最小二乘法及其python实现详解


Posted in Python onFebruary 24, 2020

最小二乘法Least Square Method,做为分类回归算法的基础,有着悠久的历史(由马里·勒让德于1806年提出)。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

那什么是最小二乘法呢?别着急,我们先从几个简单的概念说起。

假设我们现在有一系列的数据点 最小二乘法及其python实现详解 ,那么由我们给出的拟合函数h(x)得到的估计量就是 最小二乘法及其python实现详解 ,那么怎么评估我们给出的拟合函数与实际待求解的函数的拟合程度比较高呢?这里我们先定义一个概念:残差 最小二乘法及其python实现详解 , 我们估计拟合程度都是在残差的基础上进行的。下面再介绍三种范数:

• ∞-范数:残差绝对值的最大值 最小二乘法及其python实现详解 ,即所有数据点中残差距离的最大值

• 1-范数:绝对残差和最小二乘法及其python实现详解 ,即所有数据点残差距离之和

• 2-范数:残差平方和 最小二乘法及其python实现详解

前两种范数是最容易想到,最自然的,但是不利于进行微分运算,在数据量很大的情况下计算量太大,不具有可操作性。因此一般使用的是2-范数。

说了这么多,那范数和拟合有什么关系呢?拟合程度,用通俗的话来讲,就是我们的拟合函数h(x)与待求解的函数y之间的相似性。那么2-范数越小,自然相似性就比较高了。

由此,我们可以写出最小二乘法的定义了:

对于给定的数据 最小二乘法及其python实现详解 ,在取定的假设空间H中,求解h(x)∈H,使得残差 最小二乘法及其python实现详解 的2-范数最小,即

最小二乘法及其python实现详解

从几何上讲,就是寻找与给定点 最小二乘法及其python实现详解 距离平方和最小的曲线y=h(x)。h(x)称为拟合函数或者最小二乘解,求解拟合函数h(x)的方法称为曲线拟合的最小二乘法。

那么这里的h(x)到底应该长什么样呢?一般情况下,这是一条多项式曲线:

最小二乘法及其python实现详解

这里h(x,w)是一个n次多项式,w是其参数。

也就是说,最小二乘法就是要找到这样一组 最小二乘法及其python实现详解 ,使得 最小二乘法及其python实现详解 最小。

那么如何找到这样的w,使得其拟合函数h(x)与目标函数y具有最高拟合程度呢?即最小二乘法如何求解呢,这才是关键啊。

假设我们的拟合函数是一个线性函数,即:

最小二乘法及其python实现详解

(当然,也可以是二次函数,或者更高维的函数,这里仅仅是作为求解范例,所以采用了最简单的线性函数)那么我们的目标就是找到这样的w,

最小二乘法及其python实现详解

这里令 最小二乘法及其python实现详解 为样本 最小二乘法及其python实现详解 的平方损失函数

这里的Q(w)即为我们要进行最优化的风险函数。

学过微积分的同学应该比较清楚,这是一个典型的求解极值的问题,只需要分别对 18 求偏导数,然后令偏导数为0,即可求解出极值点,即:

最小二乘法及其python实现详解

接下来只需要求解这个方程组即可解出w_i 的值

============ 分割分割 =============

上面我们讲解了什么是最小二乘法,以及如何求解最小二乘解,下面我们将通过Python来实现最小二乘法。

这里我们把目标函数选为y=sin(2πx),叠加上一个正态分布作为噪音干扰,然后使用多项式分布去拟合它。

代码:

# _*_ coding: utf-8 _*_
# 作者: yhao
# 博客: http://blog.csdn.net/yhao2014
# 邮箱: yanhao07@sina.com
 
import numpy as np # 引入numpy
import scipy as sp
import pylab as pl
from scipy.optimize import leastsq # 引入最小二乘函数
 
n = 9 # 多项式次数
 
 
# 目标函数
def real_func(x):
 return np.sin(2 * np.pi * x)
 
 
# 多项式函数
def fit_func(p, x):
 f = np.poly1d(p)
 return f(x)
 
 
# 残差函数
def residuals_func(p, y, x):
 ret = fit_func(p, x) - y
 return ret
 
 
x = np.linspace(0, 1, 9) # 随机选择9个点作为x
x_points = np.linspace(0, 1, 1000) # 画图时需要的连续点
 
y0 = real_func(x) # 目标函数
y1 = [np.random.normal(0, 0.1) + y for y in y0] # 添加正太分布噪声后的函数
 
p_init = np.random.randn(n) # 随机初始化多项式参数
 
plsq = leastsq(residuals_func, p_init, args=(y1, x))
 
print 'Fitting Parameters: ', plsq[0] # 输出拟合参数
 
pl.plot(x_points, real_func(x_points), label='real')
pl.plot(x_points, fit_func(plsq[0], x_points), label='fitted curve')
pl.plot(x, y1, 'bo', label='with noise')
pl.legend()
pl.show()

输出拟合参数:

最小二乘法及其python实现详解

图像如下:

最小二乘法及其python实现详解

从图像上看,很明显我们的拟合函数过拟合了,下面我们尝试在风险函数的基础上加上正则化项,来降低过拟合的现象:

最小二乘法及其python实现详解

为此,我们只需要在残差函数中将lambda^(1/2)p加在了返回的array的后面

regularization = 0.1 # 正则化系数lambda
 
 
# 残差函数
def residuals_func(p, y, x):
 ret = fit_func(p, x) - y
 ret = np.append(ret, np.sqrt(regularization) * p) # 将lambda^(1/2)p加在了返回的array的后面
 return ret

输出拟合参数:

最小二乘法及其python实现详解

图像如下:

最小二乘法及其python实现详解

很明显,在适当的正则化约束下,可以比较好的拟合目标函数。

注意,如果正则化项的系数太大,会导致欠拟合现象(此时的惩罚项权重特别高)

如,设置regularization=0.1时,图像如下:

最小二乘法及其python实现详解

此时明显欠拟合。所以要慎重进行正则化参数的选择。

以上这篇最小二乘法及其python实现详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python解析xml模块封装代码
Feb 07 Python
python re正则表达式模块(Regular Expression)
Jul 16 Python
python开发之thread实现布朗运动的方法
Nov 11 Python
让python在hadoop上跑起来
Jan 27 Python
Python自定义主从分布式架构实例分析
Sep 19 Python
python学习教程之使用py2exe打包
Sep 24 Python
python+Splinter实现12306抢票功能
Sep 25 Python
Python-Flask:动态创建表的示例详解
Nov 22 Python
Python运行DLL文件的方法
Jan 17 Python
python GUI库图形界面开发之PyQt5布局控件QHBoxLayout详细使用方法与实例
Mar 06 Python
python 字典item与iteritems的区别详解
Apr 25 Python
python re模块和正则表达式
Mar 24 Python
在Python 的线程中运行协程的方法
Feb 24 #Python
Python 爬取必应壁纸的实例讲解
Feb 24 #Python
Python unittest工作原理和使用过程解析
Feb 24 #Python
Python 剪绳子的多种思路实现(动态规划和贪心)
Feb 24 #Python
用python介绍4种常用的单链表翻转的方法小结
Feb 24 #Python
关于多元线性回归分析——Python&SPSS
Feb 24 #Python
使用 pytorch 创建神经网络拟合sin函数的实现
Feb 24 #Python
You might like
PHP--用万网的接口实现域名查询功能
2012/12/13 PHP
解析使用ThinkPHP应该掌握的调试手段
2013/06/20 PHP
php管理nginx虚拟主机shell脚本实例
2014/11/19 PHP
php+html5实现无刷新图片上传教程
2016/01/22 PHP
jQuery(1.3.2) 7行代码搞定跟随屏幕滚动的层
2009/05/21 Javascript
改写一个简单的菜单 弹性大小
2010/12/02 Javascript
JavaScript的递归之递归与循环示例介绍
2013/08/05 Javascript
动态创建script在IE中缓存js文件时导致编码的解决方法
2014/05/04 Javascript
浅谈NodeJS中require路径问题
2015/05/07 NodeJs
JavaScript调用客户端Java程序的方法
2015/07/27 Javascript
JavaScript队列、优先队列与循环队列
2016/11/14 Javascript
Vue开发过程中遇到的疑惑知识点总结
2017/01/20 Javascript
常用jQuery选择器汇总
2017/02/02 Javascript
vue使用vuex实现首页导航切换不同路由的方法
2019/05/08 Javascript
vue 实现v-for循环回来的数据动态绑定id
2019/11/07 Javascript
微信小程序实现上传多张图片、删除图片
2020/07/29 Javascript
使用vue构建多页面应用的示例
2020/10/22 Javascript
[37:47]IG vs Winstrike 2018国际邀请赛小组赛BO2 第二场 8.19
2018/08/21 DOTA
爬山算法简介和Python实现实例
2014/04/26 Python
Python实现简单遗传算法(SGA)
2018/01/29 Python
python实现csv格式文件转为asc格式文件的方法
2018/03/23 Python
Pytorch 实现自定义参数层的例子
2019/08/17 Python
Python 获取命令行参数内容及参数个数的实例
2019/12/20 Python
Python django框架开发发布会签到系统(web开发)
2020/02/12 Python
git查看、创建、删除、本地、远程分支方法详解
2020/02/18 Python
python实现与redis交互操作详解
2020/04/21 Python
用OpenCV进行年龄和性别检测的实现示例
2021/01/29 Python
纯CSS3实现圆角效果(含IE兼容解决方法)
2014/05/07 HTML / CSS
莫斯科制造商的廉价皮大衣:Fursk
2020/06/09 全球购物
校领导推荐信
2013/11/01 职场文书
《那片绿绿的爬山虎》教学反思
2014/02/27 职场文书
金融管理专业毕业生求职信
2014/03/12 职场文书
2015大学生实训报告
2014/11/05 职场文书
关于清明节的演讲稿2015
2015/03/18 职场文书
教学反思怎么写
2016/02/24 职场文书
解决MySQL报“too many connections“错误
2022/04/19 MySQL