详解Scrapy Redis入门实战


Posted in Python onNovember 18, 2020

简介

scrapy-redis是一个基于redis的scrapy组件,用于快速实现scrapy项目的分布式部署和数据爬取,其运行原理如下图所示。

详解Scrapy Redis入门实战

Scrapy-Redis特性

分布式爬取

你可以启动多个共享同一redis队列的爬虫实例,多个爬虫实例将各自提取到或者已请求的Requests在队列中统一进行登记,使得Scheduler在请求调度时能够对重复Requests进行过滤,即保证已经由某一个爬虫实例请求过的Request将不会再被其他的爬虫实例重复请求。

分布式数据处理

将scrapy爬取到的items汇聚到同一个redis队列中,意味着你可以根据你的需要启动尽可能多的共享这个items队列的后处理程序。

Scrapy即插即用组件

Scheduler调度器 + Duplication重复过滤器、Item Pipeline、基础Spider爬虫

Scrapy-Redis示例

本文将以爬取京东所有图书分类下的图书信息为例对Scrapy-Redis的用法进行示例。

开发环境

  • Python 3.7
  • Redis 3.2.100

下面列举出了 Python 中 Scrapy-Redis 所需要的各个模块及其版本:

  • redis 2.10.6
  • redis-py-cluster 1.3.6
  • scrapy-redis 0.6.8
  • scrapy-redis-cluster 0.4

在开发之前需要先安装好以上模块,以scrapy-redis-cluster模块为例,使用pip进行安装的命令如下:

pip install scrapy-redis-cluster # 安装模块
pip install scrapy-redis-cluster==0.4 # 安装模块时指定版本
pip install --upgrade scrapy-redis-cluster # 升级模块版本

创建项目

在Windows命令行执行如下命令完成项目创建:

d:\scrapy>scrapy startproject jd_book

执行完该命令后,将会在当前目录下创建包含下列内容的 jd_book 目录:

详解Scrapy Redis入门实战

定义Item

在items.py中把我们将要爬取的图书字段预先定义好。

# -*- coding: utf-8 -*-

import scrapy

class JdBookItem(scrapy.Item):
  b_cate = scrapy.Field() # 图书所属一级分类名称
  s_cate = scrapy.Field() # 图书所属二级分类名称
  s_href = scrapy.Field() # 图书所属二级分类地址
  book_name = scrapy.Field() # 名称
  book_img = scrapy.Field() # 封面图片地址
  book_author = scrapy.Field() # 作者
  book_press = scrapy.Field() # 出版社
  book_publish_date = scrapy.Field() # 出版日期
  book_sku = scrapy.Field() # 商品编号
  book_price = scrapy.Field() # 价格

创建Spider

在Windows命令行执行如下命令完成Spider创建:

d:\scrapy\jd_book>cd jd_book
d:\scrapy\jd_book>scrapy genspider jdbook jd.com

执行完该命令后,将会在 jd_book 的 spiders 目录下生成一个 jdbook.py 文件 :

详解Scrapy Redis入门实战

 jdbook.py的完整爬虫代码如下。

# -*- coding: utf-8 -*-
import scrapy
import json
import urllib
from copy import deepcopy
from jd_book.items import JdBookItem

class JdbookSpider(scrapy.Spider):
  name = 'jdbook'
  allowed_domains = ['jd.com','3.cn']
  start_urls = ['https://book.jd.com/booksort.html']

  def parse(self, response): # 处理图书分类页
    dt_list = response.xpath("//div[@class='mc']/dl/dt") # 提取一级分类元素
    for dt in dt_list:
      item = JdBookItem()
      item["b_cate"] = dt.xpath("./a/text()").extract_first() # 提取一级分类名称
      em_list = dt.xpath("./following-sibling::dd[1]/em") # 提取二级分类元素
      for em in em_list:
        item["s_cate"] = em.xpath("./a/text()").extract_first() # 提取二级分类名称
        item["s_href"] = em.xpath("./a/@href").extract_first() # 提取二级分类地址
        if item["s_href"] is not None:
          item['s_href'] = "https:" + item['s_href'] # 补全二级分类地址
          yield scrapy.Request(item['s_href'], callback=self.parse_book_list, meta={"item": deepcopy(item)})

  def parse_book_list(self, response): # 处理二级分类下图书列表页
    item = response.meta['item']
    li_list = response.xpath("//div[@id='plist']/ul/li") # 提取所有的图书元素
    for li in li_list:
      item["book_img"] = li.xpath(".//div[@class='p-img']//img/@data-lazy-img").extract_first()
      if item["book_img"] is None:
        item["book_img"] = li.xpath(".//div[@class='p-img']//img/@src").extract_first()
      if item["book_img"] is not None:
        item["book_img"] = "https:"+item["book_img"]
      item["book_name"] = li.xpath(".//div[@class='p-name']/a/em/text()").extract_first().strip()
      item["book_author"] = li.xpath(".//span[@class='author_type_1']/a/text()").extract()
      item["book_press"] = li.xpath(".//span[@class='p-bi-store']/a/@title").extract_first()
      item["book_publish_date"] = li.xpath(".//span[@class='p-bi-date']/text()").extract_first().strip()
      item["book_sku"] = li.xpath("./div/@data-sku").extract_first()
      price_url = "https://p.3.cn/prices/mgets?skuIds=j_{}".format(item["book_sku"]) # 提取图书价格请求地址
      yield scrapy.Request(price_url, callback=self.parse_book_price, meta={"item": deepcopy(item)})

    # 提取列表页下一页地址
    next_url = response.xpath("//a[@class='pn-next']/@href").extract_first()
    if next_url is not None:
      next_url = urllib.parse.urljoin(response.url, next_url)
      # yield scrapy.Request(next_url,callback=self.parse_book_list,meta={"item":item})

  def parse_book_price(self, response):
    item = response.meta['item']
    item["book_price"] = json.loads(response.body.decode())[0]["op"]
    yield item

修改配置

在settings.py 中增加Scrapy-Redis相关配置。

# -*- coding: utf-8 -*-

BOT_NAME = 'jd_book'

SPIDER_MODULES = ['jd_book.spiders']
NEWSPIDER_MODULE = 'jd_book.spiders'

# Crawl responsibly by identifying yourself (and your website) on the user-agent
USER_AGENT = 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36'

# Obey robots.txt rules
ROBOTSTXT_OBEY = False


######################################################
##############下面是Scrapy-Redis相关配置################
######################################################

# 指定Redis的主机名和端口
REDIS_HOST = 'localhost'
REDIS_PORT = 6379

# 调度器启用Redis存储Requests队列
SCHEDULER = "scrapy_redis.scheduler.Scheduler"

# 确保所有的爬虫实例使用Redis进行重复过滤
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"

# 将Requests队列持久化到Redis,可支持暂停或重启爬虫
SCHEDULER_PERSIST = True

# Requests的调度策略,默认优先级队列
SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue'

# 将爬取到的items保存到Redis 以便进行后续处理
ITEM_PIPELINES = {
  'scrapy_redis.pipelines.RedisPipeline': 300
}

启动爬虫

至此京东图书项目就算配置完成了,你可以将项目部署到多台服务器中去,并使用如下命令来启动爬虫:

d:\scrapy\jd_book>scrapy crawl jdbook

爬取到的图书数据结构如下:

详解Scrapy Redis入门实战

相应地,在Redis数据库中同时生成了如下3个键:

详解Scrapy Redis入门实战

其中,jdbook:requests 中保存了待爬取的Request对象;jdbook:dupefilter 中保存了已经爬取过的Request对象的指纹;jdbook:items中保存了爬取到的Item对象。

 通过上述京东图书项目不难看出,scrapy-redis项目与普通的scrapy项目相比,除了在settings.py配置时额外增加了一些scrapy-redis的专属配置外,其他环节完全相同。

参考文章

 https://scrapy-redis.readthedocs.io/en/stable/index.html

到此这篇关于详解Scrapy Redis入门实战的文章就介绍到这了,更多相关Scrapy Redis入门内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python使用shelve模块实现简单数据存储的方法
May 20 Python
浅谈python新手中常见的疑惑及解答
Jun 14 Python
总结python爬虫抓站的实用技巧
Aug 09 Python
Django 添加静态文件的两种实现方法(必看篇)
Jul 14 Python
利用python将图片转换成excel文档格式
Dec 30 Python
详解python使用Nginx和uWSGI来运行Python应用
Jan 09 Python
python实现二维插值的三维显示
Dec 17 Python
Python基础之条件控制操作示例【if语句】
Mar 23 Python
python循环定时中断执行某一段程序的实例
Jun 29 Python
Python chardet库识别编码原理解析
Feb 18 Python
Python基于正则表达式实现计算器功能
Jul 13 Python
详解Django的MVT设计模式
Apr 29 Python
如何在scrapy中集成selenium爬取网页的方法
Nov 18 #Python
Python 实现键盘鼠标按键模拟
Nov 18 #Python
如何向scrapy中的spider传递参数的几种方法
Nov 18 #Python
python更新数据库中某个字段的数据(方法详解)
Nov 18 #Python
Python下载的11种姿势(小结)
Nov 18 #Python
Python监听键盘和鼠标事件的示例代码
Nov 18 #Python
Opencv python 图片生成视频的方法示例
Nov 18 #Python
You might like
一些PHP写的小东西
2006/12/06 PHP
PHP开发规范手册之PHP代码规范详解
2011/01/13 PHP
让Json更懂中文(JSON_UNESCAPED_UNICODE)
2011/10/27 PHP
深入PHP magic quotes的详解
2013/06/17 PHP
php与python实现的线程池多线程爬虫功能示例
2016/10/12 PHP
详解PHP的抽象类和抽象方法以及接口总结
2019/03/15 PHP
用tip解决Ext列宽度不够的问题
2008/12/13 Javascript
JQUERY 浏览器判断实现函数
2009/08/20 Javascript
(jQuery,mootools,dojo)使用适合自己的编程别名命名
2010/09/14 Javascript
jquery中实现简单的tabs插件功能的代码
2011/03/02 Javascript
jQuery函数的等价原生函数代码示例
2013/05/27 Javascript
checkbox选中与未选中判断示例
2014/08/04 Javascript
js图片闪动特效可以控制间隔时间如几分钟闪动一下
2014/08/12 Javascript
iframe里面的元素触发父窗口元素事件的jquery代码
2014/10/19 Javascript
JQuery中DOM实现事件移除的方法
2015/06/13 Javascript
深入理解JS函数的参数(arguments)的使用
2016/05/28 Javascript
详解使用Vue.Js结合Jquery Ajax加载数据的两种方式
2017/01/10 Javascript
jQuery实现判断上传图片类型和大小的方法示例
2018/04/11 jQuery
NodeJS 将文件夹按照存放路径变成一个对应的JSON的方法
2018/10/17 NodeJs
python安装以及IDE的配置教程
2015/04/29 Python
python基础教程之while循环
2019/08/14 Python
Python 异常的捕获、异常的传递与主动抛出异常操作示例
2019/09/23 Python
python3 tcp的粘包现象和解决办法解析
2019/12/09 Python
Jupyter notebook如何修改平台字体
2020/05/13 Python
python 实现围棋游戏(纯tkinter gui)
2020/11/13 Python
使用BeautifulSoup4解析XML的方法小结
2020/12/07 Python
Python+unittest+requests+excel实现接口自动化测试框架
2020/12/23 Python
CSS3 不定高宽垂直水平居中的几种方式
2020/03/26 HTML / CSS
写求职信有什么意义
2014/02/17 职场文书
自我推荐信范文
2014/05/09 职场文书
坚守艰苦奋斗精神坚决反对享乐主义整改措施
2014/09/17 职场文书
党员先进性教育整改措施
2014/09/18 职场文书
教育项目合作协议书格式
2014/10/17 职场文书
机关党员四风问题个人整改措施
2014/10/26 职场文书
Python异常类型以及处理方法汇总
2021/06/05 Python
类和原型的设计模式之复制与委托差异
2022/07/07 Javascript