详解Python牛顿插值法


Posted in Python onMay 11, 2021

一、牛顿多项式

拉格朗日多项式的公式不具备递推性,每个多项式需要单独构造。但很多时候我们需要从若干个逼近多项式选择一个。这个时候我们就需要一个具有递推关系的方法来构造——牛顿多项式

详解Python牛顿插值法

这里的的a0,a1…等可以通过逐一带入点的值来求得。但是当项数多起来时,会发现式子变得很大,这个时候我们便要引入差商的概念(利用差分思想)具体见式子能更好理解

详解Python牛顿插值法
详解Python牛顿插值法

这里在编程实现中我们可以推出相应的差商推导方程

d(k,0)=y(k)
d(k,j)=(d(k,j-1)-d(k-1,j-1)) / (x(k)-x(k-j))

二、例题

【问题描述】考虑[0,3]内的函数y=f(x)=cos(x)。利用多个(最多为6个)节点构造牛顿插值多项式。
【输入形式】在屏幕上依次输入在区间[0,3]内的一个值x*,构造插值多项式后求其P(x*)值,和多个节点的x坐标。
【输出形式】输出牛顿插值多项式系数向量,差商矩阵,P(x*)值(保留6位有效数字),和与真实值的绝对误差(使用科学计数法,保留小数点后6位有数字)。
【样例1输入】
0.8
0 0.5 1
【样例1输出】
-0.429726
-0.0299721
1
1 0 0
0.877583 -0.244835 0
0.540302 -0.674561 -0.429726
0.700998
4.291237e-03
【样例1说明】
输入:x为0.8,3个节点为(k, cos(k)),其中k = 0, 0.5, 1。
输出:
牛顿插值多项式系数向量,表示P2(x)=-0.429726x^2 - 0.0299721x + 1;
3行3列的差商矩阵;
当x
为0.8时,P2(0.8)值为0.700998
与真实值的绝对误差为:4.291237*10^(-3)
【评分标准】根据输入得到的输出准确

三、ACcode:

C++(后面还有python代码)

/*
 * @Author: csc
 * @Date: 2021-04-30 08:52:45
 * @LastEditTime: 2021-04-30 11:57:46
 * @LastEditors: Please set LastEditors
 * @Description: In User Settings Edit
 * @FilePath: \code_formal\course\cal\newton_quo.cpp
 */
#include <bits/stdc++.h>
#define pr printf
#define sc scanf
#define for0(i, n) for (i = 0; i < n; i++)
#define for1n(i, n) for (i = 1; i <= n; i++)
#define forab(i, a, b) for (i = a; i <= b; i++)
#define forba(i, a, b) for (i = b; i >= a; i--)
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
#define int long long
#define pii pair<int, int>
#define vi vector<int>
#define vii vector<vector<int>>
#define vt3 vector<tuple<int, int, int>>
#define mem(ara, n) memset(ara, n, sizeof(ara))
#define memb(ara) memset(ara, false, sizeof(ara))
#define all(x) (x).begin(), (x).end()
#define sq(x) ((x) * (x))
#define sz(x) x.size()
const int N = 2e5 + 100;
const int mod = 1e9 + 7;
namespace often
{
    inline void input(int &res)
    {
        char c = getchar();
        res = 0;
        int f = 1;
        while (!isdigit(c))
        {
            f ^= c == '-';
            c = getchar();
        }
        while (isdigit(c))
        {
            res = (res << 3) + (res << 1) + (c ^ 48);
            c = getchar();
        }
        res = f ? res : -res;
    }
    inline int qpow(int a, int b)
    {
        int ans = 1, base = a;
        while (b)
        {
            if (b & 1)
                ans = (ans * base % mod + mod) % mod;
            base = (base * base % mod + mod) % mod;
            b >>= 1;
        }
        return ans;
    }
    int fact(int n)
    {
        int res = 1;
        for (int i = 1; i <= n; i++)
            res = res * 1ll * i % mod;
        return res;
    }
    int C(int n, int k)
    {
        return fact(n) * 1ll * qpow(fact(k), mod - 2) % mod * 1ll * qpow(fact(n - k), mod - 2) % mod;
    }
    int exgcd(int a, int b, int &x, int &y)
    {
        if (b == 0)
        {
            x = 1, y = 0;
            return a;
        }
        int res = exgcd(b, a % b, x, y);
        int t = y;
        y = x - (a / b) * y;
        x = t;
        return res;
    }
    int invmod(int a, int mod)
    {
        int x, y;
        exgcd(a, mod, x, y);
        x %= mod;
        if (x < 0)
            x += mod;
        return x;
    }
}
using namespace often;
using namespace std;

int n;

signed main()
{
    auto polymul = [&](vector<double> &v, double er) {
        v.emplace_back(0);
        vector<double> _ = v;
        int m = sz(v);
        for (int i = 1; i < m; i++)
            v[i] += er * _[i - 1];
    };
    auto polyval = [&](vector<double> const &c, double const &_x) -> double {
        double res = 0.0;
        int m = sz(c);
        for (int ii = 0; ii < m; ii++)
            res += c[ii] * pow(_x, (double)(m - ii - 1));
        return res;
    };

    int __ = 1;
    //input(_);
    while (__--)
    {
        double _x, temp;
        cin >> _x;
        vector<double> x, y;
        while (cin >> temp)
            x.emplace_back(temp), y.emplace_back(cos(temp));
        n = x.size();
        vector<vector<double>> a(n, vector<double>(n));
        int i, j;
        for0(i, n) a[i][0] = y[i];
        forab(j, 1, n - 1) forab(i, j, n - 1) a[i][j] = (a[i][j - 1] - a[i - 1][j - 1]) / (x[i] - x[i - j]);
        vector<double> v;
        v.emplace_back(a[n - 1][n - 1]);
        forba(i, 0, n - 2)
        {
            polymul(v, -x[i]);
            int l = sz(v);
            v[l - 1] += a[i][i];
        }

        for0(i, n)
            pr("%g\n", v[i]);
        for0(i, n)
        {
            for0(j, n)
                pr("%g ", a[i][j]);
            puts("");
        }
        double _y =  polyval(v, _x);
        pr("%g\n", _y);
        pr("%.6e",fabs(_y-cos(_x)));
    }

    return 0;
}

python代码

'''
Author: csc
Date: 2021-04-29 23:00:57
LastEditTime: 2021-04-30 09:58:07
LastEditors: Please set LastEditors
Description: In User Settings Edit
FilePath: \code_py\newton_.py
'''
import numpy as np


def difference_quotient(x, y):
    n = len(x)
    a = np.zeros([n, n], dtype=float)
    for i in range(n):
        a[i][0] = y[i]
    for j in range(1, n):
        for i in range(j, n):
            a[i][j] = (a[i][j-1]-a[i-1][j-1])/(x[i]-x[i-j])
    return a


def newton(x, y, _x):
    a = difference_quotient(x, y)
    n = len(x)
    s = a[n-1][n-1]
    j = n-2
    while j >= 0:
        s = np.polyadd(np.polymul(s, np.poly1d(
            [x[j]], True)), np.poly1d([a[j][j]]))
        j -= 1
    for i in range(n):
        print('%g' % s[n-1-i])
    for i in range(n):
        for j in range(n):
            print('%g' % a[i][j], end=' ')
        print()
    _y = np.polyval(s, _x)
    print('%g' % _y)
    # re_err
    real_y = np.cos(_x)
    err = abs(_y-real_y)
    print('%.6e' % err)


def main():
    _x = float(input())
    x = list(map(float, input().split()))
    y = np.cos(x)
    newton(x, y, _x)


if __name__ == '__main__':
    main()

到此这篇关于详解Python牛顿插值法的文章就介绍到这了,更多相关Python牛顿插值法内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python操作Mysql实例代码教程在线版(查询手册)
Feb 18 Python
python文件读写并使用mysql批量插入示例分享(python操作mysql)
Feb 17 Python
在Python的Django框架中包装视图函数
Jul 20 Python
python Matplotlib画图之调整字体大小的示例
Nov 20 Python
Python基于Floyd算法求解最短路径距离问题实例详解
May 16 Python
Python爬取智联招聘数据分析师岗位相关信息的方法
Aug 13 Python
Python 异常的捕获、异常的传递与主动抛出异常操作示例
Sep 23 Python
Python 文件数据读写的具体实现
Jan 24 Python
Python中断多重循环的几种方式详解
Feb 10 Python
使用Django实现把两个模型类的数据聚合在一起
Mar 28 Python
Django如何使用asyncio协程和ThreadPoolExecutor多线程
Oct 12 Python
用Python进行栅格数据的分区统计和批量提取
May 27 Python
Python中使用subprocess库创建附加进程
有趣的二维码:使用MyQR和qrcode来制作二维码
python保存大型 .mat 数据文件报错超出 IO 限制的操作
May 10 #Python
Python批量将csv文件转化成xml文件的实例
python基础之爬虫入门
python设置 matplotlib 正确显示中文的四种方式
提取视频中的音频 Python只需要三行代码!
You might like
PHP 变量定义和变量替换的方法
2009/07/30 PHP
IIS下PHP连接数据库提示mysql undefined function mysql_connect()
2010/06/04 PHP
通过JavaScript或PHP检测Android设备的代码
2011/03/09 PHP
对比分析php中Cookie与Session的异同
2016/02/19 PHP
JavaScript 字符串连接性能优化
2008/12/20 Javascript
JavaScript 浮点数运算 精度问题
2009/10/06 Javascript
JavaScript 全角转半角部分
2009/10/28 Javascript
jquery1.4.2 for Visual studio 2010 模板文件
2010/07/14 Javascript
javscript对象原型的一些看法
2010/09/19 Javascript
JQuery分别取得每行最后一列和最后一行的示例代码
2013/08/18 Javascript
sogou地图API用法实例教程
2014/09/11 Javascript
基于jQuery Bar Indicator 插件实现进度条展示效果
2015/09/30 Javascript
AngularJS单选框及多选框实现双向动态绑定
2016/01/13 Javascript
浅谈jquery中的each方法$.each、this.each、$.fn.each
2016/06/23 Javascript
Highcharts学习之数据列
2016/08/03 Javascript
jQuery+HTML5+CSS3制作支持响应式布局时间轴插件
2016/08/10 Javascript
Express的HTTP重定向到HTTPS的方法
2018/06/06 Javascript
jQuery使用each遍历循环的方法
2018/09/19 jQuery
vue实现拖拽的简单案例 不超出可视区域
2019/07/25 Javascript
Vue+ElementUI 中级联选择器Bug问题的解决
2020/07/31 Javascript
使用apidocJs快速生成在线文档的实例讲解
2018/02/07 Python
Python数据结构之哈夫曼树定义与使用方法示例
2018/04/22 Python
python脚本实现验证码识别
2018/06/07 Python
自学python的建议和周期预算
2019/01/30 Python
Python生成指定数量的优惠码实操内容
2019/06/18 Python
wxPython多个窗口的基本结构
2019/11/19 Python
TFRecord文件查看包含的所有Features代码
2020/02/17 Python
pycharm专业版远程登录服务器的详细教程
2020/09/15 Python
Python实现LR1文法的完整实例代码
2020/10/25 Python
4款Python 类型检查工具,你选择哪个呢?
2020/10/30 Python
New Balance美国官网:运动鞋和健身服装
2017/04/11 全球购物
C#基础面试题
2016/10/17 面试题
安全月活动总结
2014/05/05 职场文书
学生会竞选演讲稿纪检部
2014/08/25 职场文书
《悲惨世界》:比天空更广阔的是人的心灵
2020/01/16 职场文书
vue响应式原理与双向数据的深入解析
2021/06/04 Vue.js