Python实现曲线点抽稀算法的示例


Posted in Python onOctober 12, 2017

本文介绍了Python实现曲线点抽稀算法的示例,分享给大家,具体如下:

目录

  • 何为抽稀
  • 道格拉斯-普克(Douglas-Peuker)算法
  • 垂距限值法
  • 最后

正文

何为抽稀

在处理矢量化数据时,记录中往往会有很多重复数据,对进一步数据处理带来诸多不便。多余的数据一方面浪费了较多的存储空间,另一方面造成所要表达的图形不光滑或不符合标准。因此要通过某种规则,在保证矢量曲线形状不变的情况下, 最大限度地减少数据点个数,这个过程称为抽稀。

通俗的讲就是对曲线进行采样简化,即在曲线上取有限个点,将其变为折线,并且能够在一定程度保持原有形状。比较常用的两种抽稀算法是:道格拉斯-普克(Douglas-Peuker)算法和垂距限值法。

道格拉斯-普克(Douglas-Peuker)算法

Douglas-Peuker算法(DP算法)过程如下:

1、连接曲线首尾两点A、B;
2、依次计算曲线上所有点到A、B两点所在曲线的距离;
3、计算最大距离D,如果D小于阈值threshold,则去掉曲线上出A、B外的所有点;如果D大于阈值threshold,则把曲线以最大距离分割成两段;
4、对所有曲线分段重复1-3步骤,知道所有D均小于阈值。即完成抽稀。
这种算法的抽稀精度与阈值有很大关系,阈值越大,简化程度越大,点减少的越多;反之简化程度越低,点保留的越多,形状也越趋于原曲线。

下面是Python代码实现:

# -*- coding: utf-8 -*-
"""------------------------------------------------- File Name:  DouglasPeuker Description : 道格拉斯-普克抽稀算法 Author :    J_hao date:     2017/8/16------------------------------------------------- Change Activity:         2017/8/16: 道格拉斯-普克抽稀算法-------------------------------------------------"""
from __future__ import division

from math import sqrt, pow

__author__ = 'J_hao'

THRESHOLD = 0.0001 # 阈值


def point2LineDistance(point_a, point_b, point_c):
  """  计算点a到点b c所在直线的距离  :param point_a:  :param point_b:  :param point_c:  :return:  """
  # 首先计算b c 所在直线的斜率和截距
  if point_b[0] == point_c[0]:
    return 9999999
  slope = (point_b[1] - point_c[1]) / (point_b[0] - point_c[0])
  intercept = point_b[1] - slope * point_b[0]

  # 计算点a到b c所在直线的距离
  distance = abs(slope * point_a[0] - point_a[1] + intercept) / sqrt(1 + pow(slope, 2))
  return distance


class DouglasPeuker(object):
  def__init__(self):
    self.threshold = THRESHOLD
    self.qualify_list = list()
    self.disqualify_list = list()

  def diluting(self, point_list):
    """    抽稀    :param point_list:二维点列表    :return:    """
    if len(point_list) < 3:
      self.qualify_list.extend(point_list[::-1])
    else:
      # 找到与收尾两点连线距离最大的点
      max_distance_index, max_distance = 0, 0
      for index, point in enumerate(point_list):
        if index in [0, len(point_list) - 1]:
          continue
        distance = point2LineDistance(point, point_list[0], point_list[-1])
        if distance > max_distance:
          max_distance_index = index
          max_distance = distance

      # 若最大距离小于阈值,则去掉所有中间点。 反之,则将曲线按最大距离点分割
      if max_distance < self.threshold:
        self.qualify_list.append(point_list[-1])
        self.qualify_list.append(point_list[0])
      else:
        # 将曲线按最大距离的点分割成两段
        sequence_a = point_list[:max_distance_index]
        sequence_b = point_list[max_distance_index:]

        for sequence in [sequence_a, sequence_b]:
          if len(sequence) < 3 and sequence == sequence_b:
            self.qualify_list.extend(sequence[::-1])
          else:
            self.disqualify_list.append(sequence)

  def main(self, point_list):
    self.diluting(point_list)
    while len(self.disqualify_list) > 0:
      self.diluting(self.disqualify_list.pop())
    print self.qualify_list
    print len(self.qualify_list)


if __name__ == '__main__':
  d = DouglasPeuker()
  d.main([[104.066228, 30.644527], [104.066279, 30.643528], [104.066296, 30.642528], [104.066314, 30.641529],
      [104.066332, 30.640529], [104.066383, 30.639530], [104.066400, 30.638530], [104.066451, 30.637531],
      [104.066468, 30.636532], [104.066518, 30.635533], [104.066535, 30.634533], [104.066586, 30.633534],
      [104.066636, 30.632536], [104.066686, 30.631537], [104.066735, 30.630538], [104.066785, 30.629539],
      [104.066802, 30.628539], [104.066820, 30.627540], [104.066871, 30.626541], [104.066888, 30.625541],
      [104.066906, 30.624541], [104.066924, 30.623541], [104.066942, 30.622542], [104.066960, 30.621542],
      [104.067011, 30.620543], [104.066122, 30.620086], [104.065124, 30.620021], [104.064124, 30.620022],
      [104.063124, 30.619990], [104.062125, 30.619958], [104.061125, 30.619926], [104.060126, 30.619894],
      [104.059126, 30.619895], [104.058127, 30.619928], [104.057518, 30.620722], [104.057625, 30.621716],
      [104.057735, 30.622710], [104.057878, 30.623700], [104.057984, 30.624694], [104.058094, 30.625688],
      [104.058204, 30.626682], [104.058315, 30.627676], [104.058425, 30.628670], [104.058502, 30.629667],
      [104.058518, 30.630667], [104.058503, 30.631667], [104.058521, 30.632666], [104.057664, 30.633182],
      [104.056664, 30.633174], [104.055664, 30.633166], [104.054672, 30.633289], [104.053758, 30.633694],
      [104.052852, 30.634118], [104.052623, 30.635091], [104.053145, 30.635945], [104.053675, 30.636793],
      [104.054200, 30.637643], [104.054756, 30.638475], [104.055295, 30.639317], [104.055843, 30.640153],
      [104.056387, 30.640993], [104.056933, 30.641830], [104.057478, 30.642669], [104.058023, 30.643507],
      [104.058595, 30.644327], [104.059152, 30.645158], [104.059663, 30.646018], [104.060171, 30.646879],
      [104.061170, 30.646855], [104.062168, 30.646781], [104.063167, 30.646823], [104.064167, 30.646814],
      [104.065163, 30.646725], [104.066157, 30.646618], [104.066231, 30.645620], [104.066247, 30.644621], ])

垂距限值法

垂距限值法其实和DP算法原理一样,但是垂距限值不是从整体角度考虑,而是依次扫描每一个点,检查是否符合要求。

算法过程如下:

1、以第二个点开始,计算第二个点到前一个点和后一个点所在直线的距离d;
2、如果d大于阈值,则保留第二个点,计算第三个点到第二个点和第四个点所在直线的距离d;若d小于阈值则舍弃第二个点,计算第三个点到第一个点和第四个点所在直线的距离d;
3、依次类推,直线曲线上倒数第二个点。

下面是Python代码实现:

# -*- coding: utf-8 -*-
"""------------------------------------------------- File Name:  LimitVerticalDistance Description : 垂距限值抽稀算法 Author :    J_hao date:     2017/8/17------------------------------------------------- Change Activity:         2017/8/17:-------------------------------------------------"""
from __future__ import division

from math import sqrt, pow

__author__ = 'J_hao'

THRESHOLD = 0.0001 # 阈值


def point2LineDistance(point_a, point_b, point_c):
  """  计算点a到点b c所在直线的距离  :param point_a:  :param point_b:  :param point_c:  :return:  """
  # 首先计算b c 所在直线的斜率和截距
  if point_b[0] == point_c[0]:
    return 9999999
  slope = (point_b[1] - point_c[1]) / (point_b[0] - point_c[0])
  intercept = point_b[1] - slope * point_b[0]

  # 计算点a到b c所在直线的距离
  distance = abs(slope * point_a[0] - point_a[1] + intercept) / sqrt(1 + pow(slope, 2))
  return distance


class LimitVerticalDistance(object):
  def__init__(self):
    self.threshold = THRESHOLD
    self.qualify_list = list()

  def diluting(self, point_list):
    """    抽稀    :param point_list:二维点列表    :return:    """
    self.qualify_list.append(point_list[0])
    check_index = 1
    while check_index < len(point_list) - 1:
      distance = point2LineDistance(point_list[check_index],
                     self.qualify_list[-1],
                     point_list[check_index + 1])

      if distance < self.threshold:
        check_index += 1
      else:
        self.qualify_list.append(point_list[check_index])
        check_index += 1
    return self.qualify_list


if __name__ == '__main__':
  l = LimitVerticalDistance()
  diluting = l.diluting([[104.066228, 30.644527], [104.066279, 30.643528], [104.066296, 30.642528], [104.066314, 30.641529],
      [104.066332, 30.640529], [104.066383, 30.639530], [104.066400, 30.638530], [104.066451, 30.637531],
      [104.066468, 30.636532], [104.066518, 30.635533], [104.066535, 30.634533], [104.066586, 30.633534],
      [104.066636, 30.632536], [104.066686, 30.631537], [104.066735, 30.630538], [104.066785, 30.629539],
      [104.066802, 30.628539], [104.066820, 30.627540], [104.066871, 30.626541], [104.066888, 30.625541],
      [104.066906, 30.624541], [104.066924, 30.623541], [104.066942, 30.622542], [104.066960, 30.621542],
      [104.067011, 30.620543], [104.066122, 30.620086], [104.065124, 30.620021], [104.064124, 30.620022],
      [104.063124, 30.619990], [104.062125, 30.619958], [104.061125, 30.619926], [104.060126, 30.619894],
      [104.059126, 30.619895], [104.058127, 30.619928], [104.057518, 30.620722], [104.057625, 30.621716],
      [104.057735, 30.622710], [104.057878, 30.623700], [104.057984, 30.624694], [104.058094, 30.625688],
      [104.058204, 30.626682], [104.058315, 30.627676], [104.058425, 30.628670], [104.058502, 30.629667],
      [104.058518, 30.630667], [104.058503, 30.631667], [104.058521, 30.632666], [104.057664, 30.633182],
      [104.056664, 30.633174], [104.055664, 30.633166], [104.054672, 30.633289], [104.053758, 30.633694],
      [104.052852, 30.634118], [104.052623, 30.635091], [104.053145, 30.635945], [104.053675, 30.636793],
      [104.054200, 30.637643], [104.054756, 30.638475], [104.055295, 30.639317], [104.055843, 30.640153],
      [104.056387, 30.640993], [104.056933, 30.641830], [104.057478, 30.642669], [104.058023, 30.643507],
      [104.058595, 30.644327], [104.059152, 30.645158], [104.059663, 30.646018], [104.060171, 30.646879],
      [104.061170, 30.646855], [104.062168, 30.646781], [104.063167, 30.646823], [104.064167, 30.646814],
      [104.065163, 30.646725], [104.066157, 30.646618], [104.066231, 30.645620], [104.066247, 30.644621], ])
  print len(diluting)
  print(diluting)

最后

其实DP算法和垂距限值法原理一样,DP算法是从整体上考虑一条完整的曲线,实现时较垂距限值法复杂,但垂距限值法可能会在某些情况下导致局部最优。另外在实际使用中发现采用点到另外两点所在直线距离的方法来判断偏离,在曲线弧度比较大的情况下比较准确。如果在曲线弧度比较小,弯��程度不明显时,这种方法抽稀效果不是很理想,建议使用三点所围成的三角形面积作为判断标准。下面是抽稀效果:

Python实现曲线点抽稀算法的示例

Python实现曲线点抽稀算法的示例

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python入门篇之字符串
Oct 17 Python
深入探究Python中变量的拷贝和作用域问题
May 05 Python
Python 爬虫爬取指定博客的所有文章
Feb 17 Python
python字符串连接方法分析
Apr 12 Python
Python进阶-函数默认参数(详解)
May 18 Python
Python基于生成器迭代实现的八皇后问题示例
May 23 Python
python编写简易聊天室实现局域网内聊天功能
Jul 28 Python
python批量修改图片后缀的方法(png到jpg)
Oct 25 Python
如何在django里上传csv文件并进行入库处理的方法
Jan 02 Python
浅谈Python中函数的定义及其调用方法
Jul 19 Python
TensorFlow tensor的拼接实例
Jan 19 Python
python中return不返回值的问题解析
Jul 22 Python
python去除字符串中的换行符
Oct 11 #Python
Python 3.6 性能测试框架Locust安装及使用方法(详解)
Oct 11 #Python
Windows系统下多版本pip的共存问题详解
Oct 10 #Python
Python实现模拟分割大文件及多线程处理的方法
Oct 10 #Python
遗传算法之Python实现代码
Oct 10 #Python
Python使用arrow库优雅地处理时间数据详解
Oct 10 #Python
Python使用getpass库读取密码的示例
Oct 10 #Python
You might like
PHP调用三种数据库的方法(2)
2006/10/09 PHP
PHP+DBM的同学录程序(3)
2006/10/09 PHP
PHP 缓存实现代码及详细注释
2010/05/16 PHP
PHP异步调用socket实现代码
2012/01/12 PHP
qq登录,新浪微博登录接口申请过程中遇到的问题
2014/07/22 PHP
php相对当前文件include其它文件的方法
2015/03/13 PHP
PHP获取真实客户端的真实IP
2017/03/07 PHP
js不是基础的基础
2006/12/24 Javascript
面向对象的Javascript之三(封装和信息隐藏)
2012/01/27 Javascript
vue日期组件 支持vue1.0和2.0
2017/01/09 Javascript
详解Vue前端对axios的封装和使用
2019/04/01 Javascript
Nodejs + Websocket 指定发送及群聊的实现
2020/01/09 NodeJs
使用js实现单链解决前端队列问题的方法
2020/02/03 Javascript
vue项目中使用vue-layer弹框插件的方法
2020/03/11 Javascript
vue 路由meta 设置导航隐藏与显示功能的示例代码
2020/09/04 Javascript
详解vue 中 scoped 样式作用域的规则
2020/09/14 Javascript
JavaScript通如何过RGraph实现动态仪表盘
2020/10/15 Javascript
前端 javascript 实现文件下载的示例
2020/11/24 Javascript
Python urlopen()函数 示例分享
2014/06/12 Python
Python实现批量把SVG格式转成png、pdf格式的代码分享
2014/08/21 Python
Python3中的2to3转换工具使用示例
2015/06/12 Python
Python3.6简单反射操作示例
2018/06/14 Python
python将.ppm格式图片转换成.jpg格式文件的方法
2018/10/27 Python
python os模块简单应用示例
2019/05/23 Python
python绘制评估优化算法性能的测试函数
2019/06/25 Python
将自己的数据集制作成TFRecord格式教程
2020/02/17 Python
Django values()和value_list()的使用
2020/03/31 Python
详解解决jupyter不能使用pytorch的问题
2021/02/18 Python
家乐福巴西网上超市:Carrefour巴西
2016/10/31 全球购物
ETO男装官方网店:ETO Jeans
2019/02/28 全球购物
VLAN和VPN有什么区别?分别实现在OSI的第几层?
2014/12/23 面试题
Delphi工程师笔试题
2013/09/21 面试题
学校政风行风整改方案
2014/10/25 职场文书
新郎接新娘保证书
2015/05/08 职场文书
Nginx下配置Https证书详细过程
2021/04/01 Servers
python 镜像环境搭建总结
2022/09/23 Python