基于Python检测动态物体颜色过程解析


Posted in Python onDecember 04, 2019

本篇文章将通过图片对比的方法检查视频中的动态物体,并将其中会动的物体定位用cv2矩形框圈出来。本次项目可用于树莓派或者单片机追踪做一些思路参考。寻找动态物体也可以用来监控是否有人进入房间等等场所的监控。不仅如此,通过对物体的像素值判断分类,达到判断动态物体总体颜色的效果。

引言

物体检测,是一种基于目的几何学和统计资料特点的影像拆分,它将目的的拆分和辨识,其准确度和实时性是整个该系统的一项最重要战斗能力。特别是在是在简单桥段中的,必须对多个目的展开实时处理时,目的系统会萃取和辨识就变得尤其最重要。

随着计算机的持续发展和计算机系统感官基本原理的应用,建模数据处理新技术对目的展开动态追踪研究工作更加受欢迎,对目的展开静态动态追踪整合在信息化公交系统、人工智能监视该系统、军事战略目的检验及药学导航系统手术后中的手术器械整合等各个方面具备普遍的应用于商业价值。

开始前的准备

而这里显然我们没必要做到如此高深的地步,而是借助python和OpenCV通过图片相减的方法找到动态物体,然后根据像素值的大小判断其中的均值颜色。

import cv2
import numpy as np
import collections
import time

下面是读取摄像头:

camera = cv2.VideoCapture(0)

做一些开始前的准备,包括循环次数,摄像头内容读入,保存上一帧的图片作为对比作差找到动态物体,然后定义框架的长和宽。

firstframe = None
a=0
ret0,frame0 = camera.read()
cv2.imwrite("1.jpg",frame0)
x, y, w, h = 10,10,100,100

下面是定义颜色的部分代码,比如定义的黑色,可以参照hsv表进行拓展,如图所示

基于Python检测动态物体颜色过程解析

然后可以知道黑色的最低值为0,0,0,最大值为180,255,46然后建立数组存储颜色数据,通过字典达到映射效果。

# 处理图片
def get_color(frame):
  print('go in get_color')
  hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
  maxsum = -100
  color = None
  color_dict = getColorList()
  for d in color_dict:
    mask = cv2.inRange(frame, color_dict[d][0], color_dict[d][1])
    cv2.imwrite(d + '.jpg', mask)
    binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1]
    binary = cv2.dilate(binary, None, iterations=2)
    img, cnts, hiera = cv2.findContours(binary.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    sum = 0
    for c in cnts:
      sum += cv2.contourArea(c)
    if sum > maxsum:
      maxsum = sum
      color = d 
return color

图像处理

紧接着是图像处理,其中包括转为灰度图,读取颜色字典,然后腐化膨胀操作。

# 处理图片
def get_color(frame):
  print('go in get_color')
  hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
  maxsum = -100
  color = None
  color_dict = getColorList()
  for d in color_dict:
    mask = cv2.inRange(frame, color_dict[d][0], color_dict[d][1])
    cv2.imwrite(d + '.jpg', mask)
    binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1]
    binary = cv2.dilate(binary, None, iterations=2)
    img, cnts, hiera = cv2.findContours(binary.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    sum = 0
    for c in cnts:
      sum += cv2.contourArea(c)
    if sum > maxsum:
      maxsum = sum
      color = d 
return color

图片相减的办法

然后是图片相减找到动态物体的代码,每循环5次保存一次图片,时间是很短的不用担心。然后通过absdiff函数对图片像素值作差找到动态物体,接着讲像素值相减非零的部分用矩形框圈出来。

while True:
  ret, frame = camera.read()
  if not ret:
    break
  gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
  gray = cv2.GaussianBlur(gray, (21, 21), 0)
  a=a+1
  if a%5==0:
    cv2.imwrite("1.jpg", frame)
  firstframe=cv2.imread("1.jpg")
  firstframe= cv2.cvtColor(firstframe, cv2.COLOR_BGR2GRAY)
  firstframe= cv2.GaussianBlur(firstframe, (21, 21), 0)
  frameDelta = cv2.absdiff(firstframe, gray)
  thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
  thresh = cv2.dilate(thresh, None, iterations=2)
  # cnts= cv2.findContours(thresh.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)

  x, y, w, h = cv2.boundingRect(thresh)
  frame = cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)
  cv2.imshow("frame", frame)

因为保存图片是每隔5次进行一次,在某个瞬间可能保存的图片不存在等原因,所以需要通过try的方法避免错误,最终的演示效果文末有。

try:
    ret0, frame0 = camera.read()
    cropped = frame0[y:y+h,x:x+w ] # 裁剪坐标为[y0:y1, x0:x1]
    cv2.imwrite("3.jpg", cropped)

    frame1 = cv2.imread(filename)
    print(get_color(frame1))
    # plt.title(label[model.predict_classes(image)], fontproperties=myfont)
    imgzi = cv2.putText(frame, get_color(frame1), (30, 30), cv2.FONT_HERSHEY_COMPLEX, 1.2,
              (255, 255, 255), 2)
    cv2.imwrite("2.jpg", imgzi)
    cv2.imshow("frame", cv2.imread("2.jpg"))
  except:
    pass

  key = cv2.waitKey(1) & 0xFF

  if key == ord("q"):
    break

camera.release()

其最终演示效果如图所示:

基于Python检测动态物体颜色过程解析

至此,动态物体检测代码基本实现。其中的拓展功能可以按照自己的需求进行修改、

目标检测的发展

下面就将目标检测发展做个简单介绍,感兴趣的朋友可以多多学习。

目标检验对于生物来说非常艰难,通过对照片中的有所不同色调组件的感官很更容易整合并归类出有其中目标物体,但对于计算机系统来说,面临的是像素分辨率行列式,难以从影像中的必要获得猫和狗这样的基本概念并整合其方位,再行再加通常多个物体和凌乱的复杂背景夹杂在一同,目标检验更为艰难。但这难不倒生物学家们,在现代感官各个领域,目的检验就是一个十分受欢迎的研究工作朝向,一些特定目的的检验,比如图片检验和天桥检验早已有十分成熟期的新技术了。一般来说的目标检验也有过很多的试图,但是视觉效果常常不错。现代的目的检验一般用于转动视窗的构建,主要还包括三个方法:

借助有所不同大小的转动视窗框住图中的某一部分作为候选区域内;

萃取候选区域内涉及的感官特点。比如图片检验常见的Harr特点;天桥检验和一般来说目的检验常见的HOG特点等;

借助决策树展开辨识,比如常见的SVM建模。

目的检验的第一步是要做到区域提名(region Proposal),也就是找到有可能的有兴趣区域内(region In Risk, ROI)。区域提名类似透镜字符识别(OCR)各个领域的重复,OCR重复常见过重复方式,非常简单说道就是尽可能磨碎到小的相连(比如小的笔划之类),然后再行根据邻接块的一些亲缘特点展开拆分。但目的检验的单纯比起OCR各个领域千差万别,而且三维点状,大小不等,所以一定高度上可以说道区域提名是比OCR重复更难的一个难题。

区域提名有可能的方式有:

一、转动视窗。转动视窗事物上就是穷举法,借助有所不同的时间尺度和长方形比把所有有可能的大大小小的块都穷举出来,然后送来去辨识,辨识出来机率大的就留下。很显著,这样的方式复杂性太低,造成了很多的校验候选区域内,在现实生活中不不切实际。

二、比赛规则块。在穷举法的为基础展开了一些剪枝,只搭配相同的尺寸和长方形比。这在一些特定的应用于桥段是很有效地的,比如照片搜题App小猿搜题中的的简化字检验,因为简化字方方正正,长方形比多数较为完全一致,因此用比赛规则块做到区域内奖提名是一种较为适合的自由选择。但是对于一般来说的目的检验来说,比赛规则块仍然必须采访很多的方位,复杂性低。

三、特异性搜寻。从神经网络的视角来说,后面的方式解任是不俗了,但是精确度不错,所以难题的架构在于如何有效除去校验候选区域内。只不过校验候选区域内多数是再次发生了重合,特异性搜寻借助这一点,自底向上拆分邻接的重合区域内,从而增加校验。

区域内奖提名非常只有以上所说的三种方式,实质上这块是灵活的,因此变型也很多,感兴趣的阅读不妨参照一下历史文献,最终介绍到此结束。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python中获取对象信息的方法
Apr 27 Python
Python批量修改文本文件内容的方法
Apr 29 Python
Python使用poplib模块和smtplib模块收发电子邮件的教程
Jul 02 Python
scrapy spider的几种爬取方式实例代码
Jan 25 Python
Python实现朴素贝叶斯分类器的方法详解
Jul 04 Python
Flask入门之上传文件到服务器的方法示例
Jul 18 Python
Python3最长回文子串算法示例
Mar 04 Python
使用Django简单编写一个XSS平台的方法步骤
Mar 25 Python
关于torch.optim的灵活使用详解(包括重写SGD,加上L1正则)
Feb 20 Python
Django form表单与请求的生命周期步骤详解
Jun 07 Python
python使用matplotlib绘制折线图的示例代码
Sep 22 Python
Python 实现PS滤镜的旋涡特效
Dec 03 Python
如何用OpenCV -python3实现视频物体追踪
Dec 04 #Python
Python绘制三角函数图(sin\cos\tan)并标注特定范围的例子
Dec 04 #Python
python 画函数曲线示例
Dec 04 #Python
python二元表达式用法
Dec 04 #Python
python numpy 反转 reverse示例
Dec 04 #Python
python将四元数变换为旋转矩阵的实例
Dec 04 #Python
python 和c++实现旋转矩阵到欧拉角的变换方式
Dec 04 #Python
You might like
免费手机号码归属地API查询接口和PHP使用实例分享
2014/04/10 PHP
php中socket的用法详解
2014/10/24 PHP
Yii入门教程之目录结构、入口文件及路由设置
2014/11/25 PHP
CentOS 上搭建 PHP7 开发测试环境
2017/02/26 PHP
Javascript & DHTML 实例编程(教程)(三)初级实例篇1—上传文件控件实例
2007/06/02 Javascript
jQuery Study Notes学习笔记 (二)
2010/08/04 Javascript
10款非常有用的 Ajax 插件分享
2012/03/14 Javascript
jQuery ui插件的使用方法代码实例
2013/05/08 Javascript
Javasipt:操作radio标签详解
2013/12/30 Javascript
结合JQ1.9通过js正则判断各种浏览器版本的方法
2013/12/30 Javascript
js实现网页随机切换背景图片的方法
2014/11/01 Javascript
牛叉的Jquery——Jquery与DOM对象的互相转换及DOM的三种操作
2015/10/29 Javascript
一个例子轻松学会Vue.js
2017/01/02 Javascript
JS多文件上传的实例代码
2017/01/11 Javascript
vue2.0实现倒计时的插件(时间戳 刷新 跳转 都不影响)
2017/03/30 Javascript
Angular4开发解决跨域问题详解
2017/08/28 Javascript
JavaScript实现焦点进入文本框内关闭输入法的核心代码
2017/09/20 Javascript
JS非行间样式获取函数的实例代码
2018/06/05 Javascript
vue项目出现页面空白的解决方案
2019/10/31 Javascript
浅谈Python实现Apriori算法介绍
2017/12/20 Python
python assert的用处示例详解
2019/04/01 Python
与Django结合利用模型对上传图片预测的实例详解
2019/08/07 Python
python+selenium 鼠标事件操作方法
2019/08/24 Python
基于python及pytorch中乘法的使用详解
2019/12/27 Python
Python datetime 格式化 明天,昨天实例
2020/03/02 Python
CSS3教程(5):网页背景图片
2009/04/02 HTML / CSS
HTML5 Canvas旋转动画的2个代码例子(一个旋转的太极图效果)
2014/04/10 HTML / CSS
KIKO美国官网:意大利的平价彩妆品牌
2017/05/16 全球购物
KARATOV珠宝在线商店:俄罗斯珠宝品牌
2019/03/13 全球购物
学校司机岗位职责
2013/11/14 职场文书
继电保护工岗位职责
2014/01/05 职场文书
教师工作总结范文2014
2014/11/10 职场文书
男人帮观后感
2015/06/18 职场文书
创新创业项目计划书该怎样写?
2019/08/13 职场文书
go 原生http web 服务跨域restful api的写法介绍
2021/04/27 Golang
python字符串拼接.join()和拆分.split()详解
2021/11/23 Python