
2017/11/11 Javascript
利用Node.js检测端口是否被占用的方法
2017/12/07 Javascript
关于微信小程序获取小程序码并接受buffer流保存为图片的方法
2019/06/07 Javascript
vue 使用 canvas 实现手写电子签名
2020/03/06 Javascript
js里面的变量范围分享
2020/07/18 Javascript
VUE子组件向父组件传值详解(含传多值及添加额外参数场景)
2020/09/01 Javascript
jQuery-App输入框实现实时搜索
2020/11/19 jQuery
利用Python自带PIL库扩展图片大小给图片加文字描述的方法示例
2017/08/08 Python
Python中asyncio与aiohttp入门教程
2018/10/16 Python
使用python写一个自动浏览文章的脚本实例
2019/12/05 Python
Python代码生成视频的缩略图的实例讲解
2019/12/22 Python
Python的Django框架实现数据库查询(不返回QuerySet的方法)
2020/05/19 Python
python小白切忌乱用表达式
2020/05/29 Python
用pip给python安装matplotlib库的详细教程
2021/02/24 Python
神话般的珠宝:Ross-Simons
2020/07/13 全球购物
包装类的功能、种类、常用方法
2012/01/27 面试题
应届生煤化工求职信
2013/10/21 职场文书
大学生职业生涯规划范文——找准自我,定位人生
2014/01/23 职场文书
助人为乐道德模范事迹材料
2014/08/16 职场文书
2014年部门工作总结
2014/11/12 职场文书
2014年应急管理工作总结
2014/11/26 职场文书
北京故宫导游词
2015/01/31 职场文书
2015年团队工作总结范文
2015/05/04 职场文书
2019毕业典礼主持词!
2019/07/05 职场文书
聊聊mysql都有哪几种分区方式
2022/04/13 MySQL
MySQL数据库实验之 触发器和存储过程
2022/06/21 MySQL
JS前端轻量fabric.js系列之画布初始化
2022/08/05 Javascript