Python可视化神器pyecharts之绘制地理图表练习


Posted in Python onJuly 07, 2022

炫酷地图

前期我们介绍了很多的地图模板,不管是全球的还是中国的,其实我感觉都十分的炫酷,哈哈哈,可是还有更加神奇的,更加炫酷的地图模板,下面让我们一起一饱眼福吧!

3D炫酷地图模板系列

重庆市3D地图展示

from pyecharts import options as opts
from pyecharts.charts import Map3D
from pyecharts.globals import ChartType
# 经纬度
example_data = [
[[119.107078, 36.70925, 1000], [116.587245, 35.415393, 1000]],
[[117.000923, 36.675807], [120.355173, 36.082982]],
[[118.047648, 36.814939], [118.66471, 37.434564]],
[[121.391382, 37.539297], [119.107078, 36.70925]],
[[116.587245, 35.415393], [122.116394, 37.509691]],
[[119.461208, 35.428588], [118.326443, 35.065282]],
[[116.307428, 37.453968], [115.469381, 35.246531]],
]
c = (
Map3D(init_opts=opts.InitOpts(width="1400px", height="700px"))
.add_schema(
maptype="重庆",
itemstyle_opts=opts.ItemStyleOpts(
color="rgb(5,101,123)",
opacity=1,
border_width=0.8,
border_color="rgb(62,215,213)",
),
light_opts=opts.Map3DLightOpts(
main_color="#fff",
main_intensity=1.2,
is_main_shadow=False,
main_alpha=55,
main_beta=10,
ambient_intensity=0.3,
),
view_control_opts=opts.Map3DViewControlOpts(center=[-10, 0, 10]),
post_effect_opts=opts.Map3DPostEffectOpts(is_enable=False),
)
.add(
series_name="",
data_pair=example_data,
type_=ChartType.LINES3D,
effect=opts.Lines3DEffectOpts(
is_show=True,
period=4,
trail_width=3,
trail_length=0.5,
trail_color="#f00",
trail_opacity=1,
),
linestyle_opts=opts.LineStyleOpts(is_show=False, color="#fff", opacity=0),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Map3D"))
.render("区县3D地图.html")
)

Python可视化神器pyecharts之绘制地理图表练习

中国3D地图

数组里面分别代表:经纬度,数值

from pyecharts import options as opts
from pyecharts.charts import Map3D
from pyecharts.globals import ChartType
from pyecharts.commons.utils import JsCode
example_data = [
("黑龙江", [127.9688, 45.368, 100]),
("内蒙古", [110.3467, 41.4899, 100]),
("吉林", [125.8154, 44.2584, 100]),
("辽宁", [123.1238, 42.1216, 100]),
("河北", [114.4995, 38.1006, 100]),
("天津", [117.4219, 39.4189, 100]),
("山西", [112.3352, 37.9413, 100]),
("陕西", [109.1162, 34.2004, 100]),
("甘肃", [103.5901, 36.3043, 100]),
("宁夏", [106.3586, 38.1775, 100]),
("青海", [101.4038, 36.8207, 100]),
("新疆", [87.9236, 43.5883, 100]),
("西藏", [91.11, 29.97, 100]),
("四川", [103.9526, 30.7617, 100]),
("重庆", [108.384366, 30.439702, 100]),
("山东", [117.1582, 36.8701, 100]),
("河南", [113.4668, 34.6234, 100]),
("江苏", [118.8062, 31.9208, 100]),
("安徽", [117.29, 32.0581, 100]),
("湖北", [114.3896, 30.6628, 100]),
("浙江", [119.5313, 29.8773, 100]),
("福建", [119.4543, 25.9222, 100]),
("江西", [116.0046, 28.6633, 100]),
("湖南", [113.0823, 28.2568, 100]),
("贵州", [106.6992, 26.7682, 100]),
("广西", [108.479, 23.1152, 100]),
("海南", [110.3893, 19.8516, 100]),
("上海", [121.4648, 31.2891, 100]),
]
c = (
Map3D(init_opts=opts.InitOpts(width="1400px", height="700px"))
.add_schema(
itemstyle_opts=opts.ItemStyleOpts(
color="rgb(5,101,123)",
opacity=1,
border_width=0.8,
border_color="rgb(62,215,213)",
),
map3d_label=opts.Map3DLabelOpts(
is_show=False,
formatter=JsCode("function(data){return data.name + " " + data.value[2];}"),
),
emphasis_label_opts=opts.LabelOpts(
is_show=False,
color="#fff",
font_size=10,
background_color="rgba(0,23,11,0)",
),
light_opts=opts.Map3DLightOpts(
main_color="#fff",
main_intensity=1.2,
main_shadow_quality="high",
is_main_shadow=False,
main_beta=10,
ambient_intensity=0.3,
),
)
.add(
series_name="Scatter3D",
data_pair=example_data,
type_=ChartType.SCATTER3D,
bar_size=1,
shading="lambert",
label_opts=opts.LabelOpts(
is_show=False,
formatter=JsCode("function(data){return data.name + ' ' + data.value[2];}"),
),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Map3D"))
.render("中国3D地图.html")
)

Python可视化神器pyecharts之绘制地理图表练习

中国3D数据地图(适合做数据可视化)

如果说前面的那个你看起来不太舒服,那么这个绝对适合做数据可视化展示哟!

from pyecharts import options as opts
from pyecharts.charts import Map3D
from pyecharts.globals import ChartType
from pyecharts.commons.utils import JsCode
example_data = [
("黑龙江", [127.9688, 45.368, 100]),
("内蒙古", [110.3467, 41.4899, 300]),
("吉林", [125.8154, 44.2584, 300]),
("辽宁", [123.1238, 42.1216, 300]),
("河北", [114.4995, 38.1006, 300]),
("天津", [117.4219, 39.4189, 300]),
("山西", [112.3352, 37.9413, 300]),
("陕西", [109.1162, 34.2004, 300]),
("甘肃", [103.5901, 36.3043, 300]),
("宁夏", [106.3586, 38.1775, 300]),
("青海", [101.4038, 36.8207, 300]),
("新疆", [87.9236, 43.5883, 300]),
("西藏", [91.11, 29.97, 300]),
("四川", [103.9526, 30.7617, 300]),
("重庆", [108.384366, 30.439702, 300]),
("山东", [117.1582, 36.8701, 300]),
("河南", [113.4668, 34.6234, 300]),
("江苏", [118.8062, 31.9208, 300]),
("安徽", [117.29, 32.0581, 300]),
("湖北", [114.3896, 30.6628, 300]),
("浙江", [119.5313, 29.8773, 300]),
("福建", [119.4543, 25.9222, 300]),
("江西", [116.0046, 28.6633, 300]),
("湖南", [113.0823, 28.2568, 300]),
("贵州", [106.6992, 26.7682, 300]),
("广西", [108.479, 23.1152, 300]),
("海南", [110.3893, 19.8516, 300]),
("上海", [121.4648, 31.2891, 1300]),
]
c = (
Map3D(init_opts=opts.InitOpts(width="1400px", height="700px"))
.add_schema(
itemstyle_opts=opts.ItemStyleOpts(
color="rgb(5,101,123)",
opacity=1,
border_width=0.8,
border_color="rgb(62,215,213)",
),
map3d_label=opts.Map3DLabelOpts(
is_show=False,
formatter=JsCode("function(data){return data.name + " " + data.value[2];}"),
),
emphasis_label_opts=opts.LabelOpts(
is_show=False,
color="#fff",
font_size=10,
background_color="rgba(0,23,11,0)",
),
light_opts=opts.Map3DLightOpts(
main_color="#fff",
main_intensity=1.2,
main_shadow_quality="high",
is_main_shadow=False,
main_beta=10,
ambient_intensity=0.3,
),
)
.add(
series_name="数据",
data_pair=example_data,
type_=ChartType.BAR3D,
bar_size=1,
shading="lambert",
label_opts=opts.LabelOpts(
is_show=False,
formatter=JsCode("function(data){return data.name + ' ' + data.value[2];}"),
),
)
.set_global_opts(title_opts=opts.TitleOpts(title="城市数据"))
.render("带有数据展示地图.html")
)

Python可视化神器pyecharts之绘制地理图表练习

看完直呼这个模板,适合做城市之间的数据对,同时也展示了经纬度。

全国行政区地图(带城市名字)

from pyecharts import options as opts
from pyecharts.charts import Map3D
from pyecharts.globals import ChartType

c = (
Map3D(init_opts=opts.InitOpts(width="1400px", height="700px"))
.add_schema(
itemstyle_opts=opts.ItemStyleOpts(
color="rgb(5,101,123)",
opacity=1,
border_width=0.8,
border_color="rgb(62,215,213)",
),
map3d_label=opts.Map3DLabelOpts(
is_show=True,
text_style=opts.TextStyleOpts(
color="#fff", font_size=16, background_color="rgba(0,0,0,0)"
),
),
emphasis_label_opts=opts.LabelOpts(is_show=True),
light_opts=opts.Map3DLightOpts(
main_color="#fff",
main_intensity=1.2,
is_main_shadow=False,
main_alpha=55,
main_beta=10,
ambient_intensity=0.3,
),
)
.add(series_name="", data_pair="", maptype=ChartType.MAP3D)
.set_global_opts(
title_opts=opts.TitleOpts(title="全国行政区划地图-Base"),
visualmap_opts=opts.VisualMapOpts(is_show=False),
tooltip_opts=opts.TooltipOpts(is_show=True),
)
.render("全国标签地图.html")
)

Python可视化神器pyecharts之绘制地理图表练习

地球展示

import pyecharts.options as opts
from pyecharts.charts import MapGlobe
from pyecharts.faker import POPULATION
data = [x for _, x in POPULATION[1:]]
low, high = min(data), max(data)
c = (
MapGlobe(init_opts=opts.InitOpts(width="1400px", height="700px"))
.add_schema()
.add(
maptype="world",
series_name="World Population",
data_pair=POPULATION[1:],
is_map_symbol_show=False,
label_opts=opts.LabelOpts(is_show=False),
)
.set_global_opts(
visualmap_opts=opts.VisualMapOpts(
min_=low,
max_=high,
range_text=["max", "min"],
is_calculable=True,
range_color=["lightskyblue", "yellow", "orangered"],
)
)
.render("地球.html")
)

Python可视化神器pyecharts之绘制地理图表练习

其实pyecharts还可以做百度地图,可以缩放定位到每一个区域,但是其实我们在日常生活中可能用不上,如果要用可以去百度地图展示效果或者学习练习也是可的

到此这篇关于Python可视化神器pyecharts之绘制地理图表的文章就介绍到这了,更多相关Python绘制地理图表内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!


Tags in this post...

Python 相关文章推荐
python获取当前日期和时间的方法
Apr 30 Python
Python生成不重复随机值的方法
May 11 Python
Python实现的生成格雷码功能示例
Jan 24 Python
Python面向对象程序设计类变量与成员变量、类方法与成员方法用法分析
Apr 12 Python
python pandas生成时间列表
Jun 29 Python
如何用Python做一个微信机器人自动拉群
Jul 03 Python
解决Django中修改js css文件但浏览器无法及时与之改变的问题
Aug 31 Python
Python单元测试工具doctest和unittest使用解析
Sep 02 Python
Python tensorflow实现mnist手写数字识别示例【非卷积与卷积实现】
Dec 19 Python
使用python的pyplot绘制函数实例
Feb 13 Python
Python基于数列实现购物车程序过程详解
Jun 09 Python
Python中常见的反爬机制及其破解方法总结
Jun 10 Python
Django中celery的使用项目实例
Python可视化神器pyecharts绘制地理图表
Python软件包安装的三种常见方法
Python+SeaTable实现计算两个日期间的工作日天数
Jul 07 #Python
Python实现数据的序列化操作详解
Jul 07 #Python
Python如何利用pandas读取csv数据并绘图
Python可视化神器pyecharts绘制水球图
Jul 07 #Python
You might like
php正则
2006/07/07 PHP
一个严格的PHP Session会话超时时间设置方法
2014/06/10 PHP
PHP实现上传图片到 zimg 服务器
2016/10/19 PHP
php使用正则表达式获取字符串中的URL
2016/12/29 PHP
Aster vs KG BO3 第二场2.18
2021/03/10 DOTA
让innerText在firefox火狐和IE浏览器都能用的写法
2011/05/14 Javascript
javascript显示用户停留时间的简单实例
2013/08/05 Javascript
图片Slider 带左右按钮的js示例
2013/08/30 Javascript
完美兼容各大浏览器的jQuery仿新浪图文淡入淡出间歇滚动特效
2014/11/12 Javascript
Javascript中的高阶函数介绍
2015/03/15 Javascript
Bootstrap3学习笔记(三)之表格
2016/05/20 Javascript
对Angular.js Controller如何进行单元测试
2016/10/25 Javascript
Javascript别踩白块儿(钢琴块儿)小游戏实现代码
2017/07/20 Javascript
微信小程序实现两个页面传值的方法分析
2018/12/11 Javascript
关于vue项目中搜索节流的实现代码
2019/09/17 Javascript
Angular8引入百度Echarts进行图表分析的实现代码
2019/11/27 Javascript
详谈Vue.js框架下main.js,App.vue,page/index.vue之间的区别
2020/08/12 Javascript
Python模块学习 filecmp 文件比较
2012/08/27 Python
python实现红包裂变算法
2016/02/16 Python
Python进阶篇之字典操作总结
2016/11/16 Python
socket + select 完成伪并发操作的实例
2017/08/15 Python
selenium+python 去除启动的黑色cmd窗口方法
2018/05/22 Python
python梯度下降法的简单示例
2018/08/31 Python
python模糊图片过滤的方法
2018/12/14 Python
pycharm远程开发项目的实现步骤
2019/01/20 Python
Django框架orM与自定义SQL语句混合事务控制操作
2019/06/27 Python
django创建最简单HTML页面跳转方法
2019/08/16 Python
Python手绘可视化工具cutecharts使用实例
2019/12/05 Python
python在linux环境下安装skimage的示例代码
2020/10/14 Python
在pycharm中使用pipenv创建虚拟环境和安装django的详细教程
2020/11/30 Python
英国打印机墨盒销售网站:Ink Factory
2019/10/07 全球购物
苏格兰领先的多渠道鞋店:Begg Shoes
2019/10/22 全球购物
VLAN和VPN有什么区别?分别实现在OSI的第几层?
2014/12/23 面试题
离婚起诉书范本
2015/05/18 职场文书
解决Redis启动警告问题
2022/02/24 Redis
Python OpenCV超详细讲解调整大小与图像操作的实现
2022/04/02 Python