Python可视化神器pyecharts之绘制地理图表练习


Posted in Python onJuly 07, 2022

炫酷地图

前期我们介绍了很多的地图模板,不管是全球的还是中国的,其实我感觉都十分的炫酷,哈哈哈,可是还有更加神奇的,更加炫酷的地图模板,下面让我们一起一饱眼福吧!

3D炫酷地图模板系列

重庆市3D地图展示

from pyecharts import options as opts
from pyecharts.charts import Map3D
from pyecharts.globals import ChartType
# 经纬度
example_data = [
[[119.107078, 36.70925, 1000], [116.587245, 35.415393, 1000]],
[[117.000923, 36.675807], [120.355173, 36.082982]],
[[118.047648, 36.814939], [118.66471, 37.434564]],
[[121.391382, 37.539297], [119.107078, 36.70925]],
[[116.587245, 35.415393], [122.116394, 37.509691]],
[[119.461208, 35.428588], [118.326443, 35.065282]],
[[116.307428, 37.453968], [115.469381, 35.246531]],
]
c = (
Map3D(init_opts=opts.InitOpts(width="1400px", height="700px"))
.add_schema(
maptype="重庆",
itemstyle_opts=opts.ItemStyleOpts(
color="rgb(5,101,123)",
opacity=1,
border_width=0.8,
border_color="rgb(62,215,213)",
),
light_opts=opts.Map3DLightOpts(
main_color="#fff",
main_intensity=1.2,
is_main_shadow=False,
main_alpha=55,
main_beta=10,
ambient_intensity=0.3,
),
view_control_opts=opts.Map3DViewControlOpts(center=[-10, 0, 10]),
post_effect_opts=opts.Map3DPostEffectOpts(is_enable=False),
)
.add(
series_name="",
data_pair=example_data,
type_=ChartType.LINES3D,
effect=opts.Lines3DEffectOpts(
is_show=True,
period=4,
trail_width=3,
trail_length=0.5,
trail_color="#f00",
trail_opacity=1,
),
linestyle_opts=opts.LineStyleOpts(is_show=False, color="#fff", opacity=0),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Map3D"))
.render("区县3D地图.html")
)

Python可视化神器pyecharts之绘制地理图表练习

中国3D地图

数组里面分别代表:经纬度,数值

from pyecharts import options as opts
from pyecharts.charts import Map3D
from pyecharts.globals import ChartType
from pyecharts.commons.utils import JsCode
example_data = [
("黑龙江", [127.9688, 45.368, 100]),
("内蒙古", [110.3467, 41.4899, 100]),
("吉林", [125.8154, 44.2584, 100]),
("辽宁", [123.1238, 42.1216, 100]),
("河北", [114.4995, 38.1006, 100]),
("天津", [117.4219, 39.4189, 100]),
("山西", [112.3352, 37.9413, 100]),
("陕西", [109.1162, 34.2004, 100]),
("甘肃", [103.5901, 36.3043, 100]),
("宁夏", [106.3586, 38.1775, 100]),
("青海", [101.4038, 36.8207, 100]),
("新疆", [87.9236, 43.5883, 100]),
("西藏", [91.11, 29.97, 100]),
("四川", [103.9526, 30.7617, 100]),
("重庆", [108.384366, 30.439702, 100]),
("山东", [117.1582, 36.8701, 100]),
("河南", [113.4668, 34.6234, 100]),
("江苏", [118.8062, 31.9208, 100]),
("安徽", [117.29, 32.0581, 100]),
("湖北", [114.3896, 30.6628, 100]),
("浙江", [119.5313, 29.8773, 100]),
("福建", [119.4543, 25.9222, 100]),
("江西", [116.0046, 28.6633, 100]),
("湖南", [113.0823, 28.2568, 100]),
("贵州", [106.6992, 26.7682, 100]),
("广西", [108.479, 23.1152, 100]),
("海南", [110.3893, 19.8516, 100]),
("上海", [121.4648, 31.2891, 100]),
]
c = (
Map3D(init_opts=opts.InitOpts(width="1400px", height="700px"))
.add_schema(
itemstyle_opts=opts.ItemStyleOpts(
color="rgb(5,101,123)",
opacity=1,
border_width=0.8,
border_color="rgb(62,215,213)",
),
map3d_label=opts.Map3DLabelOpts(
is_show=False,
formatter=JsCode("function(data){return data.name + " " + data.value[2];}"),
),
emphasis_label_opts=opts.LabelOpts(
is_show=False,
color="#fff",
font_size=10,
background_color="rgba(0,23,11,0)",
),
light_opts=opts.Map3DLightOpts(
main_color="#fff",
main_intensity=1.2,
main_shadow_quality="high",
is_main_shadow=False,
main_beta=10,
ambient_intensity=0.3,
),
)
.add(
series_name="Scatter3D",
data_pair=example_data,
type_=ChartType.SCATTER3D,
bar_size=1,
shading="lambert",
label_opts=opts.LabelOpts(
is_show=False,
formatter=JsCode("function(data){return data.name + ' ' + data.value[2];}"),
),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Map3D"))
.render("中国3D地图.html")
)

Python可视化神器pyecharts之绘制地理图表练习

中国3D数据地图(适合做数据可视化)

如果说前面的那个你看起来不太舒服,那么这个绝对适合做数据可视化展示哟!

from pyecharts import options as opts
from pyecharts.charts import Map3D
from pyecharts.globals import ChartType
from pyecharts.commons.utils import JsCode
example_data = [
("黑龙江", [127.9688, 45.368, 100]),
("内蒙古", [110.3467, 41.4899, 300]),
("吉林", [125.8154, 44.2584, 300]),
("辽宁", [123.1238, 42.1216, 300]),
("河北", [114.4995, 38.1006, 300]),
("天津", [117.4219, 39.4189, 300]),
("山西", [112.3352, 37.9413, 300]),
("陕西", [109.1162, 34.2004, 300]),
("甘肃", [103.5901, 36.3043, 300]),
("宁夏", [106.3586, 38.1775, 300]),
("青海", [101.4038, 36.8207, 300]),
("新疆", [87.9236, 43.5883, 300]),
("西藏", [91.11, 29.97, 300]),
("四川", [103.9526, 30.7617, 300]),
("重庆", [108.384366, 30.439702, 300]),
("山东", [117.1582, 36.8701, 300]),
("河南", [113.4668, 34.6234, 300]),
("江苏", [118.8062, 31.9208, 300]),
("安徽", [117.29, 32.0581, 300]),
("湖北", [114.3896, 30.6628, 300]),
("浙江", [119.5313, 29.8773, 300]),
("福建", [119.4543, 25.9222, 300]),
("江西", [116.0046, 28.6633, 300]),
("湖南", [113.0823, 28.2568, 300]),
("贵州", [106.6992, 26.7682, 300]),
("广西", [108.479, 23.1152, 300]),
("海南", [110.3893, 19.8516, 300]),
("上海", [121.4648, 31.2891, 1300]),
]
c = (
Map3D(init_opts=opts.InitOpts(width="1400px", height="700px"))
.add_schema(
itemstyle_opts=opts.ItemStyleOpts(
color="rgb(5,101,123)",
opacity=1,
border_width=0.8,
border_color="rgb(62,215,213)",
),
map3d_label=opts.Map3DLabelOpts(
is_show=False,
formatter=JsCode("function(data){return data.name + " " + data.value[2];}"),
),
emphasis_label_opts=opts.LabelOpts(
is_show=False,
color="#fff",
font_size=10,
background_color="rgba(0,23,11,0)",
),
light_opts=opts.Map3DLightOpts(
main_color="#fff",
main_intensity=1.2,
main_shadow_quality="high",
is_main_shadow=False,
main_beta=10,
ambient_intensity=0.3,
),
)
.add(
series_name="数据",
data_pair=example_data,
type_=ChartType.BAR3D,
bar_size=1,
shading="lambert",
label_opts=opts.LabelOpts(
is_show=False,
formatter=JsCode("function(data){return data.name + ' ' + data.value[2];}"),
),
)
.set_global_opts(title_opts=opts.TitleOpts(title="城市数据"))
.render("带有数据展示地图.html")
)

Python可视化神器pyecharts之绘制地理图表练习

看完直呼这个模板,适合做城市之间的数据对,同时也展示了经纬度。

全国行政区地图(带城市名字)

from pyecharts import options as opts
from pyecharts.charts import Map3D
from pyecharts.globals import ChartType

c = (
Map3D(init_opts=opts.InitOpts(width="1400px", height="700px"))
.add_schema(
itemstyle_opts=opts.ItemStyleOpts(
color="rgb(5,101,123)",
opacity=1,
border_width=0.8,
border_color="rgb(62,215,213)",
),
map3d_label=opts.Map3DLabelOpts(
is_show=True,
text_style=opts.TextStyleOpts(
color="#fff", font_size=16, background_color="rgba(0,0,0,0)"
),
),
emphasis_label_opts=opts.LabelOpts(is_show=True),
light_opts=opts.Map3DLightOpts(
main_color="#fff",
main_intensity=1.2,
is_main_shadow=False,
main_alpha=55,
main_beta=10,
ambient_intensity=0.3,
),
)
.add(series_name="", data_pair="", maptype=ChartType.MAP3D)
.set_global_opts(
title_opts=opts.TitleOpts(title="全国行政区划地图-Base"),
visualmap_opts=opts.VisualMapOpts(is_show=False),
tooltip_opts=opts.TooltipOpts(is_show=True),
)
.render("全国标签地图.html")
)

Python可视化神器pyecharts之绘制地理图表练习

地球展示

import pyecharts.options as opts
from pyecharts.charts import MapGlobe
from pyecharts.faker import POPULATION
data = [x for _, x in POPULATION[1:]]
low, high = min(data), max(data)
c = (
MapGlobe(init_opts=opts.InitOpts(width="1400px", height="700px"))
.add_schema()
.add(
maptype="world",
series_name="World Population",
data_pair=POPULATION[1:],
is_map_symbol_show=False,
label_opts=opts.LabelOpts(is_show=False),
)
.set_global_opts(
visualmap_opts=opts.VisualMapOpts(
min_=low,
max_=high,
range_text=["max", "min"],
is_calculable=True,
range_color=["lightskyblue", "yellow", "orangered"],
)
)
.render("地球.html")
)

Python可视化神器pyecharts之绘制地理图表练习

其实pyecharts还可以做百度地图,可以缩放定位到每一个区域,但是其实我们在日常生活中可能用不上,如果要用可以去百度地图展示效果或者学习练习也是可的

到此这篇关于Python可视化神器pyecharts之绘制地理图表的文章就介绍到这了,更多相关Python绘制地理图表内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!


Tags in this post...

Python 相关文章推荐
在Django中创建URLconf相关的通用视图的方法
Jul 20 Python
Python 探针的实现原理
Apr 23 Python
python内置函数:lambda、map、filter简单介绍
Nov 16 Python
解决phantomjs截图失败,phantom.exit位置的问题
May 17 Python
Python面向对象类编写细节分析【类,方法,继承,超类,接口等】
Jan 05 Python
python 自动轨迹绘制的实例代码
Jul 05 Python
python使用paramiko模块通过ssh2协议对交换机进行配置的方法
Jul 25 Python
Pytorch基本变量类型FloatTensor与Variable用法
Jan 08 Python
利用 PyCharm 实现本地代码和远端的实时同步功能
Mar 23 Python
Python flask框架实现查询数据库并显示数据
Jun 04 Python
Python发送邮件实现基础解析
Aug 14 Python
7个关于Python的经典基础案例
Nov 07 Python
Django中celery的使用项目实例
Python可视化神器pyecharts绘制地理图表
Python软件包安装的三种常见方法
Python+SeaTable实现计算两个日期间的工作日天数
Jul 07 #Python
Python实现数据的序列化操作详解
Jul 07 #Python
Python如何利用pandas读取csv数据并绘图
Python可视化神器pyecharts绘制水球图
Jul 07 #Python
You might like
在php中取得image按钮传递的name值
2006/10/09 PHP
PHP5 面向对象程序设计
2008/02/13 PHP
PHP中可以自动分割查询字符的Parse_str函数使用示例
2014/07/25 PHP
PHP实现将base64编码字符串转换成图片示例
2018/06/22 PHP
jQuery 浮动广告实现代码
2008/12/25 Javascript
关于js中window.location.href,location.href,parent.location.href,top.location.href的用法与区别
2010/10/18 Javascript
对setInterval在火狐和chrome切换标签产生奇怪的效果之探索,与解决方案!
2011/10/29 Javascript
JScript分割字符串示例代码
2013/09/04 Javascript
js实现显示当前状态的导航效果代码
2015/08/28 Javascript
基于JS实现EOS隐藏错误提示层代码
2016/04/25 Javascript
jQuery实现带遮罩层效果的blockUI弹出层示例【附demo源码下载】
2016/09/14 Javascript
基于jQuery实现滚动切换效果
2016/12/02 Javascript
jQuery判断邮箱格式对错实例代码讲解
2017/04/12 jQuery
bootstrap手风琴折叠示例代码分享
2017/05/22 Javascript
AngularJS 实现购物车全选反选功能
2017/10/24 Javascript
JavaScript登录验证基础教程
2017/11/01 Javascript
jQuery获取随机颜色的实例代码
2018/05/21 jQuery
Python中的测试模块unittest和doctest的使用教程
2015/04/14 Python
python中list列表的高级函数
2016/05/17 Python
python字符串,数值计算
2016/10/05 Python
python3中int(整型)的使用教程
2017/03/23 Python
使用Python的turtle模块画图的方法
2017/11/15 Python
使用matplotlib中scatter方法画散点图
2019/03/19 Python
python制作填词游戏步骤详解
2019/05/05 Python
python生成器用法实例详解
2019/11/22 Python
Python异常继承关系和自定义异常实现代码实例
2020/02/20 Python
python归并排序算法过程实例讲解
2020/11/04 Python
澳大利亚第一的设计师礼服租赁网站:GlamCorner
2017/08/13 全球购物
最好的意大利皮夹克:D’Arienzo
2018/12/04 全球购物
英国第一独立滑雪板商店:The Snowboard Asylum
2020/01/16 全球购物
顶撞老师检讨书
2014/02/07 职场文书
2014学生会工作总结报告
2014/12/02 职场文书
教师节班会主持词
2015/07/06 职场文书
团支部组织委员竞选稿
2015/11/21 职场文书
导游词之云南省玉龙雪山
2019/12/19 职场文书
MySQL的存储过程和相关函数
2022/04/26 MySQL