将labelme格式数据转化为标准的coco数据集格式方式


Posted in Python onFebruary 17, 2020

labelme标注图像生成的json格式:

{
 "version": "3.11.2",
 "flags": {},
 "shapes": [# 每个对象的形状
 { # 第一个对象
  "label": "malignant",
  "line_color": null,
  "fill_color": null,
  "points": [# 边缘是由点构成,将这些点连在一起就是对象的边缘多边形
  [
   371, # 第一个点 x 坐标
   257 # 第一个点 y 坐标
  ],
  ...
  [
   412,
   255
  ]
  ],
  "shape_type": "polygon" # 形状类型:多边形
 },
 {
  "label": "malignant", # 第一个对象的标签
  "line_color": null,
  "fill_color": null,
  "points": [# 第二个对象
  [
   522,
   274
  ],
  ...
  [
   561,
   303
  ]
  ],
  "shape_type": "polygon"
 },
 {
  "label": "malignant", # 第二个对象的标签
  "line_color": null,
  "fill_color": null,
 "imagePath": "../../val2017/000001.jpg", # 原始图片的路径
 "imageData":"something too long ",# 原图像数据 通过该字段可以解析出原图像数据
 "imageHeight": 768,
 "imageWidth": 1024
}

coco标准数据集格式:

COCO通过大量使用Amazon Mechanical Turk来收集数据。COCO数据集现在有3种标注类型:object instances(目标实例), object keypoints(目标上的关键点), and image captions(看图说话),使用JSON文件存储。

基本的JSON结构体类型

这3种类型共享下面所列的基本类型,包括image、categories、annotation类型。

Images类型:

"images": [
  {
   "height": 768,
   "width": 1024,
   "id": 1, #图片id
   "file_name": "000002.jpg"
  }
]

categories类型:

"categories": [
  {
   "supercategory": "Cancer", #父类
   "id": 1,   #标签类别id,0表示背景
   "name": "benign" #子类
  },
  {
   "supercategory": "Cancer",
   "id": 2,
   "name": "malignant"
  }
 ],

annotations类型:

"annotations": [
  {
   "segmentation": [#坐标点的坐标值
    [
     418,
     256,
     391,
     293,
     406,
     323,
     432,
     340,
     452,
     329,
     458,
     311,
     458,
     286,
     455,
     277,
     439,
     264,
     418,
     293,
     391,
     256
    ]
   ],
   "iscrowd": 0, #单个的对象(iscrowd=0)可能需要多个polygon来表示
   "image_id": 1, #和image的id保持一致
   "bbox": [  #标注的边框值 bbox是将segmentation包起来的水平矩形
    391.0,
    256.0,
    67.0,
    84.0
   ],
   "area": 5628.0, #标注的边框面积
   "category_id": 1, #所属类别id
   "id": 1   #标注边框的id : 1,2,3...,n
  }
]

labelme 转化为coco

# -*- coding:utf-8 -*-
# !/usr/bin/env python
 
import argparse
import json
import matplotlib.pyplot as plt
import skimage.io as io
import cv2
from labelme import utils
import numpy as np
import glob
import PIL.Image
 
class MyEncoder(json.JSONEncoder):
 def default(self, obj):
  if isinstance(obj, np.integer):
   return int(obj)
  elif isinstance(obj, np.floating):
   return float(obj)
  elif isinstance(obj, np.ndarray):
   return obj.tolist()
  else:
   return super(MyEncoder, self).default(obj)
 
class labelme2coco(object):
 def __init__(self, labelme_json=[], save_json_path='./tran.json'):
  '''
  :param labelme_json: 所有labelme的json文件路径组成的列表
  :param save_json_path: json保存位置
  '''
  self.labelme_json = labelme_json
  self.save_json_path = save_json_path
  self.images = []
  self.categories = []
  self.annotations = []
  # self.data_coco = {}
  self.label = []
  self.annID = 1
  self.height = 0
  self.width = 0
 
  self.save_json()
 
 def data_transfer(self):
 
  for num, json_file in enumerate(self.labelme_json):
   with open(json_file, 'r') as fp:
    data = json.load(fp) # 加载json文件
    self.images.append(self.image(data, num))
    for shapes in data['shapes']:
     label = shapes['label']
     if label not in self.label:
      self.categories.append(self.categorie(label))
      self.label.append(label)
     points = shapes['points']#这里的point是用rectangle标注得到的,只有两个点,需要转成四个点
     #points.append([points[0][0],points[1][1]])
     #points.append([points[1][0],points[0][1]])
     self.annotations.append(self.annotation(points, label, num))
     self.annID += 1
 
 def image(self, data, num):
  image = {}
  img = utils.img_b64_to_arr(data['imageData']) # 解析原图片数据
  # img=io.imread(data['imagePath']) # 通过图片路径打开图片
  # img = cv2.imread(data['imagePath'], 0)
  height, width = img.shape[:2]
  img = None
  image['height'] = height
  image['width'] = width
  image['id'] = num + 1
  #image['file_name'] = data['imagePath'].split('/')[-1]
  image['file_name'] = data['imagePath'][3:14]
  self.height = height
  self.width = width
 
  return image
 
 def categorie(self, label):
  categorie = {}
  categorie['supercategory'] = 'Cancer'
  categorie['id'] = len(self.label) + 1 # 0 默认为背景
  categorie['name'] = label
  return categorie
 
 def annotation(self, points, label, num):
  annotation = {}
  annotation['segmentation'] = [list(np.asarray(points).flatten())]
  annotation['iscrowd'] = 0
  annotation['image_id'] = num + 1
  # annotation['bbox'] = str(self.getbbox(points)) # 使用list保存json文件时报错(不知道为什么)
  # list(map(int,a[1:-1].split(','))) a=annotation['bbox'] 使用该方式转成list
  annotation['bbox'] = list(map(float, self.getbbox(points)))
  annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3]
  # annotation['category_id'] = self.getcatid(label)
  annotation['category_id'] = self.getcatid(label)#注意,源代码默认为1
  annotation['id'] = self.annID
  return annotation
 
 def getcatid(self, label):
  for categorie in self.categories:
   if label == categorie['name']:
    return categorie['id']
  return 1
 
 def getbbox(self, points):
  # img = np.zeros([self.height,self.width],np.uint8)
  # cv2.polylines(img, [np.asarray(points)], True, 1, lineType=cv2.LINE_AA) # 画边界线
  # cv2.fillPoly(img, [np.asarray(points)], 1) # 画多边形 内部像素值为1
  polygons = points
 
  mask = self.polygons_to_mask([self.height, self.width], polygons)
  return self.mask2box(mask)
 
 def mask2box(self, mask):
  '''从mask反算出其边框
  mask:[h,w] 0、1组成的图片
  1对应对象,只需计算1对应的行列号(左上角行列号,右下角行列号,就可以算出其边框)
  '''
  # np.where(mask==1)
  index = np.argwhere(mask == 1)
  rows = index[:, 0]
  clos = index[:, 1]
  # 解析左上角行列号
  left_top_r = np.min(rows) # y
  left_top_c = np.min(clos) # x
 
  # 解析右下角行列号
  right_bottom_r = np.max(rows)
  right_bottom_c = np.max(clos)
 
  # return [(left_top_r,left_top_c),(right_bottom_r,right_bottom_c)]
  # return [(left_top_c, left_top_r), (right_bottom_c, right_bottom_r)]
  # return [left_top_c, left_top_r, right_bottom_c, right_bottom_r] # [x1,y1,x2,y2]
  return [left_top_c, left_top_r, right_bottom_c - left_top_c,
    right_bottom_r - left_top_r] # [x1,y1,w,h] 对应COCO的bbox格式
 
 def polygons_to_mask(self, img_shape, polygons):
  mask = np.zeros(img_shape, dtype=np.uint8)
  mask = PIL.Image.fromarray(mask)
  xy = list(map(tuple, polygons))
  PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
  mask = np.array(mask, dtype=bool)
  return mask
 
 def data2coco(self):
  data_coco = {}
  data_coco['images'] = self.images
  data_coco['categories'] = self.categories
  data_coco['annotations'] = self.annotations
  return data_coco
 
 def save_json(self):
  self.data_transfer()
  self.data_coco = self.data2coco()
  # 保存json文件
  json.dump(self.data_coco, open(self.save_json_path, 'w'), indent=4, cls=MyEncoder) # indent=4 更加美观显示
 
 
labelme_json = glob.glob('./Annotations/*.json')
# labelme_json=['./Annotations/*.json']
 
labelme2coco(labelme_json, './json/test.json')

以上这篇将labelme格式数据转化为标准的coco数据集格式方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python2.7删除文件夹和删除文件代码实例
Dec 18 Python
Python中super()函数简介及用法分享
Jul 11 Python
django框架如何集成celery进行开发
May 24 Python
django实现前后台交互实例
Aug 07 Python
python 将print输出的内容保存到txt文件中
Jul 17 Python
Python3实现从排序数组中删除重复项算法分析
Apr 03 Python
Pandas之ReIndex重新索引的实现
Jun 25 Python
Django 批量插入数据的实现方法
Jan 12 Python
Django自定义列表 models字段显示方式
Apr 03 Python
python pyecharts 实现一个文件绘制多张图
May 13 Python
python3 简单实现组合设计模式
Jul 02 Python
浅析Python模块之间的相互引用问题
Feb 26 Python
开启Django博客的RSS功能的实现方法
Feb 17 #Python
Python3打包exe代码2种方法实例解析
Feb 17 #Python
Django 博客实现简单的全文搜索的示例代码
Feb 17 #Python
Python使用qrcode二维码库生成二维码方法详解
Feb 17 #Python
django2.2 和 PyMySQL版本兼容问题
Feb 17 #Python
基于python3的socket聊天编程
Feb 17 #Python
python词云库wordCloud使用方法详解(解决中文乱码)
Feb 17 #Python
You might like
PHP删除数组中的特定元素的代码
2012/06/28 PHP
解析php中const与define的应用区别
2013/06/18 PHP
PHP中is_file()函数使用指南
2015/05/08 PHP
如何使用微信公众平台开发模式实现多客服
2016/01/06 PHP
PHP数组内存利用率低和弱类型详细解读
2017/08/10 PHP
Laravel构建即时应用的一种实现方法详解
2017/08/31 PHP
CentOS7编译安装php7.1的教程详解
2019/04/18 PHP
仅img元素创建后不添加到文档中会执行onload事件的解决方法
2011/07/31 Javascript
js变量、作用域及内存详解
2014/09/23 Javascript
JavaScript中的6种运算符总结
2014/10/16 Javascript
JQuery选择器绑定事件及修改内容的方法
2015/01/23 Javascript
JavaScript对数组进行随机重排的方法
2015/07/22 Javascript
jQuery 中ajax异步调用的四种方式
2016/06/28 Javascript
JavaScript 正则命名分组【推荐】
2018/06/07 Javascript
9种方法优化jQuery代码详解
2020/02/04 jQuery
国内常用的js类库大全(CDN公共库)
2020/06/24 Javascript
[03:44]2014DOTA2国际邀请赛 71专访:DK战队赛前讨论视频遭泄露
2014/07/13 DOTA
[00:34]TI7不朽珍藏III——地穴编织者不朽展示
2017/07/15 DOTA
Python使用django获取用户IP地址的方法
2015/05/11 Python
python获取mp3文件信息的方法
2015/06/15 Python
Python设计模式之状态模式原理与用法详解
2019/01/15 Python
python datetime处理时间小结
2020/04/16 Python
Python如何在windows环境安装pip及rarfile
2020/06/15 Python
HTML5开发动态音频图的实现
2020/07/02 HTML / CSS
丝芙兰美国官网:SEPHORA美国
2016/08/03 全球购物
香港时装购物网站:ZALORA香港
2017/04/23 全球购物
阿根廷旅游网站:almundo阿根廷
2018/02/12 全球购物
巴西美妆购物网站:Kutiz Beauté
2019/03/13 全球购物
网络书店创业计划书
2014/02/07 职场文书
仓管员岗位责任制
2014/02/19 职场文书
2014年环卫工作总结
2014/11/22 职场文书
医院科室评语
2015/01/04 职场文书
教师求职自荐信范文
2015/03/04 职场文书
无工作证明怎么写
2015/06/15 职场文书
老干部局2015年度工作总结
2015/10/22 职场文书
Win10 和 Win11可以共存吗? win10/11产品生命周期/服务更新介绍
2021/11/21 数码科技