python时间日期函数与利用pandas进行时间序列处理详解


Posted in Python onMarch 13, 2018

python标准库包含于日期(date)和时间(time)数据的数据类型,datetime、time以及calendar模块会被经常用到。

datetime以毫秒形式存储日期和时间,datetime.timedelta表示两个datetime对象之间的时间差。

下面我们先简单的了解下python日期和时间数据类型及工具

给datetime对象加上或减去一个或多个timedelta,会产生一个新的对象

from datetime import datetime
from datetime import timedelta

now = datetime.now()
now

datetime.datetime(2017, 6, 27, 15, 56, 56, 167000)

datetime参数:datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])

delta = now - datetime(2017,6,27,10,10,10,10)
delta

datetime.timedelta(0, 20806, 166990)

delta.days

 0

delta.seconds

 20806

delta.microseconds

 166990

datetime模块中的数据类型

类型 说明
date 以公历形式存储日历日期(年、月、日)
time 将时间存储为时、分、秒、毫秒
datetime 存储日期和时间
timedelta 表示两个datetime值之间的差(日、秒、毫秒)

字符串和datetime的相互转换

1)python标准库函数

日期转换成字符串:利用str 或strftime

字符串转换成日期:datetime.strptime

stamp = datetime(2017,6,27)

str(stamp)

 '2017-06-27 00:00:00'

stamp.strftime('%y-%m-%d')#%Y是4位年,%y是2位年

 '17-06-27'

#对多个时间进行解析成字符串

date = ['2017-6-26','2017-6-27']

datetime2 = [datetime.strptime(x,'%Y-%m-%d') for x in date]

datetime2

 [datetime.datetime(2017, 6, 26, 0, 0), datetime.datetime(2017, 6, 27, 0, 0)]

2)第三方库dateutil.parser的时间解析函数

from dateutil.parser import parse

parse('2017-6-27')

 datetime.datetime(2017, 6, 27, 0, 0)

parse('27/6/2017',dayfirst =True)

 datetime.datetime(2017, 6, 27, 0, 0)

3)pandas处理成组日期

pandas通常用于处理成组日期,不管这些日期是DataFrame的轴索引还是列,to_datetime方法可以解析多种不同的日期表示形式。

date

 ['2017-6-26', '2017-6-27']

import pandas as pd

pd.to_datetime(date)



 DatetimeIndex(['2017-06-26', '2017-06-27'], dtype='datetime64[ns]', freq=None)

datetime 格式定义

代码 说明
%Y 4位数的年
%y 2位数的年
%m 2位数的月[01,12]
%d 2位数的日[01,31]
%H 时(24小时制)[00,23]
%l 时(12小时制)[01,12]
%M 2位数的分[00,59]
%S 秒[00,61]有闰秒的存在
%w 用整数表示的星期几[0(星期天),6]
%F %Y-%m-%d简写形式例如,2017-06-27
%D %m/%d/%y简写形式

pandas时间序列基础以及时间、日期处理

pandas最基本的时间序列类型就是以时间戳(时间点)(通常以python字符串或datetime对象表示)为索引的Series:

dates = ['2017-06-20','2017-06-21',\
   '2017-06-22','2017-06-23','2017-06-24','2017-06-25','2017-06-26','2017-06-27']


import numpy as np
ts = pd.Series(np.random.randn(8),index = pd.to_datetime(dates))


ts

 2017-06-20 0.788811
 2017-06-21 0.372555
 2017-06-22 0.009967
 2017-06-23 -1.024626
 2017-06-24 0.981214
 2017-06-25 0.314127
 2017-06-26 -0.127258
 2017-06-27 1.919773
 dtype: float64

ts.index

 DatetimeIndex(['2017-06-20', '2017-06-21', '2017-06-22', '2017-06-23',
     '2017-06-24', '2017-06-25', '2017-06-26', '2017-06-27'],
     dtype='datetime64[ns]', freq=None)

pandas不同索引的时间序列之间的算术运算会自动按日期对齐

ts[::2]#从前往后每隔两个取数据

 2017-06-20 0.788811
 2017-06-22 0.009967
 2017-06-24 0.981214
 2017-06-26 -0.127258
 dtype: float64

ts[::-2]#从后往前逆序每隔两个取数据

 2017-06-27 1.919773
 2017-06-25 0.314127
 2017-06-23 -1.024626
 2017-06-21 0.372555
 dtype: float64

ts + ts[::2]#自动数据对齐

 2017-06-20 1.577621
 2017-06-21   NaN
 2017-06-22 0.019935
 2017-06-23   NaN
 2017-06-24 1.962429
 2017-06-25   NaN
 2017-06-26 -0.254516
 2017-06-27   NaN
 dtype: float64

索引为日期的Series和DataFrame数据的索引、选取以及子集构造

方法:
1).index[number_int]

2)[一个可以被解析为日期的字符串]

3)对于,较长的时间序列,只需传入‘年'或‘年月'可返回对应的数据切片

4)通过时间范围进行切片索引

ts

 2017-06-20 0.788811
 2017-06-21 0.372555
 2017-06-22 0.009967
 2017-06-23 -1.024626
 2017-06-24 0.981214
 2017-06-25 0.314127
 2017-06-26 -0.127258
 2017-06-27 1.919773
 dtype: float64

ts[ts.index[2]]

 0.0099673896063391908

ts['2017-06-21']#传入可以被解析成日期的字符串

 0.37255538918121028

ts['21/06/2017']

 0.37255538918121028

ts['20170621']

 0.37255538918121028

ts['2017-06']#传入年或年月

 2017-06-20 0.788811
 2017-06-21 0.372555
 2017-06-22 0.009967
 2017-06-23 -1.024626
 2017-06-24 0.981214
 2017-06-25 0.314127
 2017-06-26 -0.127258
 2017-06-27 1.919773
 dtype: float64

ts['2017-06-20':'2017-06-23']#时间范围进行切片

 2017-06-20 0.788811
 2017-06-21 0.372555
 2017-06-22 0.009967
 2017-06-23 -1.024626
 dtype: float64

带有重复索引的时间序列

1).index.is_unique检查索引日期是否是唯一的

2)对非唯一时间戳的数据进行聚合,通过groupby,并传入level = 0(索引的唯一一层)

dates = pd.DatetimeIndex(['2017/06/01','2017/06/02','2017/06/02','2017/06/02','2017/06/03'])
dates

 DatetimeIndex(['2017-06-01', '2017-06-02', '2017-06-02', '2017-06-02',
     '2017-06-03'],
     dtype='datetime64[ns]', freq=None)

dup_ts = pd.Series(np.arange(5),index = dates)
dup_ts

 2017-06-01 0
 2017-06-02 1
 2017-06-02 2
 2017-06-02 3
 2017-06-03 4
 dtype: int32

dup_ts.index.is_unique

 False

dup_ts['2017-06-02']

 2017-06-02 1
 2017-06-02 2
 2017-06-02 3
 dtype: int32

grouped = dup_ts.groupby(level=0).mean()

grouped

 2017-06-01 0
 2017-06-02 2
 2017-06-03 4
 dtype: int32

dup_df = pd.DataFrame(np.arange(10).reshape((5,2)),index = dates )
dup_df

0 1
2017-06-01 0 1
2017-06-02 2 3
2017-06-02 4 5
2017-06-02 6 7
2017-06-03 8 9
grouped_df = dup_df.groupby(level=0).mean()##针对DataFrame

grouped_df

0 1
2017-06-01 0 1
2017-06-02 4 5
2017-06-03 8 9

本文总结了以下4个知识点

1)字符串、日期的转换方法

2)日期和时间的主要python,datetime、timedelta、pandas.to_datetime等

3)以时间为索引的Series和DataFrame的索引、切片

4)带有重复时间索引时的索引,.groupby(level=0)应用

Python 相关文章推荐
详细探究Python中的字典容器
Apr 14 Python
在CentOS上配置Nginx+Gunicorn+Python+Flask环境的教程
Jun 07 Python
Python Xml文件添加字节属性的方法
Mar 31 Python
使用Numpy读取CSV文件,并进行行列删除的操作方法
Jul 04 Python
启动Atom并运行python文件的步骤
Nov 09 Python
win8.1安装Python 2.7版环境图文详解
Jul 01 Python
Django shell调试models输出的SQL语句方法
Aug 29 Python
Python操作SQLite/MySQL/LMDB数据库的方法
Nov 07 Python
如何基于Python实现数字类型转换
Feb 07 Python
TensorFlow使用Graph的基本操作的实现
Apr 22 Python
Python切片列表字符串如何实现切换
Aug 06 Python
python基础之停用词过滤详解
Apr 21 Python
python用户管理系统
Mar 13 #Python
Windows环境下python环境安装使用图文教程
Mar 13 #Python
Python Numpy 数组的初始化和基本操作
Mar 13 #Python
python 中的list和array的不同之处及转换问题
Mar 13 #Python
python2.7安装图文教程
Mar 13 #Python
Python cookbook(数据结构与算法)对切片命名清除索引的方法
Mar 13 #Python
Django使用Celery异步任务队列的使用
Mar 13 #Python
You might like
松下Panasonic RF-B65电路分析
2021/03/02 无线电
require(),include(),require_once()和include_once()的异同
2007/01/02 PHP
PHP-MySQL教程归纳总结
2008/06/07 PHP
PHP+MYSQL会员系统的登陆即权限判断实现代码
2011/09/23 PHP
解析dedecms空间迁移步骤详解
2013/05/15 PHP
Apache服务器下防止图片盗链的办法
2015/07/06 PHP
Linux系统中设置多版本PHP共存配合Nginx服务器使用
2015/12/21 PHP
新闻内页-JS分页
2006/06/07 Javascript
JQuery对id中含有特殊字符的转义处理示例
2013/09/06 Javascript
node.js中的fs.symlinkSync方法使用说明
2014/12/15 Javascript
JavaScript DSL 流畅接口(使用链式调用)实例
2015/03/15 Javascript
JS组件Bootstrap实现下拉菜单效果代码
2016/04/26 Javascript
浅谈jQuery 中的事件冒泡和阻止默认行为
2016/05/28 Javascript
表单元素值获取方式js及java方式的简单实例
2016/10/15 Javascript
AngularJS前端页面操作之用户修改密码功能示例
2017/03/27 Javascript
vue实现条件判断动态绑定样式的方法
2018/09/29 Javascript
Vue项目移动端滚动穿透问题的实现
2020/05/19 Javascript
JS实现斐波那契数列的五种方式(小结)
2020/09/09 Javascript
Python中的__SLOTS__属性使用示例
2015/02/18 Python
Python实现PS滤镜的旋转模糊功能示例
2018/01/20 Python
python实现淘宝秒杀脚本
2020/06/23 Python
python selenium循环登陆网站的实现
2019/11/04 Python
Python3使用xlrd、xlwt处理Excel方法数据
2020/02/28 Python
使用Python3 poplib模块删除服务器多天前的邮件实现代码
2020/04/24 Python
python实现Oracle查询分组的方法示例
2020/04/30 Python
Python 实现简单的客户端认证
2020/07/29 Python
python爬虫scrapy框架的梨视频案例解析
2021/02/20 Python
Bose美国官网:购买Bose耳机和音箱
2019/03/10 全球购物
安全大检查实施方案
2014/02/22 职场文书
公司经理任命书
2014/06/05 职场文书
群众路线自查自纠工作情况报告
2014/10/28 职场文书
兵马俑导游词
2015/02/02 职场文书
聋哑人盗窃罪辩护词
2015/05/21 职场文书
创业计划书之电动车企业
2019/10/11 职场文书
Python中re模块的元字符使用小结
2022/04/07 Python
Python自动化工具之实现Excel转Markdown表格
2022/04/08 Python