python时间日期函数与利用pandas进行时间序列处理详解


Posted in Python onMarch 13, 2018

python标准库包含于日期(date)和时间(time)数据的数据类型,datetime、time以及calendar模块会被经常用到。

datetime以毫秒形式存储日期和时间,datetime.timedelta表示两个datetime对象之间的时间差。

下面我们先简单的了解下python日期和时间数据类型及工具

给datetime对象加上或减去一个或多个timedelta,会产生一个新的对象

from datetime import datetime
from datetime import timedelta

now = datetime.now()
now

datetime.datetime(2017, 6, 27, 15, 56, 56, 167000)

datetime参数:datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])

delta = now - datetime(2017,6,27,10,10,10,10)
delta

datetime.timedelta(0, 20806, 166990)

delta.days

 0

delta.seconds

 20806

delta.microseconds

 166990

datetime模块中的数据类型

类型 说明
date 以公历形式存储日历日期(年、月、日)
time 将时间存储为时、分、秒、毫秒
datetime 存储日期和时间
timedelta 表示两个datetime值之间的差(日、秒、毫秒)

字符串和datetime的相互转换

1)python标准库函数

日期转换成字符串:利用str 或strftime

字符串转换成日期:datetime.strptime

stamp = datetime(2017,6,27)

str(stamp)

 '2017-06-27 00:00:00'

stamp.strftime('%y-%m-%d')#%Y是4位年,%y是2位年

 '17-06-27'

#对多个时间进行解析成字符串

date = ['2017-6-26','2017-6-27']

datetime2 = [datetime.strptime(x,'%Y-%m-%d') for x in date]

datetime2

 [datetime.datetime(2017, 6, 26, 0, 0), datetime.datetime(2017, 6, 27, 0, 0)]

2)第三方库dateutil.parser的时间解析函数

from dateutil.parser import parse

parse('2017-6-27')

 datetime.datetime(2017, 6, 27, 0, 0)

parse('27/6/2017',dayfirst =True)

 datetime.datetime(2017, 6, 27, 0, 0)

3)pandas处理成组日期

pandas通常用于处理成组日期,不管这些日期是DataFrame的轴索引还是列,to_datetime方法可以解析多种不同的日期表示形式。

date

 ['2017-6-26', '2017-6-27']

import pandas as pd

pd.to_datetime(date)



 DatetimeIndex(['2017-06-26', '2017-06-27'], dtype='datetime64[ns]', freq=None)

datetime 格式定义

代码 说明
%Y 4位数的年
%y 2位数的年
%m 2位数的月[01,12]
%d 2位数的日[01,31]
%H 时(24小时制)[00,23]
%l 时(12小时制)[01,12]
%M 2位数的分[00,59]
%S 秒[00,61]有闰秒的存在
%w 用整数表示的星期几[0(星期天),6]
%F %Y-%m-%d简写形式例如,2017-06-27
%D %m/%d/%y简写形式

pandas时间序列基础以及时间、日期处理

pandas最基本的时间序列类型就是以时间戳(时间点)(通常以python字符串或datetime对象表示)为索引的Series:

dates = ['2017-06-20','2017-06-21',\
   '2017-06-22','2017-06-23','2017-06-24','2017-06-25','2017-06-26','2017-06-27']


import numpy as np
ts = pd.Series(np.random.randn(8),index = pd.to_datetime(dates))


ts

 2017-06-20 0.788811
 2017-06-21 0.372555
 2017-06-22 0.009967
 2017-06-23 -1.024626
 2017-06-24 0.981214
 2017-06-25 0.314127
 2017-06-26 -0.127258
 2017-06-27 1.919773
 dtype: float64

ts.index

 DatetimeIndex(['2017-06-20', '2017-06-21', '2017-06-22', '2017-06-23',
     '2017-06-24', '2017-06-25', '2017-06-26', '2017-06-27'],
     dtype='datetime64[ns]', freq=None)

pandas不同索引的时间序列之间的算术运算会自动按日期对齐

ts[::2]#从前往后每隔两个取数据

 2017-06-20 0.788811
 2017-06-22 0.009967
 2017-06-24 0.981214
 2017-06-26 -0.127258
 dtype: float64

ts[::-2]#从后往前逆序每隔两个取数据

 2017-06-27 1.919773
 2017-06-25 0.314127
 2017-06-23 -1.024626
 2017-06-21 0.372555
 dtype: float64

ts + ts[::2]#自动数据对齐

 2017-06-20 1.577621
 2017-06-21   NaN
 2017-06-22 0.019935
 2017-06-23   NaN
 2017-06-24 1.962429
 2017-06-25   NaN
 2017-06-26 -0.254516
 2017-06-27   NaN
 dtype: float64

索引为日期的Series和DataFrame数据的索引、选取以及子集构造

方法:
1).index[number_int]

2)[一个可以被解析为日期的字符串]

3)对于,较长的时间序列,只需传入‘年'或‘年月'可返回对应的数据切片

4)通过时间范围进行切片索引

ts

 2017-06-20 0.788811
 2017-06-21 0.372555
 2017-06-22 0.009967
 2017-06-23 -1.024626
 2017-06-24 0.981214
 2017-06-25 0.314127
 2017-06-26 -0.127258
 2017-06-27 1.919773
 dtype: float64

ts[ts.index[2]]

 0.0099673896063391908

ts['2017-06-21']#传入可以被解析成日期的字符串

 0.37255538918121028

ts['21/06/2017']

 0.37255538918121028

ts['20170621']

 0.37255538918121028

ts['2017-06']#传入年或年月

 2017-06-20 0.788811
 2017-06-21 0.372555
 2017-06-22 0.009967
 2017-06-23 -1.024626
 2017-06-24 0.981214
 2017-06-25 0.314127
 2017-06-26 -0.127258
 2017-06-27 1.919773
 dtype: float64

ts['2017-06-20':'2017-06-23']#时间范围进行切片

 2017-06-20 0.788811
 2017-06-21 0.372555
 2017-06-22 0.009967
 2017-06-23 -1.024626
 dtype: float64

带有重复索引的时间序列

1).index.is_unique检查索引日期是否是唯一的

2)对非唯一时间戳的数据进行聚合,通过groupby,并传入level = 0(索引的唯一一层)

dates = pd.DatetimeIndex(['2017/06/01','2017/06/02','2017/06/02','2017/06/02','2017/06/03'])
dates

 DatetimeIndex(['2017-06-01', '2017-06-02', '2017-06-02', '2017-06-02',
     '2017-06-03'],
     dtype='datetime64[ns]', freq=None)

dup_ts = pd.Series(np.arange(5),index = dates)
dup_ts

 2017-06-01 0
 2017-06-02 1
 2017-06-02 2
 2017-06-02 3
 2017-06-03 4
 dtype: int32

dup_ts.index.is_unique

 False

dup_ts['2017-06-02']

 2017-06-02 1
 2017-06-02 2
 2017-06-02 3
 dtype: int32

grouped = dup_ts.groupby(level=0).mean()

grouped

 2017-06-01 0
 2017-06-02 2
 2017-06-03 4
 dtype: int32

dup_df = pd.DataFrame(np.arange(10).reshape((5,2)),index = dates )
dup_df

0 1
2017-06-01 0 1
2017-06-02 2 3
2017-06-02 4 5
2017-06-02 6 7
2017-06-03 8 9
grouped_df = dup_df.groupby(level=0).mean()##针对DataFrame

grouped_df

0 1
2017-06-01 0 1
2017-06-02 4 5
2017-06-03 8 9

本文总结了以下4个知识点

1)字符串、日期的转换方法

2)日期和时间的主要python,datetime、timedelta、pandas.to_datetime等

3)以时间为索引的Series和DataFrame的索引、切片

4)带有重复时间索引时的索引,.groupby(level=0)应用

Python 相关文章推荐
用十张图详解TensorFlow数据读取机制(附代码)
Feb 06 Python
Python常见读写文件操作实例总结【文本、json、csv、pdf等】
Apr 15 Python
python 使用matplotlib 实现从文件中读取x,y坐标的可视化方法
Jul 04 Python
Pycharm最新激活码2019(推荐)
Dec 31 Python
Django框架models使用group by详解
Mar 11 Python
python高阶函数map()和reduce()实例解析
Mar 16 Python
简单了解django处理跨域请求最佳解决方案
Mar 25 Python
基于FME使用Python过程图解
May 13 Python
从python读取sql的实例方法
Jul 21 Python
如何在python中实现线性回归
Aug 10 Python
python批量更改目录名/文件名的方法
Apr 18 Python
python Tkinter模块使用方法详解
Apr 07 Python
python用户管理系统
Mar 13 #Python
Windows环境下python环境安装使用图文教程
Mar 13 #Python
Python Numpy 数组的初始化和基本操作
Mar 13 #Python
python 中的list和array的不同之处及转换问题
Mar 13 #Python
python2.7安装图文教程
Mar 13 #Python
Python cookbook(数据结构与算法)对切片命名清除索引的方法
Mar 13 #Python
Django使用Celery异步任务队列的使用
Mar 13 #Python
You might like
基于mysql的bbs设计(四)
2006/10/09 PHP
PHP实现无限极分类图文教程
2014/11/25 PHP
php版本CKEditor 4和CKFinder安装及配置方法图文教程
2019/06/05 PHP
PJBlog插件 防刷新的在线播放器
2006/10/25 Javascript
JS 判断代码全收集
2009/04/28 Javascript
JavaScript Sort 表格排序
2009/10/31 Javascript
jquery.AutoComplete.js中文修正版(支持firefox)
2010/04/09 Javascript
JavaScript的类型转换(字符转数字 数字转字符)
2010/08/30 Javascript
javascript学习基础笔记之DOM对象操作
2011/11/03 Javascript
Prototype源码浅析 String部分(四)之补充
2012/01/16 Javascript
JS打开新窗口的2种方式
2013/04/18 Javascript
JS 两日期相减,获得天数的小例子(兼容IE,FF)
2013/07/01 Javascript
基于Jquery+div+css实现弹出登录窗口(代码超简单)
2015/10/27 Javascript
浅析Javascript中bind()方法的使用与实现
2016/05/30 Javascript
JS获取复选框的值,并传递到后台的实现方法
2016/05/30 Javascript
BootStrap CSS全局样式和表格样式源码解析
2017/01/20 Javascript
ES6新特性三: Generator(生成器)函数详解
2017/04/21 Javascript
微信小程序 动态传参实例详解
2017/04/27 Javascript
Vue开发中整合axios的文件整理
2017/04/29 Javascript
Vue.js图片预览插件使用详解
2018/08/27 Javascript
React 项目迁移 Webpack Babel7的实现
2018/09/12 Javascript
[01:18]一目了然!DOTA2DotA快捷操作对比第一弹
2014/07/01 DOTA
Python使用arrow库优雅地处理时间数据详解
2017/10/10 Python
Python复制Word内容并使用格式设字体与大小实例代码
2018/01/22 Python
详解Python 实现元胞自动机中的生命游戏(Game of life)
2018/01/27 Python
解决Matplotlib图表不能在Pycharm中显示的问题
2018/05/24 Python
flask-socketio实现WebSocket的方法
2018/07/31 Python
pytorch的梯度计算以及backward方法详解
2020/01/10 Python
django美化后台django-suit的安装配置操作
2020/07/12 Python
python+excel接口自动化获取token并作为请求参数进行传参操作
2020/11/10 Python
教师求职信
2014/06/17 职场文书
中学教师师德师风演讲稿
2014/08/22 职场文书
公务员个人总结
2015/02/12 职场文书
企业投资意向书
2015/05/09 职场文书
新学期小学班主任工作计划
2019/06/21 职场文书
为什么node.js不适合大型项目
2021/04/28 Javascript