pytorch构建多模型实例


Posted in Python onJanuary 15, 2020

pytorch构建双模型

第一部分:构建"se_resnet152","DPN92()"双模型

import numpy as np
from functools import partial
import torch
from torch import nn
import torch.nn.functional as F
from torch.optim import SGD,Adam
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader

from torch.optim.optimizer import Optimizer

import torchvision
from torchvision import models
import pretrainedmodels
from pretrainedmodels.models import *
from torch import nn
from torchvision import transforms as T
import random



random.seed(2050)
np.random.seed(2050)
torch.manual_seed(2050)
torch.cuda.manual_seed_all(2050)

class FCViewer(nn.Module):
  def forward(self, x):
    return x.view(x.size(0), -1)

  
'''Dual Path Networks in PyTorch.'''
class Bottleneck(nn.Module):
  def __init__(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer):
    super(Bottleneck, self).__init__()
    self.out_planes = out_planes
    self.dense_depth = dense_depth

    self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False)
    self.bn1 = nn.BatchNorm2d(in_planes)
    self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False)
    self.bn2 = nn.BatchNorm2d(in_planes)
    self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False)
    self.bn3 = nn.BatchNorm2d(out_planes+dense_depth)

    self.shortcut = nn.Sequential()
    if first_layer:
      self.shortcut = nn.Sequential(
        nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False),
        nn.BatchNorm2d(out_planes+dense_depth)
      )

  def forward(self, x):
    out = F.relu(self.bn1(self.conv1(x)))
    out = F.relu(self.bn2(self.conv2(out)))
    out = self.bn3(self.conv3(out))
    x = self.shortcut(x)
    d = self.out_planes
    out = torch.cat([x[:,:d,:,:]+out[:,:d,:,:], x[:,d:,:,:], out[:,d:,:,:]], 1)
    out = F.relu(out)
    return out


class DPN(nn.Module):
  def __init__(self, cfg):
    super(DPN, self).__init__()
    in_planes, out_planes = cfg['in_planes'], cfg['out_planes']
    num_blocks, dense_depth = cfg['num_blocks'], cfg['dense_depth']

    self.conv1 = nn.Conv2d(7, 64, kernel_size=3, stride=1, padding=1, bias=False)
    self.bn1 = nn.BatchNorm2d(64)
    self.last_planes = 64
    self.layer1 = self._make_layer(in_planes[0], out_planes[0], num_blocks[0], dense_depth[0], stride=1)
    self.layer2 = self._make_layer(in_planes[1], out_planes[1], num_blocks[1], dense_depth[1], stride=2)
    self.layer3 = self._make_layer(in_planes[2], out_planes[2], num_blocks[2], dense_depth[2], stride=2)
    self.layer4 = self._make_layer(in_planes[3], out_planes[3], num_blocks[3], dense_depth[3], stride=2)
    self.linear = nn.Linear(out_planes[3]+(num_blocks[3]+1)*dense_depth[3], 64) 
    self.bn2 = nn.BatchNorm1d(64)
  def _make_layer(self, in_planes, out_planes, num_blocks, dense_depth, stride):
    strides = [stride] + [1]*(num_blocks-1)
    layers = []
    for i,stride in enumerate(strides):
      layers.append(Bottleneck(self.last_planes, in_planes, out_planes, dense_depth, stride, i==0))
      self.last_planes = out_planes + (i+2) * dense_depth
    return nn.Sequential(*layers)

  def forward(self, x):
    out = F.relu(self.bn1(self.conv1(x)))
    out = self.layer1(out)
    out = self.layer2(out)
    out = self.layer3(out)
    out = self.layer4(out)
    out = F.avg_pool2d(out, 4)
    out = out.view(out.size(0), -1)
    out = self.linear(out)
    out= F.relu(self.bn2(out))
    return out



def DPN26():
  cfg = {
    'in_planes': (96,192,384,768),
    'out_planes': (256,512,1024,2048),
    'num_blocks': (2,2,2,2),
    'dense_depth': (16,32,24,128)
  }
  return DPN(cfg)

def DPN92():
  cfg = {
    'in_planes': (96,192,384,768),
    'out_planes': (256,512,1024,2048),
    'num_blocks': (3,4,20,3),
    'dense_depth': (16,32,24,128)
  }
  return DPN(cfg)
class MultiModalNet(nn.Module):
  def __init__(self, backbone1, backbone2, drop, pretrained=True):
    super().__init__()
    if pretrained:
      img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained='imagenet') #seresnext101
    else:
      img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained=None)
    
    self.visit_model=DPN26()
    
    self.img_encoder = list(img_model.children())[:-2]
    self.img_encoder.append(nn.AdaptiveAvgPool2d(1))
    
    self.img_encoder = nn.Sequential(*self.img_encoder)
    if drop > 0:
      self.img_fc = nn.Sequential(FCViewer(),
                  nn.Dropout(drop),
                  nn.Linear(img_model.last_linear.in_features, 512),
                  nn.BatchNorm1d(512))
                  
    else:
      self.img_fc = nn.Sequential(
        FCViewer(),
        nn.BatchNorm1d(img_model.last_linear.in_features),
        nn.Linear(img_model.last_linear.in_features, 512))
    self.bn=nn.BatchNorm1d(576)
    self.cls = nn.Linear(576,9) 

  def forward(self, x_img,x_vis):
    x_img = self.img_encoder(x_img)
    x_img = self.img_fc(x_img)
    x_vis=self.visit_model(x_vis)
    x_cat = torch.cat((x_img,x_vis),1)
    x_cat = F.relu(self.bn(x_cat))
    x_cat = self.cls(x_cat)
    return x_cat

test_x = Variable(torch.zeros(64, 7,26,24))
test_x1 = Variable(torch.zeros(64, 3,224,224))
model=MultiModalNet("se_resnet152","DPN92()",0.1)
out=model(test_x1,test_x)
print(model._modules.keys())
print(model)

print(out.shape)

第二部分构建densenet201单模型

#encoding:utf-8
import torchvision.models as models
import torch
import pretrainedmodels
from torch import nn
from torch.autograd import Variable
#model = models.resnet18(pretrained=True)
#print(model)
#print(model._modules.keys())
#feature = torch.nn.Sequential(*list(model.children())[:-2])#模型的结构
#print(feature)
'''
class FCViewer(nn.Module):
  def forward(self, x):
    return x.view(x.size(0), -1)
class M(nn.Module):
  def __init__(self, backbone1, drop, pretrained=True):
    super(M,self).__init__()
    if pretrained:
      img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained='imagenet') 
    else:
      img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained=None)
    
    self.img_encoder = list(img_model.children())[:-1]
    self.img_encoder.append(nn.AdaptiveAvgPool2d(1))
    self.img_encoder = nn.Sequential(*self.img_encoder)

    if drop > 0:
      self.img_fc = nn.Sequential(FCViewer(),
                  nn.Dropout(drop),
                  nn.Linear(img_model.last_linear.in_features, 236))
                  
    else:
      self.img_fc = nn.Sequential(
        FCViewer(),
        nn.Linear(img_model.last_linear.in_features, 236)
      )

    self.cls = nn.Linear(236,9) 

  def forward(self, x_img):
    x_img = self.img_encoder(x_img)
    x_img = self.img_fc(x_img)
    return x_img 

model1=M('densenet201',0,pretrained=True)
print(model1)
print(model1._modules.keys())
feature = torch.nn.Sequential(*list(model1.children())[:-2])#模型的结构
feature1 = torch.nn.Sequential(*list(model1.children())[:])
#print(feature)
#print(feature1)
test_x = Variable(torch.zeros(1, 3, 100, 100))
out=feature(test_x)
print(out.shape)
'''
'''
import torch.nn.functional as F
class LenetNet(nn.Module):
  def __init__(self):
    super(LenetNet, self).__init__()
    self.conv1 = nn.Conv2d(7, 6, 5) 
    self.conv2 = nn.Conv2d(6, 16, 5) 
    self.fc1  = nn.Linear(144, 120)
    self.fc2  = nn.Linear(120, 84)
    self.fc3  = nn.Linear(84, 10)
  def forward(self, x): 
    x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) 
    x = F.max_pool2d(F.relu(self.conv2(x)), 2)
    x = x.view(x.size()[0], -1) 
    x = F.relu(self.fc1(x))
    x = F.relu(self.fc2(x))
    x = self.fc3(x)    
    return x

model1=LenetNet()
#print(model1)
#print(model1._modules.keys())
feature = torch.nn.Sequential(*list(model1.children())[:-3])#模型的结构
#feature1 = torch.nn.Sequential(*list(model1.children())[:])
print(feature)
#print(feature1)
test_x = Variable(torch.zeros(1, 7, 27, 24))
out=model1(test_x)
print(out.shape)

class FCViewer(nn.Module):
  def forward(self, x):
    return x.view(x.size(0), -1)
class M(nn.Module):
  def __init__(self):
    super(M,self).__init__()
    img_model =model1 
    self.img_encoder = list(img_model.children())[:-3]
    self.img_encoder.append(nn.AdaptiveAvgPool2d(1))
    self.img_encoder = nn.Sequential(*self.img_encoder)
    self.img_fc = nn.Sequential(FCViewer(),
		      nn.Linear(16, 236))
    self.cls = nn.Linear(236,9) 

  def forward(self, x_img):
    x_img = self.img_encoder(x_img)
    x_img = self.img_fc(x_img)
    return x_img 

model2=M()

test_x = Variable(torch.zeros(1, 7, 27, 24))
out=model2(test_x)
print(out.shape)

'''

以上这篇pytorch构建多模型实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
跟老齐学Python之玩转字符串(2)
Sep 14 Python
Python的requests网络编程包使用教程
Jul 11 Python
python3模块smtplib实现发送邮件功能
May 22 Python
PYQT5实现控制台显示功能的方法
Jun 25 Python
python pip源配置,pip配置文件存放位置的方法
Jul 12 Python
Python统计时间内的并发数代码实例
Dec 28 Python
Python跑循环时内存泄露的解决方法
Jan 13 Python
Python vtk读取并显示dicom文件示例
Jan 13 Python
浅谈在JupyterNotebook下导入自己的模块的问题
Apr 16 Python
python中如何进行连乘计算
May 28 Python
python中什么是面向对象
Jun 11 Python
python如何查找列表中元素的位置
May 30 Python
利用Pytorch实现简单的线性回归算法
Jan 15 #Python
pytorch实现线性拟合方式
Jan 15 #Python
Python 支持向量机分类器的实现
Jan 15 #Python
pytorch-神经网络拟合曲线实例
Jan 15 #Python
Pytorch中的VGG实现修改最后一层FC
Jan 15 #Python
详解Python3 中的字符串格式化语法
Jan 15 #Python
用pytorch的nn.Module构造简单全链接层实例
Jan 14 #Python
You might like
刚才在简化php的库,结果发现很多东西
2006/12/31 PHP
php设计模式 Interpreter(解释器模式)
2011/06/26 PHP
yii2使用GridView实现数据全选及批量删除按钮示例
2017/03/01 PHP
修改yii2.0用户登录使用的user表为其它的表实现方法(推荐)
2017/08/01 PHP
JavaScript常用全局属性与方法记录积累
2013/07/03 Javascript
JavaScript的事件绑定(方便不支持js的时候)
2013/10/01 Javascript
使用JavaScript实现Java的List功能(实例讲解)
2013/11/07 Javascript
html文档中的location对象属性理解及常见的用法
2014/08/13 Javascript
JS函数的定义与调用方法推荐
2016/05/12 Javascript
vue.js入门教程之基础语法小结
2016/09/01 Javascript
JavaScript闭包的简单应用
2017/09/01 Javascript
JavaScript callback回调函数用法实例分析
2018/05/08 Javascript
Vue不能检测到Object/Array更新的情况的解决
2018/06/26 Javascript
深入理解JS中Number(),parseInt(),parseFloat()三者比较
2018/08/24 Javascript
vue.js实现的全选与全不选功能示例【基于elementui】
2018/12/03 Javascript
Jquery遍历筛选数组的几种方法和遍历解析json对象,Map()方法详解以及数组中查询某值是否存在
2019/01/18 jQuery
JS实现电话号码的字母组合算法示例
2019/02/26 Javascript
微信小程序全局变量的设置、使用、修改过程解析
2019/09/24 Javascript
微信小程序自定义弹出模态框禁止底部滚动功能
2020/03/09 Javascript
python循环监控远程端口的方法
2015/03/14 Python
Python实现自动为照片添加日期并分类的方法
2017/09/30 Python
Python 逐行分割大txt文件的方法
2017/10/10 Python
30秒轻松实现TensorFlow物体检测
2018/03/14 Python
Python实现提取XML内容并保存到Excel中的方法
2018/09/01 Python
Python使用Beautiful Soup爬取豆瓣音乐排行榜过程解析
2019/08/15 Python
python获取全国城市pm2.5、臭氧等空气质量过程解析
2019/10/12 Python
如何利用python发送邮件
2020/09/26 Python
Python之字典对象的几种创建方法
2020/09/30 Python
几个解决兼容IE6\7\8不支持html5标签的几个方法
2013/01/07 HTML / CSS
Web时代变迁及html5与html4的区别
2016/01/06 HTML / CSS
2014幼儿园教师个人工作总结
2014/11/08 职场文书
2014年幼儿园后勤工作总结
2014/11/10 职场文书
2014年体育部工作总结
2014/11/13 职场文书
2015年元旦联欢晚会活动总结
2014/11/28 职场文书
三好学生竞选稿
2015/11/21 职场文书
openEuler 搭建java开发环境的详细过程
2022/06/10 Servers