Python可视化神器pyecharts之绘制地理图表练习


Posted in Python onJuly 07, 2022

炫酷地图

前期我们介绍了很多的地图模板,不管是全球的还是中国的,其实我感觉都十分的炫酷,哈哈哈,可是还有更加神奇的,更加炫酷的地图模板,下面让我们一起一饱眼福吧!

3D炫酷地图模板系列

重庆市3D地图展示

from pyecharts import options as opts
from pyecharts.charts import Map3D
from pyecharts.globals import ChartType
# 经纬度
example_data = [
[[119.107078, 36.70925, 1000], [116.587245, 35.415393, 1000]],
[[117.000923, 36.675807], [120.355173, 36.082982]],
[[118.047648, 36.814939], [118.66471, 37.434564]],
[[121.391382, 37.539297], [119.107078, 36.70925]],
[[116.587245, 35.415393], [122.116394, 37.509691]],
[[119.461208, 35.428588], [118.326443, 35.065282]],
[[116.307428, 37.453968], [115.469381, 35.246531]],
]
c = (
Map3D(init_opts=opts.InitOpts(width="1400px", height="700px"))
.add_schema(
maptype="重庆",
itemstyle_opts=opts.ItemStyleOpts(
color="rgb(5,101,123)",
opacity=1,
border_width=0.8,
border_color="rgb(62,215,213)",
),
light_opts=opts.Map3DLightOpts(
main_color="#fff",
main_intensity=1.2,
is_main_shadow=False,
main_alpha=55,
main_beta=10,
ambient_intensity=0.3,
),
view_control_opts=opts.Map3DViewControlOpts(center=[-10, 0, 10]),
post_effect_opts=opts.Map3DPostEffectOpts(is_enable=False),
)
.add(
series_name="",
data_pair=example_data,
type_=ChartType.LINES3D,
effect=opts.Lines3DEffectOpts(
is_show=True,
period=4,
trail_width=3,
trail_length=0.5,
trail_color="#f00",
trail_opacity=1,
),
linestyle_opts=opts.LineStyleOpts(is_show=False, color="#fff", opacity=0),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Map3D"))
.render("区县3D地图.html")
)

Python可视化神器pyecharts之绘制地理图表练习

中国3D地图

数组里面分别代表:经纬度,数值

from pyecharts import options as opts
from pyecharts.charts import Map3D
from pyecharts.globals import ChartType
from pyecharts.commons.utils import JsCode
example_data = [
("黑龙江", [127.9688, 45.368, 100]),
("内蒙古", [110.3467, 41.4899, 100]),
("吉林", [125.8154, 44.2584, 100]),
("辽宁", [123.1238, 42.1216, 100]),
("河北", [114.4995, 38.1006, 100]),
("天津", [117.4219, 39.4189, 100]),
("山西", [112.3352, 37.9413, 100]),
("陕西", [109.1162, 34.2004, 100]),
("甘肃", [103.5901, 36.3043, 100]),
("宁夏", [106.3586, 38.1775, 100]),
("青海", [101.4038, 36.8207, 100]),
("新疆", [87.9236, 43.5883, 100]),
("西藏", [91.11, 29.97, 100]),
("四川", [103.9526, 30.7617, 100]),
("重庆", [108.384366, 30.439702, 100]),
("山东", [117.1582, 36.8701, 100]),
("河南", [113.4668, 34.6234, 100]),
("江苏", [118.8062, 31.9208, 100]),
("安徽", [117.29, 32.0581, 100]),
("湖北", [114.3896, 30.6628, 100]),
("浙江", [119.5313, 29.8773, 100]),
("福建", [119.4543, 25.9222, 100]),
("江西", [116.0046, 28.6633, 100]),
("湖南", [113.0823, 28.2568, 100]),
("贵州", [106.6992, 26.7682, 100]),
("广西", [108.479, 23.1152, 100]),
("海南", [110.3893, 19.8516, 100]),
("上海", [121.4648, 31.2891, 100]),
]
c = (
Map3D(init_opts=opts.InitOpts(width="1400px", height="700px"))
.add_schema(
itemstyle_opts=opts.ItemStyleOpts(
color="rgb(5,101,123)",
opacity=1,
border_width=0.8,
border_color="rgb(62,215,213)",
),
map3d_label=opts.Map3DLabelOpts(
is_show=False,
formatter=JsCode("function(data){return data.name + " " + data.value[2];}"),
),
emphasis_label_opts=opts.LabelOpts(
is_show=False,
color="#fff",
font_size=10,
background_color="rgba(0,23,11,0)",
),
light_opts=opts.Map3DLightOpts(
main_color="#fff",
main_intensity=1.2,
main_shadow_quality="high",
is_main_shadow=False,
main_beta=10,
ambient_intensity=0.3,
),
)
.add(
series_name="Scatter3D",
data_pair=example_data,
type_=ChartType.SCATTER3D,
bar_size=1,
shading="lambert",
label_opts=opts.LabelOpts(
is_show=False,
formatter=JsCode("function(data){return data.name + ' ' + data.value[2];}"),
),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Map3D"))
.render("中国3D地图.html")
)

Python可视化神器pyecharts之绘制地理图表练习

中国3D数据地图(适合做数据可视化)

如果说前面的那个你看起来不太舒服,那么这个绝对适合做数据可视化展示哟!

from pyecharts import options as opts
from pyecharts.charts import Map3D
from pyecharts.globals import ChartType
from pyecharts.commons.utils import JsCode
example_data = [
("黑龙江", [127.9688, 45.368, 100]),
("内蒙古", [110.3467, 41.4899, 300]),
("吉林", [125.8154, 44.2584, 300]),
("辽宁", [123.1238, 42.1216, 300]),
("河北", [114.4995, 38.1006, 300]),
("天津", [117.4219, 39.4189, 300]),
("山西", [112.3352, 37.9413, 300]),
("陕西", [109.1162, 34.2004, 300]),
("甘肃", [103.5901, 36.3043, 300]),
("宁夏", [106.3586, 38.1775, 300]),
("青海", [101.4038, 36.8207, 300]),
("新疆", [87.9236, 43.5883, 300]),
("西藏", [91.11, 29.97, 300]),
("四川", [103.9526, 30.7617, 300]),
("重庆", [108.384366, 30.439702, 300]),
("山东", [117.1582, 36.8701, 300]),
("河南", [113.4668, 34.6234, 300]),
("江苏", [118.8062, 31.9208, 300]),
("安徽", [117.29, 32.0581, 300]),
("湖北", [114.3896, 30.6628, 300]),
("浙江", [119.5313, 29.8773, 300]),
("福建", [119.4543, 25.9222, 300]),
("江西", [116.0046, 28.6633, 300]),
("湖南", [113.0823, 28.2568, 300]),
("贵州", [106.6992, 26.7682, 300]),
("广西", [108.479, 23.1152, 300]),
("海南", [110.3893, 19.8516, 300]),
("上海", [121.4648, 31.2891, 1300]),
]
c = (
Map3D(init_opts=opts.InitOpts(width="1400px", height="700px"))
.add_schema(
itemstyle_opts=opts.ItemStyleOpts(
color="rgb(5,101,123)",
opacity=1,
border_width=0.8,
border_color="rgb(62,215,213)",
),
map3d_label=opts.Map3DLabelOpts(
is_show=False,
formatter=JsCode("function(data){return data.name + " " + data.value[2];}"),
),
emphasis_label_opts=opts.LabelOpts(
is_show=False,
color="#fff",
font_size=10,
background_color="rgba(0,23,11,0)",
),
light_opts=opts.Map3DLightOpts(
main_color="#fff",
main_intensity=1.2,
main_shadow_quality="high",
is_main_shadow=False,
main_beta=10,
ambient_intensity=0.3,
),
)
.add(
series_name="数据",
data_pair=example_data,
type_=ChartType.BAR3D,
bar_size=1,
shading="lambert",
label_opts=opts.LabelOpts(
is_show=False,
formatter=JsCode("function(data){return data.name + ' ' + data.value[2];}"),
),
)
.set_global_opts(title_opts=opts.TitleOpts(title="城市数据"))
.render("带有数据展示地图.html")
)

Python可视化神器pyecharts之绘制地理图表练习

看完直呼这个模板,适合做城市之间的数据对,同时也展示了经纬度。

全国行政区地图(带城市名字)

from pyecharts import options as opts
from pyecharts.charts import Map3D
from pyecharts.globals import ChartType

c = (
Map3D(init_opts=opts.InitOpts(width="1400px", height="700px"))
.add_schema(
itemstyle_opts=opts.ItemStyleOpts(
color="rgb(5,101,123)",
opacity=1,
border_width=0.8,
border_color="rgb(62,215,213)",
),
map3d_label=opts.Map3DLabelOpts(
is_show=True,
text_style=opts.TextStyleOpts(
color="#fff", font_size=16, background_color="rgba(0,0,0,0)"
),
),
emphasis_label_opts=opts.LabelOpts(is_show=True),
light_opts=opts.Map3DLightOpts(
main_color="#fff",
main_intensity=1.2,
is_main_shadow=False,
main_alpha=55,
main_beta=10,
ambient_intensity=0.3,
),
)
.add(series_name="", data_pair="", maptype=ChartType.MAP3D)
.set_global_opts(
title_opts=opts.TitleOpts(title="全国行政区划地图-Base"),
visualmap_opts=opts.VisualMapOpts(is_show=False),
tooltip_opts=opts.TooltipOpts(is_show=True),
)
.render("全国标签地图.html")
)

Python可视化神器pyecharts之绘制地理图表练习

地球展示

import pyecharts.options as opts
from pyecharts.charts import MapGlobe
from pyecharts.faker import POPULATION
data = [x for _, x in POPULATION[1:]]
low, high = min(data), max(data)
c = (
MapGlobe(init_opts=opts.InitOpts(width="1400px", height="700px"))
.add_schema()
.add(
maptype="world",
series_name="World Population",
data_pair=POPULATION[1:],
is_map_symbol_show=False,
label_opts=opts.LabelOpts(is_show=False),
)
.set_global_opts(
visualmap_opts=opts.VisualMapOpts(
min_=low,
max_=high,
range_text=["max", "min"],
is_calculable=True,
range_color=["lightskyblue", "yellow", "orangered"],
)
)
.render("地球.html")
)

Python可视化神器pyecharts之绘制地理图表练习

其实pyecharts还可以做百度地图,可以缩放定位到每一个区域,但是其实我们在日常生活中可能用不上,如果要用可以去百度地图展示效果或者学习练习也是可的

到此这篇关于Python可视化神器pyecharts之绘制地理图表的文章就介绍到这了,更多相关Python绘制地理图表内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!


Tags in this post...

Python 相关文章推荐
python如何为被装饰的函数保留元数据
Mar 21 Python
Python django使用多进程连接mysql错误的解决方法
Oct 08 Python
用python标准库difflib比较两份文件的异同详解
Nov 16 Python
Python单元测试unittest的具体使用示例
Dec 17 Python
简单了解python PEP的一些知识
Jul 13 Python
Pyqt5 关于流式布局和滚动条的综合使用示例代码
Mar 24 Python
Python读取配置文件(config.ini)以及写入配置文件
Apr 08 Python
Tensorflow安装问题: Could not find a version that satisfies the requirement tensorflow
Apr 20 Python
Python定时从Mysql提取数据存入Redis的实现
May 03 Python
Python xlwings插入Excel图片的实现方法
Feb 26 Python
python中24小时制转换为12小时制的方法
Jun 18 Python
一起来学习Python的元组和列表
Mar 13 Python
Django中celery的使用项目实例
Python可视化神器pyecharts绘制地理图表
Python软件包安装的三种常见方法
Python+SeaTable实现计算两个日期间的工作日天数
Jul 07 #Python
Python实现数据的序列化操作详解
Jul 07 #Python
Python如何利用pandas读取csv数据并绘图
Python可视化神器pyecharts绘制水球图
Jul 07 #Python
You might like
php 字符串函数收集
2010/03/29 PHP
PHP数组与对象之间使用递归实现转换的方法
2015/06/24 PHP
ECSHOP在PHP5.5及高版本上报错的解决方法
2015/08/31 PHP
thinkPHP线上自动加载异常与修复方法实例分析
2016/12/01 PHP
phpmyadmin下载、安装、配置教程
2017/05/16 PHP
基于jquery的has()方法以及与find()方法以及filter()方法的区别详解
2013/04/26 Javascript
jquery下拉select控件操作方法分享(jquery操作select)
2014/03/25 Javascript
详解JavaScript中的forEach()方法的使用
2015/06/08 Javascript
javascript学习笔记之函数定义
2015/06/25 Javascript
JavaScritp添加url参数并将参数加入到url中及更改url参数的方法
2015/10/26 Javascript
dedecms页面如何获取会员状态的实例代码
2016/03/15 Javascript
浅谈javascript运算符——条件,逗号,赋值,()和void运算符
2016/07/15 Javascript
JavaScript 中的12种循环遍历方法【总结】
2018/05/31 Javascript
微信打开网址添加在浏览器中打开提示的办法
2019/05/20 Javascript
Node.js实现简单的爬取的示例代码
2019/06/25 Javascript
Js逆向实现滑动验证码图片还原的示例代码
2020/03/10 Javascript
python错误:AttributeError: 'module' object has no attribute 'setdefaultencoding'问题的解决方法
2014/08/22 Python
利用Python批量生成任意尺寸的图片
2016/08/29 Python
python 基本数据类型占用内存空间大小的实例
2018/06/12 Python
Ubuntu18.04中Python2.7与Python3.6环境切换
2019/06/14 Python
python--shutil移动文件到另一个路径的操作
2020/07/13 Python
关于HTML5语义标签的实践(blog页面)
2016/07/12 HTML / CSS
美国蔬菜和植物种子公司:Burpee
2017/02/01 全球购物
入党积极分子学习两会心得体会范文
2014/03/17 职场文书
参赛口号
2014/06/16 职场文书
党支部三会一课计划
2014/09/24 职场文书
党的群众路线教育实践活动个人剖析材料
2014/10/07 职场文书
青年教师个人总结
2015/02/11 职场文书
项目战略合作意向书
2015/05/08 职场文书
小学生禁毒教育心得体会
2016/01/15 职场文书
本地通过nginx配置反向代理的全过程记录
2021/03/31 Servers
Redis安装启动及常见数据类型
2021/04/14 Redis
Python机器学习之决策树和随机森林
2021/07/15 Javascript
JavaScript ES6的函数拓展
2022/01/18 Javascript
解决Mysql报错 Table 'mysql.user' doesn't exist
2022/05/06 MySQL
python区块链实现简版工作量证明
2022/05/25 Python