python 中的list和array的不同之处及转换问题


Posted in Python onMarch 13, 2018

python中的list是python的内置数据类型,list中的数据类不必相同的,而array的中的类型必须全部相同。在list中的数据类型保存的是数据的存放的地址,简单的说就是指针,并非数据,这样保存一个list就太麻烦了,例如list1=[1,2,3,'a']需要4个指针和四个数据,增加了存储和消耗cpu。

      numpy中封装的array有很强大的功能,里面存放的都是相同的数据类型

list1=[1,2,3,'a'] 
print list1 
a=np.array([1,2,3,4,5]) 
b=np.array([[1,2,3],[4,5,6]]) 
c=list(a)  # array到list的转换 
print a,np.shape(a) 
print b,np.shape(b) 
print c,np.shape(c)

运行结果:

[1, 2, 3, 'a'] # 元素数据类型不同,并且用逗号隔开 
[1 2 3 4 5] (5L,) # 一维数组,类型用tuple表示 
[[1 2 3] 
 [4 5 6]] (2L, 3L) 
[1, 2, 3, 4, 5] (5L,)

创建:

    array的创建:参数既可以是list,也可以是元组.使用对应的属性shape直接得到形状

a=np.array((1,2,3,4,5))# 参数是元组 
b=np.array([6,7,8,9,0])# 参数是list 
c=np.array([[1,2,3],[4,5,6]])# 参数二维数组 
print a,b, 
c.shape()

   也可以直接改变属性array的形状,-1代表的是自己推算。这里并不是T, reshape(())也可以

c = np.array([[1, 2, 3, 4],[4, 5, 6, 7], [7, 8, 9, 10]]) 
c.shape # (3L, 4L) 
c.shape=4,-1  //c.reshape((2,-1)) 
c  
<pre style="box-sizing: border-box; overflow: auto; font-size: 14px; padding: 0px; margin-top: 0px; margin-bottom: 0px; line-height: 17.0001px; word-break: break-all; word-wrap: break-word; border: 0px; border-radius: 0px; white-space: pre-wrap; vertical-align: baseline; background-color: rgb(255, 255, 255);">array([[ 1, 2, 3], 
    [ 4, 4, 5], 
    [ 6, 7, 7], 
    [ 8, 9, 10]])

 
   这里的reshape最终相当于是一个浅拷贝,也就是说还是和原来的书c使用相同的内存空间

d=c.reshape((2,-1)) 
d[1:2]=100 
c 
array([[ 1,  2,  3],
    [ 4,  4,  5],
    [100, 100, 100],
    [100, 100, 100]])

   前面在创建数组的时候并没有使用数据类型,这里我们也可以使用数据类型。默认的是int32.

a1=np.array([[1,2,3],[4,5,6]],dtype=np.float64) 
print a1.dtype,a.dtype #float64 int32<pre style="margin-top: 0px; margin-bottom: 0px; line-height: 17.0001px; box-sizing: border-box; overflow: auto; font-size: 14px; padding: 0px; word-break: break-all; word-wrap: break-word; border: 0px; border-radius: 0px; white-space: pre-wrap; vertical-align: baseline; background-color: rgb(255, 255, 255);">

前面在创建的时候我们都是使用的np.array()方法从tuple或者list转换成为array,感觉很是费劲,numpy自己提供了很多的方法让我们自己直接创建一个array.

arr1=np.arange(1,10,1) #  
arr2=np.linspace(1,10,10) 
print arr1,arr1.dtype 
print arr2,arr2.dtype 
[1 2 3 4 5 6 7 8 9] int32
[ 1.  2.  3.  4.  5.  6.  7.  8.  9. 10.] float64

   np.arange(a,b,c)表示产生从a-b不包括b,间隔为c的一个array,数据类型默认是int32。但是linspace(a,b,c)表示的是把a-b平均分成c分,它包括b。   

   有时候我们需要对于每一个元素的坐标进行赋予不同的数值,可以使用fromfunction函数

def fun(i): 
  return i%4+2 
np.fromfunction(fun,(10,)) 
array([ 2., 3., 4., 5., 2., 3., 4., 5., 2., 3.])

   fromfunction必须支持多维数组,所以他的第二个参数必须是一个tuple,只能是(10,),(10)是错误的。

def fun2(i,j): 
  return (i+1)*(j+1) 
np.fromfunction(fun2,(9,9)) 

array([[ 1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9.],
    [ 2.,  4.,  6.,  8., 10., 12., 14., 16., 18.],
    [ 3.,  6.,  9., 12., 15., 18., 21., 24., 27.],
    [ 4.,  8., 12., 16., 20., 24., 28., 32., 36.],
    [ 5., 10., 15., 20., 25., 30., 35., 40., 45.],
    [ 6., 12., 18., 24., 30., 36., 42., 48., 54.],
    [ 7., 14., 21., 28., 35., 42., 49., 56., 63.],
    [ 8., 16., 24., 32., 40., 48., 56., 64., 72.],
    [ 9., 18., 27., 36., 45., 54., 63., 72., 81.]])

        虽然说,这里提供了很多的直接产生array的方式,但是大部分情况我们都是会从list进行转换,因为在实际的处理中,我们需要从txt加载文件,那样直接读入的数据显示存放到list中,需要处理的时候我们转换到array,因为
array的设计更加符合我们的使用,涉及到矩阵的运算在使用mat,那么list主要就是用进行元素的索取。

def loaddataSet(fileName):  
  file=open(fileName)  
  dataMat=[] // 
  for line in file.readlines():  
    curLine=line.strip().split('\t')  
    floatLine=map(float,curLine)//这里使用的是map函数直接把数据转化成为float类型  
    dataMat.append(floatLine)  
  return dataMat

    上面的韩顺返回最终的数据就是最初的list数据集,再根据不同的处理需求是转化到array还是mat。其实array是mat的父类,能用mat的地方,array理论上都能传入。

 元素访问:    

arr[5] #5 
arr[3:5] #array([3, 4]) 
arr[:5] #array([0, 1, 2, 3, 4]) 
arr[:-1]# array([0, 1, 2, 3, 4, 5, 6, 7, 8]) 
arr[:] #array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 
arr[2:4]=100 # array([ 0,  1, 100, 100,  4,  5,  6,  7,  8,  9]) 
arr[1:-1:2] #array([ 1, 100,  5,  7]) 2 是间隔 
arr[::-1] #array([ 9,  8,  7,  6,  5,  4, 100, 100,  1,  0])  
arr[5:2:-1]# -1的间隔表示从右向左所以5>2 #array([ 5,  4, 100])

   上面是array的一维数组的访问方式,我们再来看看二维的处理方式

print c[1:2]# c[1:2].shape-->(1L, 3L) 
print c[1:2][0] # shape-->(3L,) 
[[4 4 5]]
[4 4 5]
[python] view plain copy 
print c[1] 
print c[1:2] 
[4 4 5]
[[4 4 5]]
[python] view plain copy 
print c[1][2] 
print c[1:4] 
print c[1:4][0][2] 
5
[[ 4  4  5]
 [100 100 100]
 [100 100 100]]
5

   可以看出对于有:的表达最终的结果外面还嵌套一层list的[],。访问的一定要注意,python最bug的就是,语法
灵活,不管怎样写索引语法都是正确的,但是最终的书结果却让你大跌眼镜。

    还有array的索引最终产生的是一个一个原始数据的浅拷贝,还和原来的数据共用一块儿内存

b=arr[1:6] 
b[:3]=0 
arr #<pre style="box-sizing: border-box; overflow: auto; font-size: 14px; padding: 0px; margin-top: 0px; margin-bottom: 0px; line-height: 17.0001px; word-break: break-all; word-wrap: break-word; border: 0px; border-radius: 0px; white-space: pre-wrap; vertical-align: baseline; background-color: rgb(255, 255, 255);">array([0, 0, 0, 0, 4, 5, 6, 7, 8, 9])

    产生上面的原因是因为array中直接存放的数据,拷贝的话直接拿走的是pointer,没有取走数据,但是list却会直接发生深拷贝,数据指针全部带走

list1=list(c) 
list1[1]=0 
list1 #上面修改的0并没有被改变 
[array([1, 2, 3]), 0, array([100, 100, 100]), array([100, 100, 100])]

   除了这些之外还有自己的更加牛掰的方式(只能用array)

   1)使用布尔数组.感觉甚是强大,就不要自己写什么判断语句啦,注意这种方式得到结果不和原始数组共享空间。布尔索引仅仅适用于数组array,list没资格用。布尔索引最终得到下标索引为true的数据。索引只能是布尔数组

a=np.array(a*2) 
a>5 
a[a>5] #  
array([16, 32, 48, 64, 80, 16, 32, 48, 64, 80])

   2)列表索引

      列表索引可以是数组和list。返回的数据不和原来的数据共享内存。索引可以是list和array

x=np.arange(10) 
index=[1,2,3,4,5] 
arr_index=np.array(index) 
print x 
print x[index] # list索引 
print x[arr_index] # array索引 
[0 1 2 3 4 5 6 7 8 9]
[1 2 3 4 5]
[1 2 3 4 5]

  array和list区别*2

a=np.arange(10) 
lista=list(a) 
print a*2 
print lista*2 
[ 0 2 4 6 8 10 12 14 16 18]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

  array的广播

a = np.arange(0, 60, 10).reshape(-1, 1) 
b = np.arange(0, 5) 
print a 
print b 
[[ 0]
 [10]
 [20]
 [30]
 [40]
 [50]]
[0 1 2 3 4]
print np.add(a,b,c) 
[[ 0 1 2 3 4]
 [10 11 12 13 14]
 [20 21 22 23 24]
 [30 31 32 33 34]
 [40 41 42 43 44]
 [50 51 52 53 54]]

总结

以上所述是小编给大家介绍的python 中的list和array的不同之处及转换问题,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对三水点靠木网站的支持!

Python 相关文章推荐
安装ElasticSearch搜索工具并配置Python驱动的方法
Dec 22 Python
Django返回json数据用法示例
Sep 18 Python
人脸识别经典算法一 特征脸方法(Eigenface)
Mar 13 Python
pycharm恢复默认设置或者是替换pycharm的解释器实例
Oct 29 Python
搞定这套Python爬虫面试题(面试会so easy)
Apr 03 Python
python批量下载抖音视频
Jun 17 Python
Django项目使用CircleCI的方法示例
Jul 14 Python
Django 迁移、操作数据库的方法
Aug 02 Python
Python多线程及其基本使用方法实例分析
Oct 29 Python
python 上下文管理器及自定义原理解析
Nov 19 Python
python 5个顶级异步框架推荐
Sep 09 Python
Django 如何实现文件上传下载
Apr 08 Python
python2.7安装图文教程
Mar 13 #Python
Python cookbook(数据结构与算法)对切片命名清除索引的方法
Mar 13 #Python
Django使用Celery异步任务队列的使用
Mar 13 #Python
特征脸(Eigenface)理论基础之PCA主成分分析法
Mar 13 #Python
python Celery定时任务的示例
Mar 13 #Python
人脸识别经典算法一 特征脸方法(Eigenface)
Mar 13 #Python
Python cookbook(数据结构与算法)从序列中移除重复项且保持元素间顺序不变的方法
Mar 13 #Python
You might like
15种PHP Encoder的比较
2007/04/17 PHP
PHP实现数组递归转义的方法
2014/08/28 PHP
php+mysqli使用预处理技术进行数据库查询的方法
2015/01/28 PHP
thinkphp框架使用JWTtoken的方法详解
2019/10/10 PHP
[JS源码]超长文章自动分页(客户端版)
2007/01/09 Javascript
javascript 短路法代码精简
2009/08/20 Javascript
网页禁用右键实现代码(JavaScript代码)
2009/10/29 Javascript
判断文件是否正在被使用的JS代码
2013/12/21 Javascript
借助javascript代码判断网页是静态还是伪静态
2014/05/05 Javascript
jQuery实现TAB风格的全国省份城市滑动切换效果代码
2015/08/24 Javascript
基于javascript实现仿百度输入框自动匹配功能
2016/01/03 Javascript
javascript多物体运动实现方法分析
2016/01/08 Javascript
jQuery中数据缓存$.data的用法及源码完全解析
2016/04/29 Javascript
jQuery实现下拉框多选 jquery-multiselect 的实例代码
2016/07/14 Javascript
微信小程序 表单Form实例详解(附源码)
2016/12/22 Javascript
超全面的JavaScript开发规范(推荐)
2017/01/21 Javascript
详解使用webpack打包编写一个vue-toast插件
2017/11/08 Javascript
用ES6的class模仿Vue写一个双向绑定的示例代码
2018/04/20 Javascript
详解vue添加删除元素的方法
2018/06/30 Javascript
JS实现点击按钮可实现编辑功能
2018/07/03 Javascript
JSON数据中存在单个转义字符“\”的处理方法
2018/07/11 Javascript
webpack4+react多页面架构的实现
2018/10/25 Javascript
vue中的适配px2rem示例代码
2018/11/19 Javascript
JS查找孩子节点简单示例
2019/07/25 Javascript
深入浅析Vue中mixin和extend的区别和使用场景
2019/08/01 Javascript
[04:46]2018年度玩家喜爱的电竞媒体-完美盛典
2018/12/16 DOTA
零基础写python爬虫之HTTP异常处理
2014/11/05 Python
Python切片工具pillow用法示例
2018/03/30 Python
django将图片上传数据库后在前端显式的方法
2018/05/25 Python
python 字典修改键(key)的几种方法
2018/08/10 Python
基于Tensorflow一维卷积用法详解
2020/05/22 Python
keras .h5转移动端的.tflite文件实现方式
2020/05/25 Python
Prototype是怎么扩展DOM的
2014/10/01 面试题
结婚周年感言
2014/02/24 职场文书
药剂专业毕业生求职信
2014/06/24 职场文书
乡镇干部先进性教育活动个人整改措施
2014/09/16 职场文书