【python】matplotlib动态显示详解


Posted in Python onApril 11, 2019

1.matplotlib动态绘图

python在绘图的时候,需要开启 interactive mode。核心代码如下:

plt.ion(); #开启interactive mode 成功的关键函数
  fig = plt.figure(1);
  
  for i in range(100):
    filepath="E:/Model/weights-improvement-" + str(i + 1) + ".hdf5";
    model.load_weights(filepath);
    #测试数据
    x_new = np.linspace(low, up, 1000);
    y_new = getfit(model,x_new);
    # 显示数据
    plt.clf();
    plt.plot(x,y); 
    plt.scatter(x_sample, y_sample);
    plt.plot(x_new,y_new);
    
    ffpath = "E:/imgs/" + str(i) + ".jpg";
    plt.savefig(ffpath);
 
    plt.pause(0.01)       # 暂停0.01秒
    
  ani = animation.FuncAnimation(plt.figure(2), update,range(100),init_func=init, interval=500);
  ani.save("E:/test.gif",writer='pillow');
  
  plt.ioff()         # 关闭交互模式

2.实例

已知下面采样自Sin函数的数据:

  x y
1 0.093 -0.81
2 0.58 -0.45
3 1.04 -0.007
4 1.55 0.48
5 2.15 0.89
6 2.62 0.997
7 2.71 0.995
8 2.73 0.993
9 3.03 0.916
10 3.14 0.86
11 3.58 0.57
12 3.66 0.504
13 3.81 0.369
14 3.83 0.35
15 4.39 -0.199
16 4.44 -0.248
17 4.6 -0.399
18 5.39 -0.932
19 5.54 -0.975
20 5.76 -0.999

 通过一个简单的三层神经网络训练一个Sin函数的拟合器,并可视化模型训练过程的拟合曲线。

【python】matplotlib动态显示详解

2.1 网络训练实现

主要做的事情是定义一个三层的神经网络,输入层节点数为1,隐藏层节点数为10,输出层节点数为1。

import math;
import random;
from matplotlib import pyplot as plt
from keras.models import Sequential
from keras.layers.core import Dense
from keras.optimizers import Adam
import numpy as np
from keras.callbacks import ModelCheckpoint
import os
 
 
#采样函数
def sample(low, up, num):
  data = [];
  for i in range(num):
    #采样
    tmp = random.uniform(low, up);
    data.append(tmp);
  data.sort();
  return data;
 
#sin函数
def func(x):
  y = [];
  for i in range(len(x)):
    tmp = math.sin(x[i] - math.pi/3);
    y.append(tmp);
  return y;
 
#获取模型拟合结果
def getfit(model,x):  
  y = [];
  for i in range(len(x)):
    tmp = model.predict([x[i]], 10);
    y.append(tmp[0][0]);
  return y;
 
#删除同一目录下的所有文件
def del_file(path):
  ls = os.listdir(path)
  for i in ls:
    c_path = os.path.join(path, i)
    if os.path.isdir(c_path):
      del_file(c_path)
    else:
      os.remove(c_path)
 
if __name__ == '__main__':  
  path = "E:/Model/";
  del_file(path);
  
  low = 0;
  up = 2 * math.pi;
  x = np.linspace(low, up, 1000);
  y = func(x);
  
  # 数据采样
#   x_sample = sample(low,up,20);
  x_sample = [0.09326442022999694, 0.5812590520508311, 1.040490143783586, 1.5504427746047338, 2.1589557183817036, 2.6235357787018407, 2.712578091093361, 2.7379109336528167, 3.0339662651841186, 3.147676812083248, 3.58596337171837, 3.6621496731124314, 3.81130899864203, 3.833092859928872, 4.396611340802901, 4.4481080339256875, 4.609657879057151, 5.399731063412583, 5.54299720786794, 5.764084730699906];
  y_sample = func(x_sample);
  
  # callback
  filepath="E:/Model/weights-improvement-{epoch:00d}.hdf5";
  checkpoint= ModelCheckpoint(filepath, verbose=1, save_best_only=False, mode='max');
  callbacks_list= [checkpoint];
  
  # 建立顺序神经网络层次模型
  model = Sequential(); 
  model.add(Dense(10, input_dim=1, init='uniform', activation='relu'));
  model.add(Dense(1, init='uniform', activation='tanh'));
  adam = Adam(lr = 0.05);
  model.compile(loss='mean_squared_error', optimizer=adam, metrics=['accuracy']);
  model.fit(x_sample, y_sample, nb_epoch=1000, batch_size=20,callbacks=callbacks_list);
  
  #测试数据
  x_new = np.linspace(low, up, 1000);
  y_new = getfit(model,x_new);
  
  # 数据可视化
  plt.plot(x,y); 
  plt.scatter(x_sample, y_sample);
  plt.plot(x_new,y_new);
  
  plt.show();

2.2 模型保存

 在神经网络训练的过程中,有一个非常重要的操作,就是将训练过程中模型的参数保存到本地,这是后面拟合过程可视化的基础。训练过程中保存的模型文件,如下图所示。

【python】matplotlib动态显示详解

模型保存的关键在于fit函数中callback函数的设置,注意到,下面的代码,每次迭代,算法都会执行callbacks函数指定的函数列表中的方法。这里,我们的回调函数设置为ModelCheckpoint,其参数如下表所示:

参数 含义
filename 字符串,保存模型的路径
verbose 信息展示模式,0或1 (Epoch 00001: saving model to ...)
mode ‘auto',‘min',‘max'
monitor 需要监视的值
save_best_only 当设置为True时,监测值有改进时才会保存当前的模型。在save_best_only=True时决定性能最佳模型的评判准则,例如,当监测值为val_acc时,模式应为max,当监测值为val_loss时,模式应为min。在auto模式下,评价准则由被监测值的名字自动推断
save_weights_only 若设置为True,则只保存模型权重,否则将保存整个模型(包括模型结构,配置信息等)
period CheckPoint之间的间隔的epoch数
# callback
  filepath="E:/Model/weights-improvement-{epoch:00d}.hdf5";
  checkpoint= ModelCheckpoint(filepath, verbose=1, save_best_only=False, mode='max');
  callbacks_list= [checkpoint];
  
  # 建立顺序神经网络层次模型
  model = Sequential(); 
  model.add(Dense(10, input_dim=1, init='uniform', activation='relu'));
  model.add(Dense(1, init='uniform', activation='tanh'));
  adam = Adam(lr = 0.05);
  model.compile(loss='mean_squared_error', optimizer=adam, metrics=['accuracy']);
  model.fit(x_sample, y_sample, nb_epoch=1000, batch_size=20,callbacks=callbacks_list);

2.3 拟合过程可视化实现

利用上述保存的模型,我们就可以通过matplotlib实时地显示拟合过程。

import math;
import random;
from matplotlib import pyplot as plt
from keras.models import Sequential
from keras.layers.core import Dense
import numpy as np
import matplotlib.animation as animation
from PIL import Image
 
#定义kdd99数据预处理函数
def sample(low, up, num):
  data = [];
  for i in range(num):
    #采样
    tmp = random.uniform(low, up);
    data.append(tmp);
  data.sort();
  return data;
 
def func(x):
  y = [];
  for i in range(len(x)):
    tmp = math.sin(x[i] - math.pi/3);
    y.append(tmp);
  return y;
 
def getfit(model,x):  
  y = [];
  for i in range(len(x)):
    tmp = model.predict([x[i]], 10);
    y.append(tmp[0][0]);
  return y;
 
def init():
  fpath = "E:/imgs/0.jpg";
  img = Image.open(fpath);
  plt.axis('off') # 关掉坐标轴为 off
  return plt.imshow(img);
 
def update(i): 
  fpath = "E:/imgs/" + str(i) + ".jpg";
  img = Image.open(fpath);
  plt.axis('off') # 关掉坐标轴为 off
  return plt.imshow(img);
 
if __name__ == '__main__':  
  low = 0;
  up = 2 * math.pi;
  x = np.linspace(low, up, 1000);
  y = func(x);
  
  # 数据采样
#   x_sample = sample(low,up,20);
  x_sample = [0.09326442022999694, 0.5812590520508311, 1.040490143783586, 1.5504427746047338, 2.1589557183817036, 2.6235357787018407, 2.712578091093361, 2.7379109336528167, 3.0339662651841186, 3.147676812083248, 3.58596337171837, 3.6621496731124314, 3.81130899864203, 3.833092859928872, 4.396611340802901, 4.4481080339256875, 4.609657879057151, 5.399731063412583, 5.54299720786794, 5.764084730699906];
  y_sample = func(x_sample);
  
  # 建立顺序神经网络层次模型
  model = Sequential(); 
  model.add(Dense(10, input_dim=1, init='uniform', activation='relu'));
  model.add(Dense(1, init='uniform', activation='tanh'));
    
  plt.ion(); #开启interactive mode 成功的关键函数
  fig = plt.figure(1);
  
  for i in range(100):
    filepath="E:/Model/weights-improvement-" + str(i + 1) + ".hdf5";
    model.load_weights(filepath);
    #测试数据
    x_new = np.linspace(low, up, 1000);
    y_new = getfit(model,x_new);
    # 显示数据
    plt.clf();
    plt.plot(x,y); 
    plt.scatter(x_sample, y_sample);
    plt.plot(x_new,y_new);
    
    ffpath = "E:/imgs/" + str(i) + ".jpg";
    plt.savefig(ffpath);
 
    plt.pause(0.01)       # 暂停0.01秒
    
  ani = animation.FuncAnimation(plt.figure(2), update,range(100),init_func=init, interval=500);
  ani.save("E:/test.gif",writer='pillow');
  
  plt.ioff()

【python】matplotlib动态显示详解

以上所述是小编给大家介绍的matplotlib动态显示详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对三水点靠木网站的支持!

Python 相关文章推荐
Python中让MySQL查询结果返回字典类型的方法
Aug 22 Python
Windows系统配置python脚本开机启动的3种方法分享
Mar 10 Python
Python中的filter()函数的用法
Apr 27 Python
Python数据库的连接实现方法与注意事项
Feb 27 Python
Python实现一个转存纯真IP数据库的脚本分享
May 21 Python
Python利用matplotlib.pyplot绘图时如何设置坐标轴刻度
Apr 09 Python
python 循环读取txt文档 并转换成csv的方法
Oct 26 Python
Python 堆叠柱状图绘制方法
Jul 29 Python
python批量图片处理简单示例
Aug 06 Python
利用python对excel中一列的时间数据更改格式操作
Jul 14 Python
Python 如何展开嵌套的序列
Aug 01 Python
Python破解极验滑动验证码详细步骤
May 21 Python
python爬虫之验证码篇3-滑动验证码识别技术
Apr 11 #Python
Pyqt5如何让QMessageBox按钮显示中文示例代码
Apr 11 #Python
python面试题小结附答案实例代码
Apr 11 #Python
Python3使用Matplotlib 绘制精美的数学函数图形
Apr 11 #Python
python3 小数位的四舍五入(用两种方法解决round 遇5不进)
Apr 11 #Python
Python单元和文档测试实例详解
Apr 11 #Python
Python的高阶函数用法实例分析
Apr 11 #Python
You might like
php计算当前程序执行时间示例
2014/04/24 PHP
PHP ignore_user_abort函数详细介绍和使用实例
2014/07/15 PHP
one.php 多项目、函数库、类库 统一为一个版本的方法
2020/08/24 PHP
自己实现ajax封装示例分享
2014/04/01 Javascript
浅谈javascript 函数属性和方法
2015/01/21 Javascript
JavaScript对表格或元素按文本,数字或日期排序的方法
2015/05/26 Javascript
JavaScript中String.match()方法的使用详解
2015/06/06 Javascript
js调出上下文菜单的实例
2015/12/17 Javascript
Bootstrap导航条可点击和鼠标悬停显示下拉菜单的实现代码
2016/06/23 Javascript
JavaScript 轮播图和自定义滚动条配合鼠标滚轮分享代码贴
2016/10/28 Javascript
JS实战篇之收缩菜单表单布局
2016/12/10 Javascript
原生js实现无缝轮播图效果
2017/01/11 Javascript
JS实现数组去重方法总结(六种方法)
2017/07/14 Javascript
微信小程序promsie.all和promise顺序执行
2017/10/27 Javascript
原生js调用json方法总结
2018/02/22 Javascript
Node.js+Express+Mysql 实现增删改查
2019/04/03 Javascript
微信小程序自定义tabbar custom-tab-bar 6s出不来解决方案(cover-view不兼容)
2019/11/01 Javascript
[01:02:38]DOTA2-DPC中国联赛定级赛 LBZS vs Phoenix BO3第二场 1月10日
2021/03/11 DOTA
Python os模块中的isfile()和isdir()函数均返回false问题解决方法
2015/02/04 Python
使用Python中的线程进行网络编程的入门教程
2015/04/15 Python
Python实现方便使用的级联进度信息实例
2015/05/05 Python
Python中的字符串操作和编码Unicode详解
2017/01/18 Python
Pycharm学习教程(5) Python快捷键相关设置
2017/05/03 Python
python中实现精确的浮点数运算详解
2017/11/02 Python
python 每天如何定时启动爬虫任务(实现方法分享)
2018/05/21 Python
Keras SGD 随机梯度下降优化器参数设置方式
2020/06/19 Python
用python写爬虫简单吗
2020/07/28 Python
一些关于python 装饰器的个人理解
2020/08/31 Python
英国最大的宝石首饰超市:QP Jewellers
2018/09/23 全球购物
英国花园、DIY、电器和家居用品商店:Robert Dyas
2019/03/18 全球购物
迪卡侬波兰体育用品商店:Decathlon波兰
2020/03/31 全球购物
写一个在SQL Server创建表的SQL语句
2012/03/10 面试题
毕业生求职自荐书范文
2014/03/27 职场文书
2014学校领导四风问题对照检查材料思想汇报
2014/09/22 职场文书
php去除数组中为0的元素的实例分析
2021/11/17 PHP
如何利用python实现列表嵌套字典取值
2022/06/10 Python