Posted in Python onDecember 18, 2013
# -*- coding: utf-8 -*- class Heap(object): @classmethod def parent(cls, i): """父结点下标""" return int((i - 1) >> 1); @classmethod def left(cls, i): """左儿子下标""" return (i << 1) + 1; @classmethod def right(cls, i): """右儿子下标""" return (i << 1) + 2; class MaxPriorityQueue(list, Heap): @classmethod def max_heapify(cls, A, i, heap_size): """最大堆化A[i]为根的子树""" l, r = cls.left(i), cls.right(i) if l < heap_size and A[l] > A[i]: largest = l else: largest = i if r < heap_size and A[r] > A[largest]: largest = r if largest != i: A[i], A[largest] = A[largest], A[i] cls.max_heapify(A, largest, heap_size) def maximum(self): """返回最大元素,伪码如下: HEAP-MAXIMUM(S) 1 return A[1] T(n) = O(1) """ return self[0] def extract_max(self): """去除并返回最大元素,伪码如下: HEAP-EXTRACT-MAX(A) 1 if heap-size[A] < 1 2 then error "heap underflow" 3 max ← A[1] 4 A[1] ← A[heap-size[A]] // 尾元素放到第一位 5 heap-size[A] ← heap-size[A] - 1 // 减小heap-size[A] 6 MAX-HEAPIFY(A, 1) // 保持最大堆性质 7 return max T(n) = θ(lgn) """ heap_size = len(self) assert heap_size > 0, "heap underflow" val = self[0] tail = heap_size - 1 self[0] = self[tail] self.max_heapify(self, 0, tail) self.pop(tail) return val def increase_key(self, i, key): """将i处的值增加到key,伪码如下: HEAP-INCREASE-KEY(A, i, key) 1 if key < A[i] 2 the error "new key is smaller than current key" 3 A[i] ← key 4 while i > 1 and A[PARENT(i)] < A[i] // 不是根结点且父结点更小时 5 do exchange A[i] ↔ A[PARENT(i)] // 交换两元素 6 i ← PARENT(i) // 指向父结点位置 T(n) = θ(lgn) """ val = self[i] assert key >= val, "new key is smaller than current key" self[i] = key parent = self.parent while i > 0 and self[parent(i)] < self[i]: self[i], self[parent(i)] = self[parent(i)], self[i] i = parent(i) def insert(self, key): """将key插入A,伪码如下: MAX-HEAP-INSERT(A, key) 1 heap-size[A] ← heap-size[A] + 1 // 对元素个数增加 2 A[heap-size[A]] ← -∞ // 初始新增加元素为-∞ 3 HEAP-INCREASE-KEY(A, heap-size[A], key) // 将新增元素增加到key T(n) = θ(lgn) """ self.append(float('-inf')) self.increase_key(len(self) - 1, key) if __name__ == '__main__': import random keys = range(10) random.shuffle(keys) print(keys) queue = MaxPriorityQueue() # 插入方式建最大堆 for i in keys: queue.insert(i) print(queue) print('*' * 30) for i in range(len(keys)): val = i % 3 if val == 0: val = queue.extract_max() # 去除并返回最大元素 elif val == 1: val = queue.maximum() # 返回最大元素 else: val = queue[1] + 10 queue.increase_key(1, val) # queue[1]增加10 print(queue, val) print([queue.extract_max() for i in range(len(queue))])
python计算最大优先级队列实例
声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@