详解Python牛顿插值法


Posted in Python onMay 11, 2021

一、牛顿多项式

拉格朗日多项式的公式不具备递推性,每个多项式需要单独构造。但很多时候我们需要从若干个逼近多项式选择一个。这个时候我们就需要一个具有递推关系的方法来构造——牛顿多项式

详解Python牛顿插值法

这里的的a0,a1…等可以通过逐一带入点的值来求得。但是当项数多起来时,会发现式子变得很大,这个时候我们便要引入差商的概念(利用差分思想)具体见式子能更好理解

详解Python牛顿插值法
详解Python牛顿插值法

这里在编程实现中我们可以推出相应的差商推导方程

d(k,0)=y(k)
d(k,j)=(d(k,j-1)-d(k-1,j-1)) / (x(k)-x(k-j))

二、例题

【问题描述】考虑[0,3]内的函数y=f(x)=cos(x)。利用多个(最多为6个)节点构造牛顿插值多项式。
【输入形式】在屏幕上依次输入在区间[0,3]内的一个值x*,构造插值多项式后求其P(x*)值,和多个节点的x坐标。
【输出形式】输出牛顿插值多项式系数向量,差商矩阵,P(x*)值(保留6位有效数字),和与真实值的绝对误差(使用科学计数法,保留小数点后6位有数字)。
【样例1输入】
0.8
0 0.5 1
【样例1输出】
-0.429726
-0.0299721
1
1 0 0
0.877583 -0.244835 0
0.540302 -0.674561 -0.429726
0.700998
4.291237e-03
【样例1说明】
输入:x为0.8,3个节点为(k, cos(k)),其中k = 0, 0.5, 1。
输出:
牛顿插值多项式系数向量,表示P2(x)=-0.429726x^2 - 0.0299721x + 1;
3行3列的差商矩阵;
当x
为0.8时,P2(0.8)值为0.700998
与真实值的绝对误差为:4.291237*10^(-3)
【评分标准】根据输入得到的输出准确

三、ACcode:

C++(后面还有python代码)

/*
 * @Author: csc
 * @Date: 2021-04-30 08:52:45
 * @LastEditTime: 2021-04-30 11:57:46
 * @LastEditors: Please set LastEditors
 * @Description: In User Settings Edit
 * @FilePath: \code_formal\course\cal\newton_quo.cpp
 */
#include <bits/stdc++.h>
#define pr printf
#define sc scanf
#define for0(i, n) for (i = 0; i < n; i++)
#define for1n(i, n) for (i = 1; i <= n; i++)
#define forab(i, a, b) for (i = a; i <= b; i++)
#define forba(i, a, b) for (i = b; i >= a; i--)
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
#define int long long
#define pii pair<int, int>
#define vi vector<int>
#define vii vector<vector<int>>
#define vt3 vector<tuple<int, int, int>>
#define mem(ara, n) memset(ara, n, sizeof(ara))
#define memb(ara) memset(ara, false, sizeof(ara))
#define all(x) (x).begin(), (x).end()
#define sq(x) ((x) * (x))
#define sz(x) x.size()
const int N = 2e5 + 100;
const int mod = 1e9 + 7;
namespace often
{
    inline void input(int &res)
    {
        char c = getchar();
        res = 0;
        int f = 1;
        while (!isdigit(c))
        {
            f ^= c == '-';
            c = getchar();
        }
        while (isdigit(c))
        {
            res = (res << 3) + (res << 1) + (c ^ 48);
            c = getchar();
        }
        res = f ? res : -res;
    }
    inline int qpow(int a, int b)
    {
        int ans = 1, base = a;
        while (b)
        {
            if (b & 1)
                ans = (ans * base % mod + mod) % mod;
            base = (base * base % mod + mod) % mod;
            b >>= 1;
        }
        return ans;
    }
    int fact(int n)
    {
        int res = 1;
        for (int i = 1; i <= n; i++)
            res = res * 1ll * i % mod;
        return res;
    }
    int C(int n, int k)
    {
        return fact(n) * 1ll * qpow(fact(k), mod - 2) % mod * 1ll * qpow(fact(n - k), mod - 2) % mod;
    }
    int exgcd(int a, int b, int &x, int &y)
    {
        if (b == 0)
        {
            x = 1, y = 0;
            return a;
        }
        int res = exgcd(b, a % b, x, y);
        int t = y;
        y = x - (a / b) * y;
        x = t;
        return res;
    }
    int invmod(int a, int mod)
    {
        int x, y;
        exgcd(a, mod, x, y);
        x %= mod;
        if (x < 0)
            x += mod;
        return x;
    }
}
using namespace often;
using namespace std;

int n;

signed main()
{
    auto polymul = [&](vector<double> &v, double er) {
        v.emplace_back(0);
        vector<double> _ = v;
        int m = sz(v);
        for (int i = 1; i < m; i++)
            v[i] += er * _[i - 1];
    };
    auto polyval = [&](vector<double> const &c, double const &_x) -> double {
        double res = 0.0;
        int m = sz(c);
        for (int ii = 0; ii < m; ii++)
            res += c[ii] * pow(_x, (double)(m - ii - 1));
        return res;
    };

    int __ = 1;
    //input(_);
    while (__--)
    {
        double _x, temp;
        cin >> _x;
        vector<double> x, y;
        while (cin >> temp)
            x.emplace_back(temp), y.emplace_back(cos(temp));
        n = x.size();
        vector<vector<double>> a(n, vector<double>(n));
        int i, j;
        for0(i, n) a[i][0] = y[i];
        forab(j, 1, n - 1) forab(i, j, n - 1) a[i][j] = (a[i][j - 1] - a[i - 1][j - 1]) / (x[i] - x[i - j]);
        vector<double> v;
        v.emplace_back(a[n - 1][n - 1]);
        forba(i, 0, n - 2)
        {
            polymul(v, -x[i]);
            int l = sz(v);
            v[l - 1] += a[i][i];
        }

        for0(i, n)
            pr("%g\n", v[i]);
        for0(i, n)
        {
            for0(j, n)
                pr("%g ", a[i][j]);
            puts("");
        }
        double _y =  polyval(v, _x);
        pr("%g\n", _y);
        pr("%.6e",fabs(_y-cos(_x)));
    }

    return 0;
}

python代码

'''
Author: csc
Date: 2021-04-29 23:00:57
LastEditTime: 2021-04-30 09:58:07
LastEditors: Please set LastEditors
Description: In User Settings Edit
FilePath: \code_py\newton_.py
'''
import numpy as np


def difference_quotient(x, y):
    n = len(x)
    a = np.zeros([n, n], dtype=float)
    for i in range(n):
        a[i][0] = y[i]
    for j in range(1, n):
        for i in range(j, n):
            a[i][j] = (a[i][j-1]-a[i-1][j-1])/(x[i]-x[i-j])
    return a


def newton(x, y, _x):
    a = difference_quotient(x, y)
    n = len(x)
    s = a[n-1][n-1]
    j = n-2
    while j >= 0:
        s = np.polyadd(np.polymul(s, np.poly1d(
            [x[j]], True)), np.poly1d([a[j][j]]))
        j -= 1
    for i in range(n):
        print('%g' % s[n-1-i])
    for i in range(n):
        for j in range(n):
            print('%g' % a[i][j], end=' ')
        print()
    _y = np.polyval(s, _x)
    print('%g' % _y)
    # re_err
    real_y = np.cos(_x)
    err = abs(_y-real_y)
    print('%.6e' % err)


def main():
    _x = float(input())
    x = list(map(float, input().split()))
    y = np.cos(x)
    newton(x, y, _x)


if __name__ == '__main__':
    main()

到此这篇关于详解Python牛顿插值法的文章就介绍到这了,更多相关Python牛顿插值法内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python代码制作configure文件示例
Jul 28 Python
Python单链表的简单实现方法
Sep 23 Python
python多重继承实例
Oct 11 Python
Python基于正则表达式实现检查文件内容的方法【文件检索】
Aug 30 Python
Python Selenium Cookie 绕过验证码实现登录示例代码
Apr 10 Python
详解flask入门模板引擎
Jul 18 Python
Python 中PyQt5 点击主窗口弹出另一个窗口的实现方法
Jul 04 Python
python实现从本地摄像头和网络摄像头截取图片功能
Jul 11 Python
python自动保存百度盘资源到百度盘中的实例代码
Aug 26 Python
python异常处理和日志处理方式
Dec 24 Python
在PyCharm中实现添加快捷模块
Feb 12 Python
matplotlib绘制正余弦曲线图的实现
Feb 22 Python
Python中使用subprocess库创建附加进程
有趣的二维码:使用MyQR和qrcode来制作二维码
python保存大型 .mat 数据文件报错超出 IO 限制的操作
May 10 #Python
Python批量将csv文件转化成xml文件的实例
python基础之爬虫入门
python设置 matplotlib 正确显示中文的四种方式
提取视频中的音频 Python只需要三行代码!
You might like
PHP4实际应用经验篇(7)
2006/10/09 PHP
dedecms后台验证码总提示错误的解决方法
2007/03/21 PHP
php FPDF类库应用实现代码
2009/03/20 PHP
CodeIgniter中实现泛域名解析
2014/07/19 PHP
Gambit vs ForZe BO3 第一场 2.13
2021/03/10 DOTA
THREE.JS入门教程(1)THREE.JS使用前了解
2013/01/24 Javascript
解析使用JS 清空File控件的路径值
2013/07/08 Javascript
js模拟C#中List的简单实例
2014/03/06 Javascript
node.js中使用node-schedule实现定时任务实例
2014/06/03 Javascript
jQuery监听文件上传实现进度条效果的方法
2016/10/16 Javascript
微信小程序中实现一对多发消息详解及实例代码
2017/02/14 Javascript
Bootstrap-table使用footerFormatter做统计列功能
2018/09/07 Javascript
浅谈ECMAScript 中的Array类型
2019/06/10 Javascript
[01:32:50]DOTA2-DPC中国联赛 正赛 DLG vs XG BO3 第一场 1月25日
2021/03/11 DOTA
[32:30]夜魇凡尔赛茶话会 第一期01:谁是卧底
2021/03/11 DOTA
Python  连接字符串(join %)
2008/09/06 Python
使用Python中PDB模块中的命令来调试Python代码的教程
2015/03/30 Python
Python实现按中文排序的方法示例
2018/04/25 Python
对Python 两大环境管理神器 pyenv 和 virtualenv详解
2018/12/31 Python
Python实现的旋转数组功能算法示例
2019/02/23 Python
Python3中列表list合并的四种方法
2019/04/19 Python
OpenCV+Python--RGB转HSI的实现
2019/11/27 Python
使用npy转image图像并保存的实例
2020/07/01 Python
利用CSS3的flexbox实现水平垂直居中与三列等高布局
2016/09/12 HTML / CSS
10 套华丽的CSS3 按钮小结
2012/10/03 HTML / CSS
浅谈关于html5中图片抛物线运动的一些心得
2018/01/09 HTML / CSS
C/C++有关内存的思考题
2015/12/04 面试题
优秀求职自荐信怎样写
2013/12/18 职场文书
大学毕业感言
2014/01/10 职场文书
小学校园活动策划
2014/01/30 职场文书
食品安全检查制度
2014/02/03 职场文书
《十六年前的回忆》教学反思
2014/02/14 职场文书
《燕子专列》教学反思
2014/02/21 职场文书
学生社团文化节开幕式主持词
2014/03/28 职场文书
职工食堂管理制度
2015/08/06 职场文书
MySQL 数据表操作
2022/05/04 MySQL