TensorFlow实现Batch Normalization


Posted in Python onMarch 08, 2018

一、BN(Batch Normalization)算法

1. 对数据进行归一化处理的重要性

神经网络学习过程的本质就是学习数据分布,在训练数据与测试数据分布不同情况下,模型的泛化能力就大大降低;另一方面,若训练过程中每批batch的数据分布也各不相同,那么网络每批迭代学习过程也会出现较大波动,使之更难趋于收敛,降低训练收敛速度。对于深层网络,网络前几层的微小变化都会被网络累积放大,则训练数据的分布变化问题会被放大,更加影响训练速度。

2. BN算法的强大之处

1)为了加速梯度下降算法的训练,我们可以采取指数衰减学习率等方法在初期快速学习,后期缓慢进入全局最优区域。使用BN算法后,就可以直接选择比较大的学习率,且设置很大的学习率衰减速度,大大提高训练速度。即使选择了较小的学习率,也会比以前不使用BN情况下的收敛速度快。总结就是BN算法具有快速收敛的特性。

2)BN具有提高网络泛化能力的特性。采用BN算法后,就可以移除针对过拟合问题而设置的dropout和L2正则化项,或者采用更小的L2正则化参数。

3)BN本身是一个归一化网络层,则局部响应归一化层(Local Response Normalization,LRN层)则可不需要了(Alexnet网络中使用到)。

3. BN算法概述

BN算法提出了变换重构,引入了可学习参数γ、β,这就是算法的关键之处:

TensorFlow实现Batch Normalization

引入这两个参数后,我们的网络便可以学习恢复出原是网络所要学习的特征分布,BN层的钱箱传到过程如下:

TensorFlow实现Batch Normalization

其中m为batchsize。BatchNormalization中所有的操作都是平滑可导,这使得back propagation可以有效运行并学到相应的参数γ,β。需要注意的一点是Batch Normalization在training和testing时行为有所差别。Training时μβ和σβ由当前batch计算得出;在Testing时μβ和σβ应使用Training时保存的均值或类似的经过处理的值,而不是由当前batch计算。

二、TensorFlow相关函数

1.tf.nn.moments(x, axes, shift=None, name=None, keep_dims=False)

x是输入张量,axes是在哪个维度上求解, 即想要 normalize的维度, [0] 代表 batch 维度,如果是图像数据,可以传入 [0, 1, 2],相当于求[batch, height, width] 的均值/方差,注意不要加入channel 维度。该函数返回两个张量,均值mean和方差variance。

2.tf.identity(input, name=None)

返回与输入张量input形状和内容一致的张量。

3.tf.nn.batch_normalization(x, mean, variance, offset, scale, variance_epsilon,name=None)

计算公式为scale(x - mean)/ variance + offset。

这些参数中,tf.nn.moments可得到均值mean和方差variance,offset和scale是可训练的,offset一般初始化为0,scale初始化为1,offset和scale的shape与mean相同,variance_epsilon参数设为一个很小的值如0.001。

三、TensorFlow代码实现

1. 完整代码

import tensorflow as tf 
import numpy as np 
import matplotlib.pyplot as plt 
 
ACTIVITION = tf.nn.relu 
N_LAYERS = 7 # 总共7层隐藏层 
N_HIDDEN_UNITS = 30 # 每层包含30个神经元 
 
def fix_seed(seed=1): # 设置随机数种子 
  np.random.seed(seed) 
  tf.set_random_seed(seed) 
 
def plot_his(inputs, inputs_norm): # 绘制直方图函数 
  for j, all_inputs in enumerate([inputs, inputs_norm]): 
    for i, input in enumerate(all_inputs): 
      plt.subplot(2, len(all_inputs), j*len(all_inputs)+(i+1)) 
      plt.cla() 
      if i == 0: 
        the_range = (-7, 10) 
      else: 
        the_range = (-1, 1) 
      plt.hist(input.ravel(), bins=15, range=the_range, color='#FF5733') 
      plt.yticks(()) 
      if j == 1: 
        plt.xticks(the_range) 
      else: 
        plt.xticks(()) 
      ax = plt.gca() 
      ax.spines['right'].set_color('none') 
      ax.spines['top'].set_color('none') 
    plt.title("%s normalizing" % ("Without" if j == 0 else "With")) 
  plt.draw() 
  plt.pause(0.01) 
 
def built_net(xs, ys, norm): # 搭建网络函数 
  # 添加层 
  def add_layer(inputs, in_size, out_size, activation_function=None, norm=False): 
    Weights = tf.Variable(tf.random_normal([in_size, out_size], 
                        mean=0.0, stddev=1.0)) 
    biases = tf.Variable(tf.zeros([1, out_size]) + 0.1) 
    Wx_plus_b = tf.matmul(inputs, Weights) + biases 
 
    if norm: # 判断是否是Batch Normalization层 
      # 计算均值和方差,axes参数0表示batch维度 
      fc_mean, fc_var = tf.nn.moments(Wx_plus_b, axes=[0]) 
      scale = tf.Variable(tf.ones([out_size])) 
      shift = tf.Variable(tf.zeros([out_size])) 
      epsilon = 0.001 
 
      # 定义滑动平均模型对象 
      ema = tf.train.ExponentialMovingAverage(decay=0.5) 
 
      def mean_var_with_update(): 
        ema_apply_op = ema.apply([fc_mean, fc_var]) 
        with tf.control_dependencies([ema_apply_op]): 
          return tf.identity(fc_mean), tf.identity(fc_var) 
 
      mean, var = mean_var_with_update() 
 
      Wx_plus_b = tf.nn.batch_normalization(Wx_plus_b, mean, var, 
                         shift, scale, epsilon) 
 
    if activation_function is None: 
      outputs = Wx_plus_b 
    else: 
      outputs = activation_function(Wx_plus_b) 
    return outputs 
 
  fix_seed(1) 
 
  if norm: # 为第一层进行BN 
    fc_mean, fc_var = tf.nn.moments(xs, axes=[0]) 
    scale = tf.Variable(tf.ones([1])) 
    shift = tf.Variable(tf.zeros([1])) 
    epsilon = 0.001 
 
    ema = tf.train.ExponentialMovingAverage(decay=0.5) 
 
    def mean_var_with_update(): 
      ema_apply_op = ema.apply([fc_mean, fc_var]) 
      with tf.control_dependencies([ema_apply_op]): 
        return tf.identity(fc_mean), tf.identity(fc_var) 
 
    mean, var = mean_var_with_update() 
    xs = tf.nn.batch_normalization(xs, mean, var, shift, scale, epsilon) 
 
  layers_inputs = [xs] # 记录每一层的输入 
 
  for l_n in range(N_LAYERS): # 依次添加7层 
    layer_input = layers_inputs[l_n] 
    in_size = layers_inputs[l_n].get_shape()[1].value 
 
    output = add_layer(layer_input, in_size, N_HIDDEN_UNITS, ACTIVITION, norm) 
    layers_inputs.append(output) 
 
  prediction = add_layer(layers_inputs[-1], 30, 1, activation_function=None) 
  cost = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), 
                    reduction_indices=[1])) 
 
  train_op = tf.train.GradientDescentOptimizer(0.001).minimize(cost) 
  return [train_op, cost, layers_inputs] 
 
fix_seed(1) 
x_data = np.linspace(-7, 10, 2500)[:, np.newaxis] 
np.random.shuffle(x_data) 
noise =np.random.normal(0, 8, x_data.shape) 
y_data = np.square(x_data) - 5 + noise 
 
plt.scatter(x_data, y_data) 
plt.show() 
 
xs = tf.placeholder(tf.float32, [None, 1]) 
ys = tf.placeholder(tf.float32, [None, 1]) 
 
train_op, cost, layers_inputs = built_net(xs, ys, norm=False) 
train_op_norm, cost_norm, layers_inputs_norm = built_net(xs, ys, norm=True) 
 
with tf.Session() as sess: 
  sess.run(tf.global_variables_initializer()) 
 
  cost_his = [] 
  cost_his_norm = [] 
  record_step = 5 
 
  plt.ion() 
  plt.figure(figsize=(7, 3)) 
  for i in range(250): 
    if i % 50 == 0: 
      all_inputs, all_inputs_norm = sess.run([layers_inputs, layers_inputs_norm], 
                          feed_dict={xs: x_data, ys: y_data}) 
      plot_his(all_inputs, all_inputs_norm) 
 
    sess.run([train_op, train_op_norm], 
         feed_dict={xs: x_data[i*10:i*10+10], ys: y_data[i*10:i*10+10]}) 
 
    if i % record_step == 0: 
      cost_his.append(sess.run(cost, feed_dict={xs: x_data, ys: y_data})) 
      cost_his_norm.append(sess.run(cost_norm, 
                     feed_dict={xs: x_data, ys: y_data})) 
 
  plt.ioff() 
  plt.figure() 
  plt.plot(np.arange(len(cost_his))*record_step, 
       np.array(cost_his), label='Without BN')   # no norm 
  plt.plot(np.arange(len(cost_his))*record_step, 
       np.array(cost_his_norm), label='With BN')  # norm 
  plt.legend() 
  plt.show()

2. 实验结果

输入数据分布:

TensorFlow实现Batch Normalization

批标准化BN效果对比:

TensorFlow实现Batch Normalization

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
深入了解Python数据类型之列表
Jun 24 Python
python爬取拉勾网职位数据的方法
Jan 24 Python
对pandas读取中文unicode的csv和添加行标题的方法详解
Dec 12 Python
如何用Python来搭建一个简单的推荐系统
Aug 07 Python
python3实现的zip格式压缩文件夹操作示例
Aug 17 Python
Python小程序 控制鼠标循环点击代码实例
Oct 08 Python
python 普通克里金(Kriging)法的实现
Dec 19 Python
python通过移动端访问查看电脑界面
Jan 06 Python
pycharm激活码有效到2020年11月底
Sep 18 Python
Python函数参数定义及传递方式解析
Jun 10 Python
推荐技术人员一款Python开源库(造数据神器)
Jul 08 Python
Python 实现RSA加解密文本文件
Dec 30 Python
用Django实现一个可运行的区块链应用
Mar 08 #Python
Python pyinotify日志监控系统处理日志的方法
Mar 08 #Python
TensorFlow模型保存和提取的方法
Mar 08 #Python
火车票抢票python代码公开揭秘!
Mar 08 #Python
Python实现定时备份mysql数据库并把备份数据库邮件发送
Mar 08 #Python
python实现12306抢票及自动邮件发送提醒付款功能
Mar 08 #Python
TensorFlow模型保存/载入的两种方法
Mar 08 #Python
You might like
谈谈PHP语法(2)
2006/10/09 PHP
一个简单实现多条件查询的例子
2006/10/09 PHP
PHP排序算法之快速排序(Quick Sort)及其优化算法详解
2018/04/21 PHP
PHP的mysqli_rollback()函数讲解
2019/01/23 PHP
js constructor的实际作用分析
2011/11/15 Javascript
JSON中双引号的轮回使用过程中一定要小心
2014/03/05 Javascript
JQuery中的html()、text()、val()区别示例介绍
2014/09/01 Javascript
jQuery中position()方法用法实例
2015/01/16 Javascript
jQuery操作属性和样式详解
2016/04/13 Javascript
Javascript的动态增加类的实现方法
2016/10/20 Javascript
解决jquery的ajax调取后端数据成功却渲染失败的问题
2018/08/08 jQuery
require.js 加载过程与使用方法介绍
2018/10/30 Javascript
基于vue框架手写一个notify插件实现通知功能的方法
2019/03/31 Javascript
layui点击弹框页面 表单请求的方法
2019/09/21 Javascript
Python 检查数组元素是否存在类似PHP isset()方法
2014/10/14 Python
python日志记录模块实例及改进
2017/02/12 Python
从DataFrame中提取出Series或DataFrame对象的方法
2018/11/10 Python
详解torch.Tensor的4种乘法
2020/09/03 Python
15款Python编辑器的优缺点,别再问我“选什么编辑器”啦
2020/10/19 Python
CSS3实现可翻转的hover效果
2018/05/23 HTML / CSS
电影T恤、80年代T恤和80年代服装:TV Store Online
2020/01/05 全球购物
往来会计岗位职责
2013/12/19 职场文书
大学社团活动策划书
2014/01/26 职场文书
小学国庆节活动方案
2014/02/11 职场文书
运动会通讯稿150字
2014/02/15 职场文书
低碳生活倡议书
2014/04/14 职场文书
护士医德医风自我评价
2014/09/15 职场文书
公安机关纪律作风整顿个人剖析材料材料
2014/10/10 职场文书
简单的离婚协议书范本
2014/11/16 职场文书
优秀班组事迹材料
2014/12/24 职场文书
优秀高中学生评语
2014/12/30 职场文书
大学生心理健康活动总结
2015/05/08 职场文书
2015暑期社会实践个人总结
2015/07/13 职场文书
会计主管竞聘书
2015/09/15 职场文书
MySQL入门命令之函数-单行函数-流程控制函数
2021/04/05 MySQL
用Python爬取各大高校并可视化帮弟弟选大学,弟弟直呼牛X
2021/06/11 Python