【python】matplotlib动态显示详解


Posted in Python onApril 11, 2019

1.matplotlib动态绘图

python在绘图的时候,需要开启 interactive mode。核心代码如下:

plt.ion(); #开启interactive mode 成功的关键函数
  fig = plt.figure(1);
  
  for i in range(100):
    filepath="E:/Model/weights-improvement-" + str(i + 1) + ".hdf5";
    model.load_weights(filepath);
    #测试数据
    x_new = np.linspace(low, up, 1000);
    y_new = getfit(model,x_new);
    # 显示数据
    plt.clf();
    plt.plot(x,y); 
    plt.scatter(x_sample, y_sample);
    plt.plot(x_new,y_new);
    
    ffpath = "E:/imgs/" + str(i) + ".jpg";
    plt.savefig(ffpath);
 
    plt.pause(0.01)       # 暂停0.01秒
    
  ani = animation.FuncAnimation(plt.figure(2), update,range(100),init_func=init, interval=500);
  ani.save("E:/test.gif",writer='pillow');
  
  plt.ioff()         # 关闭交互模式

2.实例

已知下面采样自Sin函数的数据:

  x y
1 0.093 -0.81
2 0.58 -0.45
3 1.04 -0.007
4 1.55 0.48
5 2.15 0.89
6 2.62 0.997
7 2.71 0.995
8 2.73 0.993
9 3.03 0.916
10 3.14 0.86
11 3.58 0.57
12 3.66 0.504
13 3.81 0.369
14 3.83 0.35
15 4.39 -0.199
16 4.44 -0.248
17 4.6 -0.399
18 5.39 -0.932
19 5.54 -0.975
20 5.76 -0.999

 通过一个简单的三层神经网络训练一个Sin函数的拟合器,并可视化模型训练过程的拟合曲线。

【python】matplotlib动态显示详解

2.1 网络训练实现

主要做的事情是定义一个三层的神经网络,输入层节点数为1,隐藏层节点数为10,输出层节点数为1。

import math;
import random;
from matplotlib import pyplot as plt
from keras.models import Sequential
from keras.layers.core import Dense
from keras.optimizers import Adam
import numpy as np
from keras.callbacks import ModelCheckpoint
import os
 
 
#采样函数
def sample(low, up, num):
  data = [];
  for i in range(num):
    #采样
    tmp = random.uniform(low, up);
    data.append(tmp);
  data.sort();
  return data;
 
#sin函数
def func(x):
  y = [];
  for i in range(len(x)):
    tmp = math.sin(x[i] - math.pi/3);
    y.append(tmp);
  return y;
 
#获取模型拟合结果
def getfit(model,x):  
  y = [];
  for i in range(len(x)):
    tmp = model.predict([x[i]], 10);
    y.append(tmp[0][0]);
  return y;
 
#删除同一目录下的所有文件
def del_file(path):
  ls = os.listdir(path)
  for i in ls:
    c_path = os.path.join(path, i)
    if os.path.isdir(c_path):
      del_file(c_path)
    else:
      os.remove(c_path)
 
if __name__ == '__main__':  
  path = "E:/Model/";
  del_file(path);
  
  low = 0;
  up = 2 * math.pi;
  x = np.linspace(low, up, 1000);
  y = func(x);
  
  # 数据采样
#   x_sample = sample(low,up,20);
  x_sample = [0.09326442022999694, 0.5812590520508311, 1.040490143783586, 1.5504427746047338, 2.1589557183817036, 2.6235357787018407, 2.712578091093361, 2.7379109336528167, 3.0339662651841186, 3.147676812083248, 3.58596337171837, 3.6621496731124314, 3.81130899864203, 3.833092859928872, 4.396611340802901, 4.4481080339256875, 4.609657879057151, 5.399731063412583, 5.54299720786794, 5.764084730699906];
  y_sample = func(x_sample);
  
  # callback
  filepath="E:/Model/weights-improvement-{epoch:00d}.hdf5";
  checkpoint= ModelCheckpoint(filepath, verbose=1, save_best_only=False, mode='max');
  callbacks_list= [checkpoint];
  
  # 建立顺序神经网络层次模型
  model = Sequential(); 
  model.add(Dense(10, input_dim=1, init='uniform', activation='relu'));
  model.add(Dense(1, init='uniform', activation='tanh'));
  adam = Adam(lr = 0.05);
  model.compile(loss='mean_squared_error', optimizer=adam, metrics=['accuracy']);
  model.fit(x_sample, y_sample, nb_epoch=1000, batch_size=20,callbacks=callbacks_list);
  
  #测试数据
  x_new = np.linspace(low, up, 1000);
  y_new = getfit(model,x_new);
  
  # 数据可视化
  plt.plot(x,y); 
  plt.scatter(x_sample, y_sample);
  plt.plot(x_new,y_new);
  
  plt.show();

2.2 模型保存

 在神经网络训练的过程中,有一个非常重要的操作,就是将训练过程中模型的参数保存到本地,这是后面拟合过程可视化的基础。训练过程中保存的模型文件,如下图所示。

【python】matplotlib动态显示详解

模型保存的关键在于fit函数中callback函数的设置,注意到,下面的代码,每次迭代,算法都会执行callbacks函数指定的函数列表中的方法。这里,我们的回调函数设置为ModelCheckpoint,其参数如下表所示:

参数 含义
filename 字符串,保存模型的路径
verbose 信息展示模式,0或1 (Epoch 00001: saving model to ...)
mode ‘auto',‘min',‘max'
monitor 需要监视的值
save_best_only 当设置为True时,监测值有改进时才会保存当前的模型。在save_best_only=True时决定性能最佳模型的评判准则,例如,当监测值为val_acc时,模式应为max,当监测值为val_loss时,模式应为min。在auto模式下,评价准则由被监测值的名字自动推断
save_weights_only 若设置为True,则只保存模型权重,否则将保存整个模型(包括模型结构,配置信息等)
period CheckPoint之间的间隔的epoch数
# callback
  filepath="E:/Model/weights-improvement-{epoch:00d}.hdf5";
  checkpoint= ModelCheckpoint(filepath, verbose=1, save_best_only=False, mode='max');
  callbacks_list= [checkpoint];
  
  # 建立顺序神经网络层次模型
  model = Sequential(); 
  model.add(Dense(10, input_dim=1, init='uniform', activation='relu'));
  model.add(Dense(1, init='uniform', activation='tanh'));
  adam = Adam(lr = 0.05);
  model.compile(loss='mean_squared_error', optimizer=adam, metrics=['accuracy']);
  model.fit(x_sample, y_sample, nb_epoch=1000, batch_size=20,callbacks=callbacks_list);

2.3 拟合过程可视化实现

利用上述保存的模型,我们就可以通过matplotlib实时地显示拟合过程。

import math;
import random;
from matplotlib import pyplot as plt
from keras.models import Sequential
from keras.layers.core import Dense
import numpy as np
import matplotlib.animation as animation
from PIL import Image
 
#定义kdd99数据预处理函数
def sample(low, up, num):
  data = [];
  for i in range(num):
    #采样
    tmp = random.uniform(low, up);
    data.append(tmp);
  data.sort();
  return data;
 
def func(x):
  y = [];
  for i in range(len(x)):
    tmp = math.sin(x[i] - math.pi/3);
    y.append(tmp);
  return y;
 
def getfit(model,x):  
  y = [];
  for i in range(len(x)):
    tmp = model.predict([x[i]], 10);
    y.append(tmp[0][0]);
  return y;
 
def init():
  fpath = "E:/imgs/0.jpg";
  img = Image.open(fpath);
  plt.axis('off') # 关掉坐标轴为 off
  return plt.imshow(img);
 
def update(i): 
  fpath = "E:/imgs/" + str(i) + ".jpg";
  img = Image.open(fpath);
  plt.axis('off') # 关掉坐标轴为 off
  return plt.imshow(img);
 
if __name__ == '__main__':  
  low = 0;
  up = 2 * math.pi;
  x = np.linspace(low, up, 1000);
  y = func(x);
  
  # 数据采样
#   x_sample = sample(low,up,20);
  x_sample = [0.09326442022999694, 0.5812590520508311, 1.040490143783586, 1.5504427746047338, 2.1589557183817036, 2.6235357787018407, 2.712578091093361, 2.7379109336528167, 3.0339662651841186, 3.147676812083248, 3.58596337171837, 3.6621496731124314, 3.81130899864203, 3.833092859928872, 4.396611340802901, 4.4481080339256875, 4.609657879057151, 5.399731063412583, 5.54299720786794, 5.764084730699906];
  y_sample = func(x_sample);
  
  # 建立顺序神经网络层次模型
  model = Sequential(); 
  model.add(Dense(10, input_dim=1, init='uniform', activation='relu'));
  model.add(Dense(1, init='uniform', activation='tanh'));
    
  plt.ion(); #开启interactive mode 成功的关键函数
  fig = plt.figure(1);
  
  for i in range(100):
    filepath="E:/Model/weights-improvement-" + str(i + 1) + ".hdf5";
    model.load_weights(filepath);
    #测试数据
    x_new = np.linspace(low, up, 1000);
    y_new = getfit(model,x_new);
    # 显示数据
    plt.clf();
    plt.plot(x,y); 
    plt.scatter(x_sample, y_sample);
    plt.plot(x_new,y_new);
    
    ffpath = "E:/imgs/" + str(i) + ".jpg";
    plt.savefig(ffpath);
 
    plt.pause(0.01)       # 暂停0.01秒
    
  ani = animation.FuncAnimation(plt.figure(2), update,range(100),init_func=init, interval=500);
  ani.save("E:/test.gif",writer='pillow');
  
  plt.ioff()

【python】matplotlib动态显示详解

以上所述是小编给大家介绍的matplotlib动态显示详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对三水点靠木网站的支持!

Python 相关文章推荐
python计算N天之后日期的方法
Mar 31 Python
[原创]windows下Anaconda的安装与配置正解(Anaconda入门教程)
Apr 05 Python
python抽取指定url页面的title方法
May 11 Python
Python实现的简单排列组合算法示例
Jul 04 Python
python学生管理系统
Jan 30 Python
Python 实现两个服务器之间文件的上传方法
Feb 13 Python
Python爬取爱奇艺电影信息代码实例
Nov 26 Python
Pycharm 使用 Pipenv 新建的虚拟环境(图文详解)
Apr 16 Python
基于TensorFlow的CNN实现Mnist手写数字识别
Jun 17 Python
Django-imagekit的使用详解
Jul 06 Python
python中类与对象之间的关系详解
Dec 16 Python
Python+OpenCV实现在图像上绘制矩形
Mar 21 Python
python爬虫之验证码篇3-滑动验证码识别技术
Apr 11 #Python
Pyqt5如何让QMessageBox按钮显示中文示例代码
Apr 11 #Python
python面试题小结附答案实例代码
Apr 11 #Python
Python3使用Matplotlib 绘制精美的数学函数图形
Apr 11 #Python
python3 小数位的四舍五入(用两种方法解决round 遇5不进)
Apr 11 #Python
Python单元和文档测试实例详解
Apr 11 #Python
Python的高阶函数用法实例分析
Apr 11 #Python
You might like
十天学会php(1)
2006/10/09 PHP
yii插入数据库防并发的简单代码
2017/05/27 PHP
php根据命令行参数生成配置文件详解
2019/03/15 PHP
PHP中strtr与str_replace函数运行性能简单测试示例
2019/06/22 PHP
tp5.1 实现setInc字段自动加1
2019/10/18 PHP
在第一个input框内输入内容.textarea自动得到第一个文件框的值的javascript代码
2007/04/20 Javascript
jquery聚焦文本框与扩展文本框聚焦方法
2012/10/12 Javascript
jquery实现图片左右间隔滚动特效(可自动播放)
2013/05/08 Javascript
js的onload事件及初始化按钮事件示例代码
2013/09/25 Javascript
js的Boolean对象初始值示例
2014/03/04 Javascript
javascript中的遍历for in 以及with的用法
2014/12/22 Javascript
不同js异步函数同步的实现方法
2016/05/28 Javascript
javascript学习笔记_浅谈基础语法,类型,变量
2016/09/19 Javascript
javascript动画系列之模拟滚动条
2016/12/13 Javascript
详解Node全局变量global模块
2017/09/28 Javascript
详解vuex之store拆分即多模块状态管理(modules)篇
2018/11/13 Javascript
js html实现计算器功能
2018/11/13 Javascript
微信小程序实现炫酷的弹出式菜单特效
2019/01/28 Javascript
Vuex的actions属性的具体使用
2019/04/14 Javascript
vue2.0 实现富文本编辑器功能
2019/05/26 Javascript
微信小程序-可移动菜单的实现过程详解
2019/06/24 Javascript
javascript中正则表达式语法详解
2020/08/07 Javascript
Python用 KNN 进行验证码识别的实现方法
2018/02/06 Python
在python中,使用scatter绘制散点图的实例
2019/07/03 Python
Django集成celery发送异步邮件实例
2019/12/17 Python
python 通过exifread读取照片信息
2020/12/24 Python
GNC健安喜美国官网:美国第一营养品牌
2016/07/22 全球购物
艺术专业大学生自我评价
2013/09/22 职场文书
生态养殖创业计划书
2014/05/06 职场文书
教师纪念9.18事件演讲稿范文
2014/09/14 职场文书
2015年成本会计工作总结
2015/10/14 职场文书
MySQL不使用order by实现排名的三种思路总结
2021/06/02 MySQL
Python办公自动化解决world文件批量转换
2021/09/15 Python
Redis集群节点通信过程/原理流程分析
2022/03/18 Redis
Python编写车票订购系统 Python实现快递收费系统
2022/08/14 Python