python时间日期函数与利用pandas进行时间序列处理详解


Posted in Python onMarch 13, 2018

python标准库包含于日期(date)和时间(time)数据的数据类型,datetime、time以及calendar模块会被经常用到。

datetime以毫秒形式存储日期和时间,datetime.timedelta表示两个datetime对象之间的时间差。

下面我们先简单的了解下python日期和时间数据类型及工具

给datetime对象加上或减去一个或多个timedelta,会产生一个新的对象

from datetime import datetime
from datetime import timedelta

now = datetime.now()
now

datetime.datetime(2017, 6, 27, 15, 56, 56, 167000)

datetime参数:datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])

delta = now - datetime(2017,6,27,10,10,10,10)
delta

datetime.timedelta(0, 20806, 166990)

delta.days

 0

delta.seconds

 20806

delta.microseconds

 166990

datetime模块中的数据类型

类型 说明
date 以公历形式存储日历日期(年、月、日)
time 将时间存储为时、分、秒、毫秒
datetime 存储日期和时间
timedelta 表示两个datetime值之间的差(日、秒、毫秒)

字符串和datetime的相互转换

1)python标准库函数

日期转换成字符串:利用str 或strftime

字符串转换成日期:datetime.strptime

stamp = datetime(2017,6,27)

str(stamp)

 '2017-06-27 00:00:00'

stamp.strftime('%y-%m-%d')#%Y是4位年,%y是2位年

 '17-06-27'

#对多个时间进行解析成字符串

date = ['2017-6-26','2017-6-27']

datetime2 = [datetime.strptime(x,'%Y-%m-%d') for x in date]

datetime2

 [datetime.datetime(2017, 6, 26, 0, 0), datetime.datetime(2017, 6, 27, 0, 0)]

2)第三方库dateutil.parser的时间解析函数

from dateutil.parser import parse

parse('2017-6-27')

 datetime.datetime(2017, 6, 27, 0, 0)

parse('27/6/2017',dayfirst =True)

 datetime.datetime(2017, 6, 27, 0, 0)

3)pandas处理成组日期

pandas通常用于处理成组日期,不管这些日期是DataFrame的轴索引还是列,to_datetime方法可以解析多种不同的日期表示形式。

date

 ['2017-6-26', '2017-6-27']

import pandas as pd

pd.to_datetime(date)



 DatetimeIndex(['2017-06-26', '2017-06-27'], dtype='datetime64[ns]', freq=None)

datetime 格式定义

代码 说明
%Y 4位数的年
%y 2位数的年
%m 2位数的月[01,12]
%d 2位数的日[01,31]
%H 时(24小时制)[00,23]
%l 时(12小时制)[01,12]
%M 2位数的分[00,59]
%S 秒[00,61]有闰秒的存在
%w 用整数表示的星期几[0(星期天),6]
%F %Y-%m-%d简写形式例如,2017-06-27
%D %m/%d/%y简写形式

pandas时间序列基础以及时间、日期处理

pandas最基本的时间序列类型就是以时间戳(时间点)(通常以python字符串或datetime对象表示)为索引的Series:

dates = ['2017-06-20','2017-06-21',\
   '2017-06-22','2017-06-23','2017-06-24','2017-06-25','2017-06-26','2017-06-27']


import numpy as np
ts = pd.Series(np.random.randn(8),index = pd.to_datetime(dates))


ts

 2017-06-20 0.788811
 2017-06-21 0.372555
 2017-06-22 0.009967
 2017-06-23 -1.024626
 2017-06-24 0.981214
 2017-06-25 0.314127
 2017-06-26 -0.127258
 2017-06-27 1.919773
 dtype: float64

ts.index

 DatetimeIndex(['2017-06-20', '2017-06-21', '2017-06-22', '2017-06-23',
     '2017-06-24', '2017-06-25', '2017-06-26', '2017-06-27'],
     dtype='datetime64[ns]', freq=None)

pandas不同索引的时间序列之间的算术运算会自动按日期对齐

ts[::2]#从前往后每隔两个取数据

 2017-06-20 0.788811
 2017-06-22 0.009967
 2017-06-24 0.981214
 2017-06-26 -0.127258
 dtype: float64

ts[::-2]#从后往前逆序每隔两个取数据

 2017-06-27 1.919773
 2017-06-25 0.314127
 2017-06-23 -1.024626
 2017-06-21 0.372555
 dtype: float64

ts + ts[::2]#自动数据对齐

 2017-06-20 1.577621
 2017-06-21   NaN
 2017-06-22 0.019935
 2017-06-23   NaN
 2017-06-24 1.962429
 2017-06-25   NaN
 2017-06-26 -0.254516
 2017-06-27   NaN
 dtype: float64

索引为日期的Series和DataFrame数据的索引、选取以及子集构造

方法:
1).index[number_int]

2)[一个可以被解析为日期的字符串]

3)对于,较长的时间序列,只需传入‘年'或‘年月'可返回对应的数据切片

4)通过时间范围进行切片索引

ts

 2017-06-20 0.788811
 2017-06-21 0.372555
 2017-06-22 0.009967
 2017-06-23 -1.024626
 2017-06-24 0.981214
 2017-06-25 0.314127
 2017-06-26 -0.127258
 2017-06-27 1.919773
 dtype: float64

ts[ts.index[2]]

 0.0099673896063391908

ts['2017-06-21']#传入可以被解析成日期的字符串

 0.37255538918121028

ts['21/06/2017']

 0.37255538918121028

ts['20170621']

 0.37255538918121028

ts['2017-06']#传入年或年月

 2017-06-20 0.788811
 2017-06-21 0.372555
 2017-06-22 0.009967
 2017-06-23 -1.024626
 2017-06-24 0.981214
 2017-06-25 0.314127
 2017-06-26 -0.127258
 2017-06-27 1.919773
 dtype: float64

ts['2017-06-20':'2017-06-23']#时间范围进行切片

 2017-06-20 0.788811
 2017-06-21 0.372555
 2017-06-22 0.009967
 2017-06-23 -1.024626
 dtype: float64

带有重复索引的时间序列

1).index.is_unique检查索引日期是否是唯一的

2)对非唯一时间戳的数据进行聚合,通过groupby,并传入level = 0(索引的唯一一层)

dates = pd.DatetimeIndex(['2017/06/01','2017/06/02','2017/06/02','2017/06/02','2017/06/03'])
dates

 DatetimeIndex(['2017-06-01', '2017-06-02', '2017-06-02', '2017-06-02',
     '2017-06-03'],
     dtype='datetime64[ns]', freq=None)

dup_ts = pd.Series(np.arange(5),index = dates)
dup_ts

 2017-06-01 0
 2017-06-02 1
 2017-06-02 2
 2017-06-02 3
 2017-06-03 4
 dtype: int32

dup_ts.index.is_unique

 False

dup_ts['2017-06-02']

 2017-06-02 1
 2017-06-02 2
 2017-06-02 3
 dtype: int32

grouped = dup_ts.groupby(level=0).mean()

grouped

 2017-06-01 0
 2017-06-02 2
 2017-06-03 4
 dtype: int32

dup_df = pd.DataFrame(np.arange(10).reshape((5,2)),index = dates )
dup_df

0 1
2017-06-01 0 1
2017-06-02 2 3
2017-06-02 4 5
2017-06-02 6 7
2017-06-03 8 9
grouped_df = dup_df.groupby(level=0).mean()##针对DataFrame

grouped_df

0 1
2017-06-01 0 1
2017-06-02 4 5
2017-06-03 8 9

本文总结了以下4个知识点

1)字符串、日期的转换方法

2)日期和时间的主要python,datetime、timedelta、pandas.to_datetime等

3)以时间为索引的Series和DataFrame的索引、切片

4)带有重复时间索引时的索引,.groupby(level=0)应用

Python 相关文章推荐
python模块smtplib实现纯文本邮件发送功能
May 22 Python
用Python3创建httpServer的简单方法
Jun 04 Python
Python3编码问题 Unicode utf-8 bytes互转方法
Oct 26 Python
利用Python将文本中的中英文分离方法
Oct 31 Python
python3使用腾讯企业邮箱发送邮件的实例
Jun 28 Python
python sklearn库实现简单逻辑回归的实例代码
Jul 01 Python
用python写测试数据文件过程解析
Sep 25 Python
python pygame实现球球大作战
Nov 25 Python
python3 常见解密加密算法实例分析【base64、MD5等】
Dec 19 Python
python使用协程实现并发操作的方法详解
Dec 27 Python
python 使用cx-freeze打包程序的实现
Mar 14 Python
Anaconda使用IDLE的实现示例
Sep 23 Python
python用户管理系统
Mar 13 #Python
Windows环境下python环境安装使用图文教程
Mar 13 #Python
Python Numpy 数组的初始化和基本操作
Mar 13 #Python
python 中的list和array的不同之处及转换问题
Mar 13 #Python
python2.7安装图文教程
Mar 13 #Python
Python cookbook(数据结构与算法)对切片命名清除索引的方法
Mar 13 #Python
Django使用Celery异步任务队列的使用
Mar 13 #Python
You might like
discuz免激活同步登入代码修改方法(discuz同步登录)
2013/12/24 PHP
php-perl哈希算法实现(times33哈希算法)
2013/12/30 PHP
laravel 5 实现模板主题功能(续)
2015/03/02 PHP
PHP异常处理Exception类
2015/12/11 PHP
PHP高精确度运算BC函数库实例详解
2017/08/15 PHP
PHP 进程池与轮询调度算法实现多任务的示例代码
2019/11/26 PHP
Prototype使用指南之dom.js
2007/01/10 Javascript
Javascript学习笔记7 原型链的原理
2010/01/11 Javascript
使用CoffeeScrip优美方式编写javascript代码
2015/10/28 Javascript
分享jQuery插件的学习笔记
2016/01/14 Javascript
轻量级jQuery插件slideBox实现带底栏轮播(焦点图)代码
2016/03/28 Javascript
扩展bootstrap的modal模态框-动态添加modal框-弹出多个modal框
2017/02/21 Javascript
微信小程序 下拉菜单的实现
2017/04/06 Javascript
vue实现点击图片放大效果
2017/08/15 Javascript
angular中不同的组件间传值与通信的方法
2017/11/04 Javascript
javascript将json格式数组下载为excel表格的方法
2017/12/22 Javascript
JS使用正则表达式实现常用的表单验证功能分析
2020/04/30 Javascript
微信小程序实现通讯录列表展开收起
2020/11/18 Javascript
Python自动化测试ConfigParser模块读写配置文件
2016/08/15 Python
Python中第三方库Requests库的高级用法详解
2017/03/12 Python
TensorFlow saver指定变量的存取
2018/03/10 Python
详解Python的hasattr() getattr() setattr() 函数使用方法
2018/07/09 Python
使用Filter过滤python中的日志输出的实现方法
2019/07/17 Python
wxpython实现按钮切换界面的方法
2019/11/19 Python
python def 定义函数,调用函数方式
2020/06/02 Python
Pytorch生成随机数Tensor的方法汇总
2020/09/09 Python
英国领先的瓷砖专家:Walls and Floors
2018/04/27 全球购物
W Hamond官网:始于1979年的钻石专家
2020/07/20 全球购物
管理学专业个人求职信范文
2013/09/21 职场文书
质检员岗位职责
2013/12/17 职场文书
试用期员工考核制度
2014/01/22 职场文书
三好生演讲稿
2014/09/12 职场文书
计划生育个人总结
2015/03/02 职场文书
幼儿园托班教育随笔
2015/08/14 职场文书
先进基层党组织主要事迹材料
2015/11/03 职场文书
python xlwt模块的使用解析
2021/04/13 Python