将labelme格式数据转化为标准的coco数据集格式方式


Posted in Python onFebruary 17, 2020

labelme标注图像生成的json格式:

{
 "version": "3.11.2",
 "flags": {},
 "shapes": [# 每个对象的形状
 { # 第一个对象
  "label": "malignant",
  "line_color": null,
  "fill_color": null,
  "points": [# 边缘是由点构成,将这些点连在一起就是对象的边缘多边形
  [
   371, # 第一个点 x 坐标
   257 # 第一个点 y 坐标
  ],
  ...
  [
   412,
   255
  ]
  ],
  "shape_type": "polygon" # 形状类型:多边形
 },
 {
  "label": "malignant", # 第一个对象的标签
  "line_color": null,
  "fill_color": null,
  "points": [# 第二个对象
  [
   522,
   274
  ],
  ...
  [
   561,
   303
  ]
  ],
  "shape_type": "polygon"
 },
 {
  "label": "malignant", # 第二个对象的标签
  "line_color": null,
  "fill_color": null,
 "imagePath": "../../val2017/000001.jpg", # 原始图片的路径
 "imageData":"something too long ",# 原图像数据 通过该字段可以解析出原图像数据
 "imageHeight": 768,
 "imageWidth": 1024
}

coco标准数据集格式:

COCO通过大量使用Amazon Mechanical Turk来收集数据。COCO数据集现在有3种标注类型:object instances(目标实例), object keypoints(目标上的关键点), and image captions(看图说话),使用JSON文件存储。

基本的JSON结构体类型

这3种类型共享下面所列的基本类型,包括image、categories、annotation类型。

Images类型:

"images": [
  {
   "height": 768,
   "width": 1024,
   "id": 1, #图片id
   "file_name": "000002.jpg"
  }
]

categories类型:

"categories": [
  {
   "supercategory": "Cancer", #父类
   "id": 1,   #标签类别id,0表示背景
   "name": "benign" #子类
  },
  {
   "supercategory": "Cancer",
   "id": 2,
   "name": "malignant"
  }
 ],

annotations类型:

"annotations": [
  {
   "segmentation": [#坐标点的坐标值
    [
     418,
     256,
     391,
     293,
     406,
     323,
     432,
     340,
     452,
     329,
     458,
     311,
     458,
     286,
     455,
     277,
     439,
     264,
     418,
     293,
     391,
     256
    ]
   ],
   "iscrowd": 0, #单个的对象(iscrowd=0)可能需要多个polygon来表示
   "image_id": 1, #和image的id保持一致
   "bbox": [  #标注的边框值 bbox是将segmentation包起来的水平矩形
    391.0,
    256.0,
    67.0,
    84.0
   ],
   "area": 5628.0, #标注的边框面积
   "category_id": 1, #所属类别id
   "id": 1   #标注边框的id : 1,2,3...,n
  }
]

labelme 转化为coco

# -*- coding:utf-8 -*-
# !/usr/bin/env python
 
import argparse
import json
import matplotlib.pyplot as plt
import skimage.io as io
import cv2
from labelme import utils
import numpy as np
import glob
import PIL.Image
 
class MyEncoder(json.JSONEncoder):
 def default(self, obj):
  if isinstance(obj, np.integer):
   return int(obj)
  elif isinstance(obj, np.floating):
   return float(obj)
  elif isinstance(obj, np.ndarray):
   return obj.tolist()
  else:
   return super(MyEncoder, self).default(obj)
 
class labelme2coco(object):
 def __init__(self, labelme_json=[], save_json_path='./tran.json'):
  '''
  :param labelme_json: 所有labelme的json文件路径组成的列表
  :param save_json_path: json保存位置
  '''
  self.labelme_json = labelme_json
  self.save_json_path = save_json_path
  self.images = []
  self.categories = []
  self.annotations = []
  # self.data_coco = {}
  self.label = []
  self.annID = 1
  self.height = 0
  self.width = 0
 
  self.save_json()
 
 def data_transfer(self):
 
  for num, json_file in enumerate(self.labelme_json):
   with open(json_file, 'r') as fp:
    data = json.load(fp) # 加载json文件
    self.images.append(self.image(data, num))
    for shapes in data['shapes']:
     label = shapes['label']
     if label not in self.label:
      self.categories.append(self.categorie(label))
      self.label.append(label)
     points = shapes['points']#这里的point是用rectangle标注得到的,只有两个点,需要转成四个点
     #points.append([points[0][0],points[1][1]])
     #points.append([points[1][0],points[0][1]])
     self.annotations.append(self.annotation(points, label, num))
     self.annID += 1
 
 def image(self, data, num):
  image = {}
  img = utils.img_b64_to_arr(data['imageData']) # 解析原图片数据
  # img=io.imread(data['imagePath']) # 通过图片路径打开图片
  # img = cv2.imread(data['imagePath'], 0)
  height, width = img.shape[:2]
  img = None
  image['height'] = height
  image['width'] = width
  image['id'] = num + 1
  #image['file_name'] = data['imagePath'].split('/')[-1]
  image['file_name'] = data['imagePath'][3:14]
  self.height = height
  self.width = width
 
  return image
 
 def categorie(self, label):
  categorie = {}
  categorie['supercategory'] = 'Cancer'
  categorie['id'] = len(self.label) + 1 # 0 默认为背景
  categorie['name'] = label
  return categorie
 
 def annotation(self, points, label, num):
  annotation = {}
  annotation['segmentation'] = [list(np.asarray(points).flatten())]
  annotation['iscrowd'] = 0
  annotation['image_id'] = num + 1
  # annotation['bbox'] = str(self.getbbox(points)) # 使用list保存json文件时报错(不知道为什么)
  # list(map(int,a[1:-1].split(','))) a=annotation['bbox'] 使用该方式转成list
  annotation['bbox'] = list(map(float, self.getbbox(points)))
  annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3]
  # annotation['category_id'] = self.getcatid(label)
  annotation['category_id'] = self.getcatid(label)#注意,源代码默认为1
  annotation['id'] = self.annID
  return annotation
 
 def getcatid(self, label):
  for categorie in self.categories:
   if label == categorie['name']:
    return categorie['id']
  return 1
 
 def getbbox(self, points):
  # img = np.zeros([self.height,self.width],np.uint8)
  # cv2.polylines(img, [np.asarray(points)], True, 1, lineType=cv2.LINE_AA) # 画边界线
  # cv2.fillPoly(img, [np.asarray(points)], 1) # 画多边形 内部像素值为1
  polygons = points
 
  mask = self.polygons_to_mask([self.height, self.width], polygons)
  return self.mask2box(mask)
 
 def mask2box(self, mask):
  '''从mask反算出其边框
  mask:[h,w] 0、1组成的图片
  1对应对象,只需计算1对应的行列号(左上角行列号,右下角行列号,就可以算出其边框)
  '''
  # np.where(mask==1)
  index = np.argwhere(mask == 1)
  rows = index[:, 0]
  clos = index[:, 1]
  # 解析左上角行列号
  left_top_r = np.min(rows) # y
  left_top_c = np.min(clos) # x
 
  # 解析右下角行列号
  right_bottom_r = np.max(rows)
  right_bottom_c = np.max(clos)
 
  # return [(left_top_r,left_top_c),(right_bottom_r,right_bottom_c)]
  # return [(left_top_c, left_top_r), (right_bottom_c, right_bottom_r)]
  # return [left_top_c, left_top_r, right_bottom_c, right_bottom_r] # [x1,y1,x2,y2]
  return [left_top_c, left_top_r, right_bottom_c - left_top_c,
    right_bottom_r - left_top_r] # [x1,y1,w,h] 对应COCO的bbox格式
 
 def polygons_to_mask(self, img_shape, polygons):
  mask = np.zeros(img_shape, dtype=np.uint8)
  mask = PIL.Image.fromarray(mask)
  xy = list(map(tuple, polygons))
  PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
  mask = np.array(mask, dtype=bool)
  return mask
 
 def data2coco(self):
  data_coco = {}
  data_coco['images'] = self.images
  data_coco['categories'] = self.categories
  data_coco['annotations'] = self.annotations
  return data_coco
 
 def save_json(self):
  self.data_transfer()
  self.data_coco = self.data2coco()
  # 保存json文件
  json.dump(self.data_coco, open(self.save_json_path, 'w'), indent=4, cls=MyEncoder) # indent=4 更加美观显示
 
 
labelme_json = glob.glob('./Annotations/*.json')
# labelme_json=['./Annotations/*.json']
 
labelme2coco(labelme_json, './json/test.json')

以上这篇将labelme格式数据转化为标准的coco数据集格式方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python实现查找二叉搜索树第k大的节点功能示例
Jan 24 Python
详解python的四种内置数据结构
Mar 19 Python
flask框架单元测试原理与用法实例分析
Jul 23 Python
Django CBV类的用法详解
Jul 26 Python
python 实现矩阵按对角线打印
Nov 29 Python
pandas 对group进行聚合的例子
Dec 27 Python
浅谈keras使用中val_acc和acc值不同步的思考
Jun 18 Python
踩坑:pytorch中eval模式下结果远差于train模式介绍
Jun 23 Python
使用PyCharm官方中文语言包汉化PyCharm
Nov 18 Python
Python析构函数__del__定义原理解析
Nov 20 Python
python文件目录操作之os模块
May 08 Python
Python中文分词库jieba(结巴分词)详细使用介绍
Apr 07 Python
开启Django博客的RSS功能的实现方法
Feb 17 #Python
Python3打包exe代码2种方法实例解析
Feb 17 #Python
Django 博客实现简单的全文搜索的示例代码
Feb 17 #Python
Python使用qrcode二维码库生成二维码方法详解
Feb 17 #Python
django2.2 和 PyMySQL版本兼容问题
Feb 17 #Python
基于python3的socket聊天编程
Feb 17 #Python
python词云库wordCloud使用方法详解(解决中文乱码)
Feb 17 #Python
You might like
全国FM电台频率大全 - 8 黑龙江省
2020/03/11 无线电
3种平台下安装php4经验点滴
2006/10/09 PHP
FleaPHP的安全设置方法
2008/09/15 PHP
PHP编程之设置apache虚拟目录
2016/07/08 PHP
Javascript 不能释放内存.
2006/09/07 Javascript
bcastr2.0 通用的图片浏览器
2006/11/22 Javascript
如何在Mozilla Gecko 用Javascript加载XSL
2007/01/09 Javascript
Javascript - HTML的request类
2007/01/09 Javascript
一组JS创建和操作表格的函数集合
2009/05/07 Javascript
JS实现简洁、全兼容的拖动层实例
2015/05/13 Javascript
Angularjs全局变量被作用域监听的正确姿势
2016/02/06 Javascript
JavaScript编写检测用户所使用的浏览器的代码示例
2016/05/05 Javascript
浅谈javascript中的数据类型转换
2016/12/27 Javascript
AngularJS使用ng-inlude指令加载页面失败的原因与解决方法
2017/01/19 Javascript
微信小程序实现根据字母选择城市功能
2017/08/16 Javascript
template.js前端模板引擎使用详解
2017/10/10 Javascript
vue+swiper实现侧滑菜单效果
2017/12/28 Javascript
Vue 中的受控与非受控组件的实现
2018/12/17 Javascript
vue实现的上拉加载更多数据/分页功能示例
2019/05/25 Javascript
一文快速了解JQuery中的AJAX
2019/05/31 jQuery
Vue路由管理器Vue-router的使用方法详解
2020/02/05 Javascript
vue组件入门知识全梳理
2020/09/21 Javascript
解决await在forEach中不起作用的问题
2021/02/25 Javascript
[59:32]Liquid vs Fnatic 2019国际邀请赛淘汰赛败者组BO1 8.20.mp4
2020/07/19 DOTA
Python中的ConfigParser模块使用详解
2015/05/04 Python
python3使用PyMysql连接mysql数据库实例
2017/02/07 Python
Python读取文件内容的三种常用方式及效率比较
2017/10/07 Python
对python字典元素的添加与修改方法详解
2018/07/06 Python
python数据持久存储 pickle模块的基本使用方法解析
2019/08/30 Python
灵泰克Java笔试题
2016/01/09 面试题
法律七进实施方案
2014/03/15 职场文书
销售内勤岗位职责
2014/04/15 职场文书
学校评语大全
2014/05/06 职场文书
项目建议书范文
2014/05/12 职场文书
2014工程部年度工作总结
2014/12/17 职场文书
公司出纳岗位职责
2015/03/31 职场文书