Python可视化神器pyecharts之绘制地理图表练习


Posted in Python onJuly 07, 2022

炫酷地图

前期我们介绍了很多的地图模板,不管是全球的还是中国的,其实我感觉都十分的炫酷,哈哈哈,可是还有更加神奇的,更加炫酷的地图模板,下面让我们一起一饱眼福吧!

3D炫酷地图模板系列

重庆市3D地图展示

from pyecharts import options as opts
from pyecharts.charts import Map3D
from pyecharts.globals import ChartType
# 经纬度
example_data = [
[[119.107078, 36.70925, 1000], [116.587245, 35.415393, 1000]],
[[117.000923, 36.675807], [120.355173, 36.082982]],
[[118.047648, 36.814939], [118.66471, 37.434564]],
[[121.391382, 37.539297], [119.107078, 36.70925]],
[[116.587245, 35.415393], [122.116394, 37.509691]],
[[119.461208, 35.428588], [118.326443, 35.065282]],
[[116.307428, 37.453968], [115.469381, 35.246531]],
]
c = (
Map3D(init_opts=opts.InitOpts(width="1400px", height="700px"))
.add_schema(
maptype="重庆",
itemstyle_opts=opts.ItemStyleOpts(
color="rgb(5,101,123)",
opacity=1,
border_width=0.8,
border_color="rgb(62,215,213)",
),
light_opts=opts.Map3DLightOpts(
main_color="#fff",
main_intensity=1.2,
is_main_shadow=False,
main_alpha=55,
main_beta=10,
ambient_intensity=0.3,
),
view_control_opts=opts.Map3DViewControlOpts(center=[-10, 0, 10]),
post_effect_opts=opts.Map3DPostEffectOpts(is_enable=False),
)
.add(
series_name="",
data_pair=example_data,
type_=ChartType.LINES3D,
effect=opts.Lines3DEffectOpts(
is_show=True,
period=4,
trail_width=3,
trail_length=0.5,
trail_color="#f00",
trail_opacity=1,
),
linestyle_opts=opts.LineStyleOpts(is_show=False, color="#fff", opacity=0),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Map3D"))
.render("区县3D地图.html")
)

Python可视化神器pyecharts之绘制地理图表练习

中国3D地图

数组里面分别代表:经纬度,数值

from pyecharts import options as opts
from pyecharts.charts import Map3D
from pyecharts.globals import ChartType
from pyecharts.commons.utils import JsCode
example_data = [
("黑龙江", [127.9688, 45.368, 100]),
("内蒙古", [110.3467, 41.4899, 100]),
("吉林", [125.8154, 44.2584, 100]),
("辽宁", [123.1238, 42.1216, 100]),
("河北", [114.4995, 38.1006, 100]),
("天津", [117.4219, 39.4189, 100]),
("山西", [112.3352, 37.9413, 100]),
("陕西", [109.1162, 34.2004, 100]),
("甘肃", [103.5901, 36.3043, 100]),
("宁夏", [106.3586, 38.1775, 100]),
("青海", [101.4038, 36.8207, 100]),
("新疆", [87.9236, 43.5883, 100]),
("西藏", [91.11, 29.97, 100]),
("四川", [103.9526, 30.7617, 100]),
("重庆", [108.384366, 30.439702, 100]),
("山东", [117.1582, 36.8701, 100]),
("河南", [113.4668, 34.6234, 100]),
("江苏", [118.8062, 31.9208, 100]),
("安徽", [117.29, 32.0581, 100]),
("湖北", [114.3896, 30.6628, 100]),
("浙江", [119.5313, 29.8773, 100]),
("福建", [119.4543, 25.9222, 100]),
("江西", [116.0046, 28.6633, 100]),
("湖南", [113.0823, 28.2568, 100]),
("贵州", [106.6992, 26.7682, 100]),
("广西", [108.479, 23.1152, 100]),
("海南", [110.3893, 19.8516, 100]),
("上海", [121.4648, 31.2891, 100]),
]
c = (
Map3D(init_opts=opts.InitOpts(width="1400px", height="700px"))
.add_schema(
itemstyle_opts=opts.ItemStyleOpts(
color="rgb(5,101,123)",
opacity=1,
border_width=0.8,
border_color="rgb(62,215,213)",
),
map3d_label=opts.Map3DLabelOpts(
is_show=False,
formatter=JsCode("function(data){return data.name + " " + data.value[2];}"),
),
emphasis_label_opts=opts.LabelOpts(
is_show=False,
color="#fff",
font_size=10,
background_color="rgba(0,23,11,0)",
),
light_opts=opts.Map3DLightOpts(
main_color="#fff",
main_intensity=1.2,
main_shadow_quality="high",
is_main_shadow=False,
main_beta=10,
ambient_intensity=0.3,
),
)
.add(
series_name="Scatter3D",
data_pair=example_data,
type_=ChartType.SCATTER3D,
bar_size=1,
shading="lambert",
label_opts=opts.LabelOpts(
is_show=False,
formatter=JsCode("function(data){return data.name + ' ' + data.value[2];}"),
),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Map3D"))
.render("中国3D地图.html")
)

Python可视化神器pyecharts之绘制地理图表练习

中国3D数据地图(适合做数据可视化)

如果说前面的那个你看起来不太舒服,那么这个绝对适合做数据可视化展示哟!

from pyecharts import options as opts
from pyecharts.charts import Map3D
from pyecharts.globals import ChartType
from pyecharts.commons.utils import JsCode
example_data = [
("黑龙江", [127.9688, 45.368, 100]),
("内蒙古", [110.3467, 41.4899, 300]),
("吉林", [125.8154, 44.2584, 300]),
("辽宁", [123.1238, 42.1216, 300]),
("河北", [114.4995, 38.1006, 300]),
("天津", [117.4219, 39.4189, 300]),
("山西", [112.3352, 37.9413, 300]),
("陕西", [109.1162, 34.2004, 300]),
("甘肃", [103.5901, 36.3043, 300]),
("宁夏", [106.3586, 38.1775, 300]),
("青海", [101.4038, 36.8207, 300]),
("新疆", [87.9236, 43.5883, 300]),
("西藏", [91.11, 29.97, 300]),
("四川", [103.9526, 30.7617, 300]),
("重庆", [108.384366, 30.439702, 300]),
("山东", [117.1582, 36.8701, 300]),
("河南", [113.4668, 34.6234, 300]),
("江苏", [118.8062, 31.9208, 300]),
("安徽", [117.29, 32.0581, 300]),
("湖北", [114.3896, 30.6628, 300]),
("浙江", [119.5313, 29.8773, 300]),
("福建", [119.4543, 25.9222, 300]),
("江西", [116.0046, 28.6633, 300]),
("湖南", [113.0823, 28.2568, 300]),
("贵州", [106.6992, 26.7682, 300]),
("广西", [108.479, 23.1152, 300]),
("海南", [110.3893, 19.8516, 300]),
("上海", [121.4648, 31.2891, 1300]),
]
c = (
Map3D(init_opts=opts.InitOpts(width="1400px", height="700px"))
.add_schema(
itemstyle_opts=opts.ItemStyleOpts(
color="rgb(5,101,123)",
opacity=1,
border_width=0.8,
border_color="rgb(62,215,213)",
),
map3d_label=opts.Map3DLabelOpts(
is_show=False,
formatter=JsCode("function(data){return data.name + " " + data.value[2];}"),
),
emphasis_label_opts=opts.LabelOpts(
is_show=False,
color="#fff",
font_size=10,
background_color="rgba(0,23,11,0)",
),
light_opts=opts.Map3DLightOpts(
main_color="#fff",
main_intensity=1.2,
main_shadow_quality="high",
is_main_shadow=False,
main_beta=10,
ambient_intensity=0.3,
),
)
.add(
series_name="数据",
data_pair=example_data,
type_=ChartType.BAR3D,
bar_size=1,
shading="lambert",
label_opts=opts.LabelOpts(
is_show=False,
formatter=JsCode("function(data){return data.name + ' ' + data.value[2];}"),
),
)
.set_global_opts(title_opts=opts.TitleOpts(title="城市数据"))
.render("带有数据展示地图.html")
)

Python可视化神器pyecharts之绘制地理图表练习

看完直呼这个模板,适合做城市之间的数据对,同时也展示了经纬度。

全国行政区地图(带城市名字)

from pyecharts import options as opts
from pyecharts.charts import Map3D
from pyecharts.globals import ChartType

c = (
Map3D(init_opts=opts.InitOpts(width="1400px", height="700px"))
.add_schema(
itemstyle_opts=opts.ItemStyleOpts(
color="rgb(5,101,123)",
opacity=1,
border_width=0.8,
border_color="rgb(62,215,213)",
),
map3d_label=opts.Map3DLabelOpts(
is_show=True,
text_style=opts.TextStyleOpts(
color="#fff", font_size=16, background_color="rgba(0,0,0,0)"
),
),
emphasis_label_opts=opts.LabelOpts(is_show=True),
light_opts=opts.Map3DLightOpts(
main_color="#fff",
main_intensity=1.2,
is_main_shadow=False,
main_alpha=55,
main_beta=10,
ambient_intensity=0.3,
),
)
.add(series_name="", data_pair="", maptype=ChartType.MAP3D)
.set_global_opts(
title_opts=opts.TitleOpts(title="全国行政区划地图-Base"),
visualmap_opts=opts.VisualMapOpts(is_show=False),
tooltip_opts=opts.TooltipOpts(is_show=True),
)
.render("全国标签地图.html")
)

Python可视化神器pyecharts之绘制地理图表练习

地球展示

import pyecharts.options as opts
from pyecharts.charts import MapGlobe
from pyecharts.faker import POPULATION
data = [x for _, x in POPULATION[1:]]
low, high = min(data), max(data)
c = (
MapGlobe(init_opts=opts.InitOpts(width="1400px", height="700px"))
.add_schema()
.add(
maptype="world",
series_name="World Population",
data_pair=POPULATION[1:],
is_map_symbol_show=False,
label_opts=opts.LabelOpts(is_show=False),
)
.set_global_opts(
visualmap_opts=opts.VisualMapOpts(
min_=low,
max_=high,
range_text=["max", "min"],
is_calculable=True,
range_color=["lightskyblue", "yellow", "orangered"],
)
)
.render("地球.html")
)

Python可视化神器pyecharts之绘制地理图表练习

其实pyecharts还可以做百度地图,可以缩放定位到每一个区域,但是其实我们在日常生活中可能用不上,如果要用可以去百度地图展示效果或者学习练习也是可的

到此这篇关于Python可视化神器pyecharts之绘制地理图表的文章就介绍到这了,更多相关Python绘制地理图表内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!


Tags in this post...

Python 相关文章推荐
Python的垃圾回收机制深入分析
Jul 16 Python
python使用PyCharm进行远程开发和调试
Nov 02 Python
python 输出上个月的月末日期实例
Apr 11 Python
对pandas replace函数的使用方法小结
May 18 Python
好的Python培训机构应该具备哪些条件
May 23 Python
Python3爬虫教程之利用Python实现发送天气预报邮件
Dec 16 Python
python实现word文档批量转成自定义格式的excel文档的思路及实例代码
Feb 21 Python
如何实现在jupyter notebook中播放视频(不停地展示图片)
Apr 23 Python
python 5个实用的技巧
Sep 27 Python
python3实现语音转文字(语音识别)和文字转语音(语音合成)
Oct 14 Python
python给list排序的简单方法
Dec 10 Python
分享Python获取本机IP地址的几种方法
Mar 17 Python
Django中celery的使用项目实例
Python可视化神器pyecharts绘制地理图表
Python软件包安装的三种常见方法
Python+SeaTable实现计算两个日期间的工作日天数
Jul 07 #Python
Python实现数据的序列化操作详解
Jul 07 #Python
Python如何利用pandas读取csv数据并绘图
Python可视化神器pyecharts绘制水球图
Jul 07 #Python
You might like
Yii使用migrate命令执行sql语句的方法
2016/03/15 PHP
jQuery get和post 方法传值注意事项
2009/11/03 Javascript
Javascript 实用小技巧
2010/04/07 Javascript
jQuery 拖动层(在可视区域范围内)
2012/05/24 Javascript
jquery实现的3D旋转木马特效代码分享
2015/08/25 Javascript
Jsonp 关键字详解及json和jsonp的区别,ajax和jsonp的区别
2015/12/30 Javascript
修改ligerui 默认确认按钮的方法
2016/12/27 Javascript
原生javascript实现图片放大镜效果
2017/01/18 Javascript
关于webpack代码拆分的解析
2017/07/20 Javascript
JS实现图片手风琴效果
2020/04/17 Javascript
详解开发react应用最好用的脚手架 create-react-app
2018/04/24 Javascript
node上的redis调用优化示例详解
2018/10/30 Javascript
详解Vue iview IE浏览器不兼容报错(Iview Bable polyfill)
2019/01/07 Javascript
vue模仿网易云音乐的单页面应用
2019/04/24 Javascript
Vue发布订阅模式实现过程图解
2020/04/30 Javascript
Vue看了就会的8个小技巧
2021/01/21 Vue.js
[01:32]寻找你心中的那团火 DOTA2 TI9火焰传递活动今日开启
2019/05/16 DOTA
按日期打印Python的Tornado框架中的日志的方法
2015/05/02 Python
在Python中操作列表之List.pop()方法的使用
2015/05/21 Python
改进Django中的表单的简单方法
2015/07/17 Python
influx+grafana自定义python采集数据和一些坑的总结
2018/09/17 Python
Python中反射和描述器总结
2018/09/23 Python
python selenium循环登陆网站的实现
2019/11/04 Python
如何定义TensorFlow输入节点
2020/01/23 Python
python爬虫库scrapy简单使用实例详解
2020/02/10 Python
Reformation官网:美国女装品牌
2018/09/14 全球购物
手工制作的豪华英式沙发和沙发床:Willow & Hall
2019/05/03 全球购物
意大利奢侈品零售商:ilDuomo Novara
2019/09/11 全球购物
迪士尼法国在线商店:shopDisney FR
2020/12/03 全球购物
某公司面试题
2012/03/05 面试题
vue 中 get / delete 传递数组参数方法
2021/03/23 Vue.js
《哪吒闹海》教学反思
2014/02/28 职场文书
司法局2014法制宣传日活动总结
2014/11/01 职场文书
nginx对http请求处理的各个阶段详析
2021/03/31 Servers
zabbix监控mysql的实例方法
2021/06/02 MySQL
SQL中的三种去重方法小结
2021/11/01 SQL Server