用Django实现一个可运行的区块链应用


Posted in Python onMarch 08, 2018

对数字货币的崛起感到新奇的我们,并且想知道其背后的技术——区块链是怎样实现的。

用Django实现一个可运行的区块链应用 

但是完全搞懂区块链并非易事,我喜欢在实践中学习,通过写代码来学习技术会掌握得更牢固。通过构建一个区块链可以加深对区块链的理解。

准备工作

本文要求读者对Python有基本的理解,能读写基本的Python,并且需要对HTTP请求有基本的了解。

我们知道区块链是由区块的记录构成的不可变、有序的链结构,记录可以是交易、文件或任何你想要的数据,重要的是它们是通过哈希值(hashes)链接起来的。

环境准备

环境准备,确保已经安装Python3.5, pip , django, requests,urllib,json,hashlib

安装方法:

pip install django requests

同时还需要一个HTTP客户端,比如Postman,cURL或其它客户端,本文以Postman为例。

开始创建Blockchain

通过django-admin startproject block创建一个block的项目,在项目中创建一个demo项目django-admin startproject demo ,目录结构:

用Django实现一个可运行的区块链应用 

Blockchain类

在views中创建一个Blockchain类,在构造函数中创建了两个列表,一个用于储存区块链,一个用于储存交易。

以下是Blockchain类的框架:

class Blockchain(object):
  def __init__(self):
    self.chain = []
    self.current_transactions = []
  def new_block(self):
    # Creates a new Block and adds it to the chain
    pass
  def new_transaction(self):
    # Adds a new transaction to the list of transactions
    pass
  @staticmethod
  def hash(block):
    # Hashes a Block
    pass
  @property
  def last_block(self):
    # Returns the last Block in the chain
    pass

Blockchain类用来管理链条,它能存储交易,加入新块等,下面我们来进一步完善这些方法。

块结构

每个区块包含属性:索引(index),Unix时间戳(timestamp),交易列表(transactions),工作量证明(稍后解释)以及前一个区块的Hash值。

以下是一个区块的结构:

block = {
  'index': 1,
  'timestamp': 1506057125.900785,
  'transactions': [
    {
      'sender': "8527147fe1f5426f9dd545de4b27ee00",
      'recipient': "a77f5cdfa2934df3954a5c7c7da5df1f",
      'amount': 5,
    }
  ],
  'proof': 324984774000,
  'previous_hash': "2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824"
}

到这里,区块链的概念就清楚了,每个新的区块都包含上一个区块的Hash,这是关键的一点,它保障了区块链不可变性。如果攻击者破坏了前面的某个区块,那么后面所有区块的Hash都会变得不正确。不理解的话,慢慢消化,可参考区块链记账原理

加入交易

接下来我们需要添加一个交易,来完善下new_transaction方法

class Blockchain(object):
  ...
  def new_transaction(self, sender, recipient, amount):
    """
    生成新交易信息,信息将加入到下一个待挖的区块中
    :param sender: <str> Address of the Sender
    :param recipient: <str> Address of the Recipient
    :param amount: <int> Amount
    :return: <int> The index of the Block that will hold this transaction
    """
    self.current_transactions.append({
      'sender': sender,
      'recipient': recipient,
      'amount': amount,
    })
    return self.last_block['index'] + 1

方法向列表中添加一个交易记录,并返回该记录将被添加到的区块(下一个待挖掘的区块)的索引,等下在用户提交交易时会有用。

创建新块

当Blockchain实例化后,我们需要构造一个创世块(没有前区块的第一个区块),并且给它加上一个工作量证明。

每个区块都需要经过工作量证明,俗称挖矿,稍后会继续讲解。

为了构造创世块,我们还需要完善new_block(), new_transaction() 和hash() 方法:

class Blockchain(object):
  def __init__(self):
    self.chain = []
    self.current_transactions = []
    self.new_block(previous_hash=1, proof=100)
    self.nodes = set()
  def new_block(self,proof,previous_hash= None):
    block = {
      'index': len(self.chain) + 1,
      'timestamp': time(),
      'transactions': self.current_transactions,
      'proof':proof ,
      'previous_hash': previous_hash or self.hash(self.chain[-1]),
    }
    self.current_transactions = []
    self.chain.append(block)
    return block
  def new_transaction(self,sender,recipient,amount):
    self.current_transactions.append({
      'sender': sender,
      'recipient': recipient,
      'amount': amount,
    })
    return self.last_block['index']+1
  @staticmethod
  def hash(block):
    block_string = json.dumps(block, sort_keys=True).encode()
    return hashlib.sha256(block_string).hexdigest()

通过上面的代码和注释可以对区块链有直观的了解,接下来我们看看区块是怎么挖出来的。

理解工作量证明

新的区块依赖工作量证明算法(PoW)来构造。PoW的目标是找出一个符合特定条件的数字, 这个数字很难计算出来,但容易验证 。这就是工作量证明的核心思想。

为了方便理解,举个例子:

假设一个整数 x 乘以另一个整数 y 的积的 Hash 值必须以 0 结尾,即 hash(x * y) = ac23dc…0。设变量 x = 5,求 y 的值?

用Python实现如下:

from hashlib import sha256
x = 5
y = 0
while sha256(str(x*y).encode()).hexdigest()[:4] != "0000":
   y += 1
   print(y,sha256(str(x*y).encode()).hexdigest()[:4])
print(y)

在比特币中,使用称为Hashcash的工作量证明算法,它和上面的问题很类似。矿工们为了争夺创建区块的权利而争相计算结果。通常,计算难度与目标字符串需要满足的特定字符的数量成正比,矿工算出结果后,会获得比特币奖励。

当然,在网络上非常容易验证这个结果。

实现工作量证明

让我们来实现一个相似PoW算法,规则是:寻找一个数 p,使得它与前一个区块的 proof 拼接成的字符串的 Hash 值以 4 个零开头。

import hashlib
import json
from time import time
from uuid import uuid4
class Blockchain(object):
  ...
  def last_block(self):
    return self.chain[-1]
  def proof_of_work(self, last_proof):
    proof = 0
    while self.valid_proof(last_proof, proof) is False:
      proof += 1
    return proof
  @staticmethod
  def valid_proof(last_proof, proof):
    guess = str(last_proof*proof).encode()
    guess_hash = hashlib.sha256(guess).hexdigest()
    return guess_hash[:5] == "00000"

衡量算法复杂度的办法是修改零开头的个数。使用4个来用于演示,你会发现多一个零都会大大增加计算出结果所需的时间。

现在Blockchain类基本已经完成了,接下来使用HTTP requests来进行交互。

Blockchain作为API接口

我们将使用Python django框架,这是一个轻量Web应用框架,它方便将网络请求映射到 Python函数,现在我们来让来试一下:

我们将创建三个接口:

/transactions/new 创建一个交易并添加到区块
/mine 告诉服务器去挖掘新的区块
/chain 返回整个区块链

创建节点

我们的“django web服务器”将扮演区块链网络中的一个节点。我们先添加一些框架代码:

node_identifier = str(uuid4()).replace('-', '')
# Instantiate the Blockchain
blockchain = Blockchain()
def mine(request):
  last_block = blockchain.last_block
  last_proof = last_block['proof']
  proof = blockchain.proof_of_work(last_proof)
  print(proof)
  blockchain.new_transaction(
     sender="0",
     recipient=node_identifier,
     amount=1,
   )
   # Forge the new Block by adding it to the chain
  block = blockchain.new_block(proof)
  response = {
     'message': "New Block Forged",
     'index': block['index'],
     'transactions': block['transactions'],
     'proof': block['proof'],
     'previous_hash': block['previous_hash'],
  }
  print(response)
  return HttpResponse(json.dumps(response))
def new_transaction(request):
  values = json.loads(request.body.decode('utf-8'))
  required = ['sender', 'recipient', 'amount']
  if not all(k in values for k in required):
    return 'Missing values'
  index = blockchain.new_transaction(values['sender'], values['recipient'], values['amount'])
  print(index)
  response = {'message': 'Transaction will be added to Block %s'%index}
  return HttpResponse(json.dumps(response))
def full_chain(request):
  response = {
    'chain': blockchain.chain,
    'length': len(blockchain.chain),
  }
  return HttpResponse(json.dumps(response))

添加url路由节点:运行服务

from demo import views
urlpatterns = [
  url(r'^admin/', admin.site.urls),
  url(r'^mine', views.mine),
  url(r'^transactions/new/', views.new_transaction),
  url(r'^chain/', views.full_chain),
  url(r'^register', views.register_nodes),
  url(r'^resolve', views.consensus),
]

运行服务

python manage.py runserver 127.0.0.1:8000

发送交易

发送到节点的交易数据,结构如下:

{
 "sender": "my address",
 "recipient": "someone else's address",
 "amount": 5
}

向服务添加一个交易

用Django实现一个可运行的区块链应用 

挖矿

挖矿正是神奇所在,它很简单,做了一下三件事:

计算工作量证明PoW

通过新增一个交易授予矿工(自己)一个币

构造新区块并将其添加到链中

def proof_of_work(self, last_proof):
    proof = 0
    while self.valid_proof(last_proof, proof) is False:
      proof += 1
    return proof
  @staticmethod
  def valid_proof(last_proof, proof):
    guess = str(last_proof*proof).encode()
    guess_hash = hashlib.sha256(guess).hexdigest()
    return guess_hash[:5] == "00000"

注意交易的接收者是我们自己的服务器节点,我们做的大部分工作都只是围绕Blockchain类方法进行交互。到此,我们的区块链就算完成了,我们来实际运行下

运行区块链

你可以使用cURL 或Postman 去和API进行交互

让我们通过请求 http://127.0.0.1:8000/mine 来进行挖矿

用Django实现一个可运行的区块链应用 

在挖了两次矿之后,就有3个块了,通过请求 http://localhost:8000/chain 可以得到所有的块信息。

{  "chain": [
    {
      "transactions": [],
      "proof": 100,
      "timestamp": 1520314374.7261052,
      "index": 1,
      "previous_hash": 1
    },
    {
      "transactions": [
        {
          "sender": "0",
          "recipient": "27d4aae55b2848dcae52bc722d86e0c3",
          "amount": 1
        }
      ],
      "proof": 1771087,
      "timestamp": 1520314389.5019505,
      "index": 2,
      "previous_hash": "32fa73f48240160257e95fdf8422c6df734b5d7e8ceb69a41a5578643c1d36fb"
    },
    {
      "transactions": [
        {
          "sender": "d4ee26eee15148ee92c6cd394edd9705",
          "recipient": "5",
          "amount": 500
        },
        {
          "sender": "0",
          "recipient": "27d4aae55b2848dcae52bc722d86e0c3",
          "amount": 1
        }
      ],
      "proof": 100,
      "timestamp": 1520314592.4745598,
      "index": 3,
      "previous_hash": "e6b1be488e0ed20fe3ec51135e5fafb4dfffaa28a190967106a5dd3e89e4b3aa"
    }
  ],
  "length": 3
}

一致性(共识)

我们已经有了一个基本的区块链可以接受交易和挖矿。但是区块链系统应该是分布式的。既然是分布式的,那么我们究竟拿什么保证所有节点有同样的链呢?这就是一致性问题,我们要想在网络上有多个节点,就必须实现一个一致性的算法。

注册节点

在实现一致性算法之前,我们需要找到一种方式让一个节点知道它相邻的节点。每个节点都需要保存一份包含网络中其它节点的记录。因此让我们新增几个接口:

/register 接收URL形式的新节点列表
/resolve 执行一致性算法,解决任何冲突,确保节点拥有正确的链

我们修改下Blockchain的init函数并提供一个注册节点方法:

from urllib.parse import urlparse
...
class Blockchain(object):
  def __init__(self):
    ...
    self.nodes = set()
    ...
  def register_node(self, address):
    parsed_url = urlparse(address)
    self.nodes.add(parsed_url.netloc)

我们用 set 来储存节点,这是一种避免重复添加节点的简单方法。

实现共识算法

前面提到,冲突是指不同的节点拥有不同的链,为了解决这个问题,规定最长的、有效的链才是最终的链,换句话说,网络中有效最长链才是实际的链。

我们使用一下的算法,来达到网络中的共识

class Blockchain(object):
  def __init__(self):
    ...
  def valid_chain(self, chain):
    last_block = chain[0]
    current_index = 1
    while current_index < len(chain):
      block = chain[current_index]
      if block['previous_hash'] != self.hash(last_block):
        return False
      # Check that the Proof of Work is correct
      if not self.valid_proof(last_block['proof'], block['proof']):
        return False
      last_block = block
      current_index += 1
    return True
  def resolve_conflicts(self):
    neighbours = self.nodes
    new_chain = None
    max_length = len(self.chain)
    for node in neighbours:
      response = requests.get('http://%s/chain' %node)
      if response.status_code == 200:
        length = json.loads(response)['length']
        chain = json.loads(response)['chain']
        # Check if the length is longer and the chain is valid
        if length > max_length and self.valid_chain(chain):
          max_length = length
          new_chain = chain
    # Replace our chain if we discovered a new, valid chain longer than ours
    if new_chain:
      self.chain = new_chain
      return True
    return False

第一个方法 valid_chain() 用来检查是否是有效链,遍历每个块验证hash和proof.

第2个方法 resolve_conflicts() 用来解决冲突,遍历所有的邻居节点,并用上一个方法检查链的有效性, 如果发现有效更长链,就替换掉自己的链

在url中添加两个路由,一个用来注册节点,一个用来解决冲突。

from demo import views
urlpatterns = [
  url(r'^register', views.register_nodes),
  url(r'^resolve', views.consensus),
]

你可以在不同的机器运行节点,或在一台机机开启不同的网络端口来模拟多节点的网络,这里在同一台机器开启不同的端口演示,在不同的终端运行一下命令,就启动了两个节点: http://127.0.0.1:8000 和 http://127.0.0.1:8100

用Django实现一个可运行的区块链应用 

然后在节点8100节点上挖两个块,确保是更长的链,然后在节点8000节点上访问接口/resolve ,这时节点8100的链会通过共识算法被节点8000节点的链取代。

用Django实现一个可运行的区块链应用 

总结

以上所述是小编给大家介绍的用Django实现一个可运行的区块链应用,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对三水点靠木网站的支持!

Python 相关文章推荐
Python使用Beautiful Soup包编写爬虫时的一些关键点
Jan 20 Python
Python3使用requests发闪存的方法
May 11 Python
python添加模块搜索路径和包的导入方法
Jan 19 Python
解决pycharm下os.system执行命令返回有中文乱码的问题
Jul 07 Python
详解如何用TensorFlow训练和识别/分类自定义图片
Aug 05 Python
利用python、tensorflow、opencv、pyqt5实现人脸实时签到系统
Sep 25 Python
使用Python操作ArangoDB的方法步骤
Feb 02 Python
python实现从尾到头打印单链表操作示例
Feb 22 Python
Django REST framwork的权限验证实例
Apr 02 Python
Python自动化测试基础必备知识点总结
Feb 07 Python
pytorch 如何使用amp进行混合精度训练
May 24 Python
Matplotlib绘制混淆矩阵的实现
May 27 Python
Python pyinotify日志监控系统处理日志的方法
Mar 08 #Python
TensorFlow模型保存和提取的方法
Mar 08 #Python
火车票抢票python代码公开揭秘!
Mar 08 #Python
Python实现定时备份mysql数据库并把备份数据库邮件发送
Mar 08 #Python
python实现12306抢票及自动邮件发送提醒付款功能
Mar 08 #Python
TensorFlow模型保存/载入的两种方法
Mar 08 #Python
python2.7 json 转换日期的处理的示例
Mar 07 #Python
You might like
关于拼配咖啡,你要知道
2021/03/03 咖啡文化
php中导出数据到excel时数字变为科学计数的解决方法
2013/02/03 PHP
PHP-redis中文文档介绍
2013/02/07 PHP
Yii PHP Framework实用入门教程(详细介绍)
2013/06/18 PHP
什么情况下可以不写PHP的闭合标签“?&gt;”
2014/08/28 PHP
PHP 7的一些引人注目的新特性简单介绍
2015/11/08 PHP
php curl抓取网页的介绍和推广及使用CURL抓取淘宝页面集成方法
2015/11/30 PHP
PHP使用PHPExcel删除Excel单元格指定列的方法
2016/07/06 PHP
JS在IE和FF下attachEvent,addEventListener学习笔记
2009/11/26 Javascript
jquery实现动态画圆
2014/12/04 Javascript
浅谈Unicode与JavaScript的发展史
2015/01/19 Javascript
JavaScript与ActionScript3两者的同性与差异性
2016/09/22 Javascript
Angular.Js的自动化测试详解
2016/12/09 Javascript
Bootstrap表单使用方法详解
2017/02/17 Javascript
js与jQuery实现的用户注册协议倒计时功能实例【三种方法】
2017/11/09 jQuery
Vue实现动态创建和删除数据的方法
2018/03/17 Javascript
jQuery简单实现的HTML页面文本框模糊匹配查询功能完整示例
2018/05/09 jQuery
js监听html页面的上下滚动事件方法
2018/09/11 Javascript
vue中使用vee-validator完成表单校验方案
2019/11/01 Javascript
使用next.js开发网址缩短服务的方法
2020/06/17 Javascript
微信小程序onShareTimeline()实现分享朋友圈
2021/01/07 Javascript
[01:13]这,就是刀塔
2014/07/16 DOTA
Python字符串的encode与decode研究心得乱码问题解决方法
2009/03/23 Python
python字符串string的内置方法实例详解
2018/05/14 Python
简单了解python关系(比较)运算符
2019/07/08 Python
python爬虫学习笔记之Beautifulsoup模块用法详解
2020/04/09 Python
用ldap作为django后端用户登录验证的实现
2020/12/07 Python
html5清空画布方法(三种)
2017/10/16 HTML / CSS
HTML5超文本标记语言的实现方法
2020/09/24 HTML / CSS
历史学专业大学生找工作的自我评价
2013/10/16 职场文书
委托公证书范本
2014/04/03 职场文书
党的群众路线批评与自我批评发言稿
2014/10/16 职场文书
活动经费申请报告
2015/05/15 职场文书
离婚起诉书范本
2015/05/18 职场文书
《狼牙山五壮士》读后感:宁死不屈,视死如归
2019/08/16 职场文书
SQL实现LeetCode(177.第N高薪水)
2021/08/04 MySQL