Python使用Tkinter实现机器人走迷宫


Posted in Python onJanuary 22, 2018

这本是课程的一个作业研究搜索算法,当时研究了一下Tkinter,然后写了个很简单的机器人走迷宫的界面,并且使用了各种搜索算法来进行搜索,如下图:

Python使用Tkinter实现机器人走迷宫

使用A*寻找最优路径:

Python使用Tkinter实现机器人走迷宫

由于时间关系,不分析了,我自己贴代码吧。希望对一些也要用Tkinter的人有帮助。

from Tkinter import *
from random import *
import time
import numpy as np
import util

class Directions:
 NORTH = 'North'
 SOUTH = 'South'
 EAST = 'East'
 WEST = 'West'

# Detect elements in the map



window = Tk()
window.title('CityBusPlanner')
window.resizable(0,0)
width = 25
(x, y) = (22, 22)

totalsteps = 0

buidings = [(0, 0), (1, 0), (2, 0), (3, 0), (7, 0), (8, 0), (11, 0), (12, 0), (13, 0),
 (17, 0), (18, 0), (21, 0), (21, 1), (2, 2), (5, 2), (8, 2), (9, 2), (12, 2),
 (14, 2), (15, 2), (16, 2), (17, 2), (21, 2), (2, 3), (4, 3), (5, 3), (7, 3),
 (8, 3), (11, 3), (17, 3), (18, 3), (19, 3), (2, 4), (4, 4), (5, 4), (8, 4),
 (9, 4), (14, 4), (15, 4),(17, 4), (18, 4), (19, 4), (0, 6), (2, 6), (4, 6),
 (7, 6), (8, 6), (11, 6), (12, 6), (14, 6), (15, 6),(16, 6), (18, 6), (19, 6),
 (2, 7), (5, 7), (21, 7), (0, 8), (2, 8), (11, 8), (14, 8), (15, 8), (17, 8),
 (18, 8), (21, 8), (4, 9), (5, 9), (7, 9), (9, 9), (11, 9), (14, 9), (21, 9),
 (2, 10), (7, 10), (14, 10), (17, 10), (19, 10), (0, 11), (2, 11), (4, 11),
 (5, 11), (7, 11), (8, 11), (9, 11), (11, 11), (12, 11), (14, 11), (15, 11),
 (16, 11), (17, 11), (18, 11), (19, 11), (0, 13), (2, 13), (3, 13), (5, 13),
 (7, 13), (8, 13), (9, 13), (14, 13), (17, 13), (18, 13), (21, 13), (2, 14),
 (3, 14), (5, 14), (7, 14),(9, 14), (12, 14), (14, 14), (15, 14), (17, 14),
 (18, 14), (21, 14), (2, 15), (3, 15), (5, 15), (7, 15), (9, 15), (12, 15),
 (15, 15), (19, 15), (21, 15), (0, 16), (21, 16), (0, 17), (3, 17), (5, 17),
 (7, 17),(9, 17), (11, 17), (14, 17), (15, 17), (17, 17), (18, 17), (21, 17),
 (2, 18), (3, 18), (5, 18), (7, 18),(9, 18), (11, 18), (14, 18), (17, 18),
 (18, 18), (3, 19), (5, 19), (7, 19), (9, 19), (11, 19), (12, 19), (14, 19),
 (17, 19), (18, 19), (0, 21), (1, 21), (2, 21), (5, 21), (6, 21), (9, 21),
 (10, 21), (11, 21), (12, 21), (15, 21), (16, 21), (18, 21), (19, 21), (21, 21)]

walls = [(10, 0), (0, 12), (21, 12), (14, 21)]
park = [(14, 0), (15, 0), (16, 0)]
robotPos = (21, 12)

view = Canvas(window, width=x * width, height=y * width)
view.grid(row=0, column=0)
searchMapButton = Button(window,text = 'search')
searchMapButton.grid(row = 0,column = 1)
robotView = Canvas(window,width=x * width, height=y * width)
robotView.grid(row = 0,column = 2)

def formatColor(r, g, b):
 return '#%02x%02x%02x' % (int(r * 255), int(g * 255), int(b * 255))

def cityMap():
 global width, x, y, buidings,walls,park,robot
 for i in range(x):
 for j in range(y):
 view.create_rectangle(
 i * width, j * width, (i + 1) * width, (j + 1) * width, fill='white', outline='gray', width=1)
 for (i, j) in buidings:
 view.create_rectangle(
 i * width, j * width, (i + 1) * width, (j + 1) * width, fill='black', outline='gray', width=1)
 for (i,j) in walls:
 view.create_rectangle(
 i * width, j * width, (i + 1) * width, (j + 1) * width, fill='blue', outline='gray', width=1)
 for (i,j) in park:
 view.create_rectangle(
 i * width, j * width, (i + 1) * width, (j + 1) * width, fill='red', outline='gray', width=1)

def robotCityMap():
 global width, x, y, buidings,walls,park,robot,robotPos
 for i in range(x):
 for j in range(y):
 robotView.create_rectangle(
 i * width, j * width, (i + 1) * width, (j + 1) * width, fill='black', width=1)
 robotView.create_rectangle(
 robotPos[0] * width, robotPos[1] * width, (robotPos[0] + 1) * width, (robotPos[1] + 1) * width, fill='white', outline='gray', width=1)
# Create City Map
cityMap()

# Create Robot View
robotCityMap()
# Create a robot
robot = view.create_rectangle(robotPos[0] * width + width * 2 / 10, robotPos[1] * width + width * 2 / 10,
  robotPos[0] * width + width * 8 / 10, robotPos[1] * width + width * 8 / 10, fill="orange", width=1, tag="robot")
robotSelf = robotView.create_rectangle(robotPos[0] * width + width * 2 / 10, robotPos[1] * width + width * 2 / 10,
  robotPos[0] * width + width * 8 / 10, robotPos[1] * width + width * 8 / 10, fill="orange", width=1, tag="robot")

visited = [robotPos]

def move(dx,dy):
 global robot,x,y,robotPos,robotSelf,view
 global totalsteps
 totalsteps = totalsteps + 1
 newX = robotPos[0] + dx
 newY = robotPos[1] + dy
 if (not isEdge(newX, newY)) and (not isBlock(newX, newY)):
 #print "move %d" % totalsteps
 view.coords(robot, (newX) * width + width * 2 / 10, (newY) * width + width * 2 / 10,
  (newX) * width + width * 8 / 10, (newY) * width + width * 8 / 10)
 robotView.coords(robotSelf, (newX) * width + width * 2 / 10, (newY) * width + width * 2 / 10,
  (newX) * width + width * 8 / 10, (newY) * width + width * 8 / 10)
 robotPos = (newX, newY)
 if robotPos not in visited:
 visited.append(robotPos)
 visitedPanel = robotView.create_rectangle(
 robotPos[0] * width, robotPos[1] * width, (robotPos[0] + 1) * width, (robotPos[1] + 1) * width, fill='white', outline='gray', width=1)
 robotView.tag_lower(visitedPanel,robotSelf)
 else:
 print "move error"

def callUp(event):
 move(0,-1)

def callDown(event):
 move(0, 1)

def callLeft(event):
 move(-1, 0)

def callRight(event):
 move(1, 0)

def isBlock(newX,newY):
 global buidings,x,y


 for (i,j) in buidings:
 if (i == newX) and (j == newY):
 return True
 return False

def isEdge(newX,newY):
 global x,y

 if newX >= x or newY >= y or newX < 0 or newY < 0 :
 return True
 return False

def getSuccessors(robotPos):
 n = Directions.NORTH
 w = Directions.WEST
 s = Directions.SOUTH
 e = Directions.EAST
 successors = []
 posX = robotPos[0]
 posY = robotPos[1]

 if not isBlock(posX - 1, posY) and not isEdge(posX - 1,posY):
 successors.append(w)
 if not isBlock(posX, posY + 1) and not isEdge(posX,posY + 1):
 successors.append(s)
 if not isBlock(posX + 1, posY) and not isEdge(posX + 1,posY):
 successors.append(e)
 if not isBlock(posX, posY -1) and not isEdge(posX,posY - 1):
 successors.append(n)

 return successors

def getNewPostion(position,action):
 posX = position[0]
 posY = position[1]
 n = Directions.NORTH
 w = Directions.WEST
 s = Directions.SOUTH
 e = Directions.EAST
 if action == n:
 return (posX,posY - 1)
 elif action == w:
 return (posX - 1,posY)
 elif action == s:
 return (posX,posY + 1)
 elif action == e:
 return (posX + 1,posY)

delay = False
def runAction(actions):
 global delay
 n = Directions.NORTH
 w = Directions.WEST
 s = Directions.SOUTH
 e = Directions.EAST
 for i in actions:
 if delay:
 time.sleep(0.05)
 if i == n:
 #print "North"
 move(0, -1)
 elif i == w:
 #print "West"
 move(-1, 0)
 elif i == s:
 #print "South"
 move(0, 1)
 elif i == e:
 #sprint "East"
 move(1, 0)
 view.update()

def searchMapTest(event):
 global robotPos
 actions = []
 position = robotPos
 for i in range(100):
 successors = getSuccessors(position)
 successor = successors[randint(0, len(successors) - 1)]
 actions.append(successor)
 position = getNewPostion(position, successor)
 print actions
 runAction(actions)

def reverseSuccessor(successor):
 n = Directions.NORTH
 w = Directions.WEST
 s = Directions.SOUTH
 e = Directions.EAST
 if successor == n:
 return s
 elif successor == w:
 return e
 elif successor == s:
 return n
 elif successor == e:
 return w

roads = set()

detectedBuildings = {}
blockColors = {}
blockIndex = 0


def updateBuildings(detectedBuildings):
 global robotView,width
 for block,buildings in detectedBuildings.items():
 color = blockColors[block]
 for building in buildings:
 robotView.create_rectangle(
 building[0] * width, building[1] * width, (building[0] + 1) * width, (building[1] + 1) * width, fill=color, outline=color, width=1)

def addBuilding(position):
 global blockIndex,detectedBuildings
 isAdd = False
 addBlock = ''
 for block,buildings in detectedBuildings.items():
 for building in buildings:
 if building == position:
 return
 if util.manhattanDistance(position, building) == 1:
 if not isAdd:
  buildings.add(position)
  isAdd = True
  addBlock = block
  break
 else:
  #merge two block
  for building in detectedBuildings[block]:
  detectedBuildings[addBlock].add(building)
  detectedBuildings.pop(block)

 if not isAdd:
 newBlock = set([position])
 blockIndex = blockIndex + 1
 detectedBuildings['Block %d' % blockIndex] = newBlock
 color = formatColor(random(), random(), random())
 blockColors['Block %d' % blockIndex] = color
 updateBuildings(detectedBuildings)

def addRoad(position):
 global robotView,width,robotSelf
 visitedPanel = robotView.create_rectangle(
 position[0] * width, position[1] * width, (position[0] + 1) * width, (position[1] + 1) * width, fill='white', outline='gray', width=1)
 robotView.tag_lower(visitedPanel,robotSelf)

def showPath(positionA,positionB,path):
 global robotView,width,view
 view.create_oval(positionA[0] * width + width * 3 / 10, positionA[1] * width + width * 3 / 10,
  positionA[0] * width + width * 7 / 10, positionA[1] * width + width * 7 / 10, fill='yellow', width=1)
 nextPosition = positionA
 for action in path:
 nextPosition = getNewPostion(nextPosition, action)
 view.create_oval(nextPosition[0] * width + width * 4 / 10, nextPosition[1] * width + width * 4 / 10,
  nextPosition[0] * width + width * 6 / 10, nextPosition[1] * width + width * 6 / 10, fill='yellow', width=1)
 view.create_oval(positionB[0] * width + width * 3 / 10, positionB[1] * width + width * 3 / 10,
  positionB[0] * width + width * 7 / 10, positionB[1] * width + width * 7 / 10, fill='yellow', width=1)
hasDetected = set()


def detectLocation(position):
 if position not in hasDetected:
 hasDetected.add(position)
 if isBlock(position[0],position[1]):
 addBuilding(position)
 elif not isEdge(position[0],position[1]):
 addRoad(position)

def detect(position):
 posX = position[0]
 posY = position[1]

 detectLocation((posX,posY + 1))
 detectLocation((posX,posY - 1))
 detectLocation((posX + 1,posY))
 detectLocation((posX - 1,posY))


def heuristic(positionA,positionB):
 return util.manhattanDistance(positionA,positionB)

def AstarSearch(positionA,positionB):
 "Step 1: define closed: a set"
 closed = set()
 "Step 2: define fringe: a PriorityQueue "
 fringe = util.PriorityQueue()
 "Step 3: insert initial node to fringe"
 "Construct node to be a tuple (location,actions)"
 initialNode = (positionA,[])
 initCost = 0 + heuristic(initialNode[0],positionB)
 fringe.push(initialNode,initCost)
 "Step 4: Loop to do search"
 while not fringe.isEmpty():
 node = fringe.pop()
 if node[0] == positionB:
 return node[1]
 if node[0] not in closed:
 closed.add(node[0])
 for successor in getSuccessors(node[0]):
 actions = list(node[1])
 actions.append(successor)
 newPosition = getNewPostion(node[0], successor)
 childNode = (newPosition,actions)
 cost = len(actions) + heuristic(childNode[0],positionB)
 fringe.push(childNode,cost)
 return []

def AstarSearchBetweenbuildings(building1,building2):
 "Step 1: define closed: a set"
 closed = set()
 "Step 2: define fringe: a PriorityQueue "
 fringe = util.PriorityQueue()
 "Step 3: insert initial node to fringe"
 "Construct node to be a tuple (location,actions)"
 initialNode = (building1,[])
 initCost = 0 + heuristic(initialNode[0],building2)
 fringe.push(initialNode,initCost)
 "Step 4: Loop to do search"
 while not fringe.isEmpty():
 node = fringe.pop()
 if util.manhattanDistance(node[0],building2) == 1:
 return node[1]
 if node[0] not in closed:
 closed.add(node[0])
 for successor in getSuccessors(node[0]):
 actions = list(node[1])
 actions.append(successor)
 newPosition = getNewPostion(node[0], successor)
 childNode = (newPosition,actions)
 cost = len(actions) + heuristic(childNode[0],building2)
 fringe.push(childNode,cost)
 return []

def calculatePositions(buildingA,path):
 positions = set()
 positions.add(buildingA)
 nextPosition = buildingA
 for action in path:
 nextPosition = getNewPostion(nextPosition, action)
 positions.add(nextPosition)
 return positions

def showRoad(fullRoad):
 global view,width
 for road in fullRoad:
 view.create_oval(road[0] * width + width * 4 / 10, road[1] * width + width * 4 / 10,
  road[0] * width + width * 6 / 10, road[1] * width + width * 6 / 10, fill='yellow', width=1)
 view.update()


def search(node):
 successors = getSuccessors(node[0])
 detect(node[0])
 for successor in successors:
 nextPosition = getNewPostion(node[0], successor)
 if nextPosition not in roads:
 runAction([successor]) # to the next node
 roads.add(nextPosition)
 search((nextPosition,[successor],[reverseSuccessor(successor)]))
 runAction(node[2]) #back to top node

def searchConsiderTopVisit(node,topWillVisit):
 successors = getSuccessors(node[0])
 detect(node[0])
 newTopWillVisit = set(topWillVisit)
 for successor in successors:
 nextPosition = getNewPostion(node[0], successor)
 newTopWillVisit.add(nextPosition)
 for successor in successors:
 nextPosition = getNewPostion(node[0], successor)
 if nextPosition not in roads and nextPosition not in topWillVisit:
 runAction([successor]) # to the next node
 roads.add(nextPosition)
 newTopWillVisit.remove(nextPosition)
 searchConsiderTopVisit((nextPosition,[successor],[reverseSuccessor(successor)]),newTopWillVisit)
 runAction(node[2]) #back to top node


def searchShortestPathBetweenBlocks(block1,block2):
 shortestPath = []
 buildingA = (0,0)
 buildingB = (0,0)
 for building1 in block1:
 for building2 in block2:
 path = AstarSearchBetweenbuildings(building1, building2)
 if len(shortestPath) == 0:
 shortestPath = path
 buildingA = building1
 buildingB = building2
 elif len(path) < len(shortestPath):
 shortestPath = path
 buildingA = building1
 buildingB = building2
 return (buildingA,buildingB,shortestPath)

def addBuildingToBlocks(linkedBlock,buildingA):
 global detectedBuildings
 newLinkedBlock = linkedBlock.copy()
 for block,buildings in detectedBuildings.items():
 for building in buildings:
 if util.manhattanDistance(buildingA, building) == 1:
  newLinkedBlock[block] = buildings
  break
 return newLinkedBlock

def bfsSearchNextBlock(initBuilding,linkedBlock):
 global detectedBuildings
 closed = set()
 fringe = util.Queue()
 initNode = (initBuilding,[])
 fringe.push(initNode)
 while not fringe.isEmpty():
 node = fringe.pop()
 newLinkedBlock = addBuildingToBlocks(linkedBlock,node[0])
 if len(newLinkedBlock) == len(detectedBuildings):
 return node[1]
 if len(newLinkedBlock) > len(linkedBlock): # find a new block
 actions = list(node[1])
 '''
 if len(node[1]) > 0:
 lastAction = node[1][len(node[1]) - 1]
 for successor in getSuccessors(node[0]):
  if successor == lastAction:
  nextPosition = getNewPostion(node[0], successor)
  actions.append(successor)
  return actions + bfsSearchNextBlock(nextPosition, newLinkedBlock)
 '''
 return node[1] + bfsSearchNextBlock(node[0], newLinkedBlock)

 if node[0] not in closed:
 closed.add(node[0])
 for successor in getSuccessors(node[0]):
 actions = list(node[1])
 actions.append(successor)
 nextPosition = getNewPostion(node[0], successor)

 childNode = (nextPosition,actions)
 fringe.push(childNode)
 return []

def isGoal(node):
 global detectedBuildings,robotPos
 linkedBlock = {}
 positions = calculatePositions(robotPos, node[1])
 for position in positions:
 for block,buildings in detectedBuildings.items():
 for building in buildings:
  if util.manhattanDistance(position, building) == 1:
  linkedBlock[block] = buildings
 print len(linkedBlock)
 if len(linkedBlock) == 17:
 return True
 else:
 return False

def roadHeuristic(road):
 return 0

def AstarSearchRoad():
 global robotPos,detectedBuildings
 "Step 1: define closed: a set"
 closed = set()
 "Step 2: define fringe: a PriorityQueue "
 fringe = util.PriorityQueue()
 "Step 3: insert initial node to fringe"
 "Construct node to be a tuple (location,actions)"
 initRoad = (robotPos,[])
 initCost = 0 + roadHeuristic(initRoad)
 fringe.push(initRoad,initCost)
 "Step 4: Loop to do search"
 while not fringe.isEmpty():
 node = fringe.pop()
 if isGoal(node):
 print len(closed)
 return node[1]
 if node[0] not in closed:
 closed.add(node[0])
 for successor in getSuccessors(node[0]):
 actions = list(node[1])
 actions.append(successor)
 newPosition = getNewPostion(node[0], successor)
 childNode = (newPosition,actions)
 cost = len(actions) + roadHeuristic(childNode)
 fringe.push(childNode,cost)

 return []

def searchRoad(building):
 global detectedBuildings,robotPos
 linkedBlock = {}
 initBuilding = building

 return bfsSearchNextBlock(initBuilding,linkedBlock)

def searchShortestRoad():
 shortestRoad = []
 shortestPositions = set()
 for block,buildings in detectedBuildings.items():
 for building in buildings:
 road = searchRoad(building)
 positions = calculatePositions(building, road)
 if len(shortestPositions) == 0 or len(positions) < len(shortestPositions):
 shortestRoad = road
 shortestPositions = positions
 print len(shortestPositions)
 showRoad(shortestPositions)

def searchMap(event):
 print "Search Map"
 global robotPos,roads,detectedBuildings,delay
 actions = []
 #roads = set()s
 #roads.add(robotPos)
 #fringe = util.Stack()
 initNode = (robotPos,[],[]) # (position,forwardActions,backwarsdActions)
 #fringe.push(initNode)
 roads.add(robotPos)
 search(initNode)
 #searchConsiderTopVisit(initNode, set())
 print detectedBuildings
 print len(detectedBuildings)
 #path = AstarSearchBetweenbuildings((6,21), (2, 18))
 #showPath((6,21),(2,18), path)
 '''
 shortestRoad = set()
 for block1 in detectedBuildings.values():
 roads = set()
 for block2 in detectedBuildings.values():
 if not block1 == block2:
 (buildingA,buildingB,path) = searchShortestPathBetweenBlocks(block1, block2)
 #showPath(buildingA,buildingB,path)
 positions = calculatePositions(buildingA,buildingB,path)
 roads = roads | positions
 if len(shortestRoad) == 0 or len(roads) < len(shortestRoad):
 shortestRoad = roads
 print len(shortestRoad)
 showRoad(shortestRoad)
 '''
 '''
 block1 = detectedBuildings.values()[3]
 print block1
 block2 = detectedBuildings.values()[5]
 print block2
 (buildingA,buildingB,path) = searchShortestPathBetweenBlocks(block1, block2)
 print buildingA,buildingB,path
 showPath(buildingA,buildingB,path)

 block1 = detectedBuildings.values()[10]
 print block1
 block2 = detectedBuildings.values()[20]
 print block2
 (buildingA,buildingB,path) = searchShortestPathBetweenBlocks(block1, block2)
 print buildingA,buildingB,path
 showPath(buildingA,buildingB,path)
 '''
 searchShortestRoad()

 '''
 path = searchRoad()
 #path = AstarSearchRoad()
 positions = calculatePositions(robotPos, path)
 print len(positions)
 showRoad(positions)
 delay = True
 #runAction(path)
 '''


window.bind("<Up>", callUp)
window.bind("<Down>", callDown)
window.bind("<Right>", callRight)
window.bind("<Left>", callLeft)
window.bind("s", searchMap)
searchMapButton.bind("<Button-1>",searchMap)
window.mainloop()

下面的util.py使用的是加州伯克利的代码:

# util.py
# -------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).


import sys
import inspect
import heapq, random


"""
 Data structures useful for implementing SearchAgents
"""

class Stack:
 "A container with a last-in-first-out (LIFO) queuing policy."
 def __init__(self):
 self.list = []

 def push(self,item):
 "Push 'item' onto the stack"
 self.list.append(item)

 def pop(self):
 "Pop the most recently pushed item from the stack"
 return self.list.pop()

 def isEmpty(self):
 "Returns true if the stack is empty"
 return len(self.list) == 0

class Queue:
 "A container with a first-in-first-out (FIFO) queuing policy."
 def __init__(self):
 self.list = []

 def push(self,item):
 "Enqueue the 'item' into the queue"
 self.list.insert(0,item)

 def pop(self):
 """
 Dequeue the earliest enqueued item still in the queue. This
 operation removes the item from the queue.
 """
 return self.list.pop()

 def isEmpty(self):
 "Returns true if the queue is empty"
 return len(self.list) == 0

class PriorityQueue:
 """
 Implements a priority queue data structure. Each inserted item
 has a priority associated with it and the client is usually interested
 in quick retrieval of the lowest-priority item in the queue. This
 data structure allows O(1) access to the lowest-priority item.

 Note that this PriorityQueue does not allow you to change the priority
 of an item. However, you may insert the same item multiple times with
 different priorities.
 """
 def __init__(self):
 self.heap = []
 self.count = 0

 def push(self, item, priority):
 # FIXME: restored old behaviour to check against old results better
 # FIXED: restored to stable behaviour
 entry = (priority, self.count, item)
 # entry = (priority, item)
 heapq.heappush(self.heap, entry)
 self.count += 1

 def pop(self):
 (_, _, item) = heapq.heappop(self.heap)
 # (_, item) = heapq.heappop(self.heap)
 return item

 def isEmpty(self):
 return len(self.heap) == 0

class PriorityQueueWithFunction(PriorityQueue):
 """
 Implements a priority queue with the same push/pop signature of the
 Queue and the Stack classes. This is designed for drop-in replacement for
 those two classes. The caller has to provide a priority function, which
 extracts each item's priority.
 """
 def __init__(self, priorityFunction):
 "priorityFunction (item) -> priority"
 self.priorityFunction = priorityFunction # store the priority function
 PriorityQueue.__init__(self) # super-class initializer

 def push(self, item):
 "Adds an item to the queue with priority from the priority function"
 PriorityQueue.push(self, item, self.priorityFunction(item))


def manhattanDistance( xy1, xy2 ):
 "Returns the Manhattan distance between points xy1 and xy2"
 return abs( xy1[0] - xy2[0] ) + abs( xy1[1] - xy2[1] )

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python 判断一个进程是否存在
Apr 09 Python
python中正则表达式的使用详解
Oct 17 Python
详解Python中for循环的使用
Apr 14 Python
六个窍门助你提高Python运行效率
Jun 09 Python
Python logging管理不同级别log打印和存储实例
Jan 19 Python
python 爬虫 批量获取代理ip的实例代码
May 22 Python
Python 查看list中是否含有某元素的方法
Jun 27 Python
python2.7实现邮件发送功能
Dec 12 Python
django celery redis使用具体实践
Apr 08 Python
详解Python的三种可变参数
May 08 Python
keras处理欠拟合和过拟合的实例讲解
May 25 Python
python绘制简单直方图(质量分布图)的方法
Apr 21 Python
Python实现简单文本字符串处理的方法
Jan 22 #Python
Python简单实现控制电脑的方法
Jan 22 #Python
Zookeeper接口kazoo实例解析
Jan 22 #Python
Python调用C语言的方法【基于ctypes模块】
Jan 22 #Python
python的Crypto模块实现AES加密实例代码
Jan 22 #Python
python实现求最长回文子串长度
Jan 22 #Python
Python获取本机所有网卡ip,掩码和广播地址实例代码
Jan 22 #Python
You might like
php中计算中文字符串长度、截取中文字符串的函数代码
2011/08/09 PHP
Json_decode 解析json字符串为NULL的解决方法(必看)
2017/02/17 PHP
详解PHP字符串替换str_replace()函数四种用法
2017/10/13 PHP
PHP面向对象程序设计子类扩展父类(子类重新载入父类)操作详解
2019/06/14 PHP
js 判断所选时间(或者当前时间)是否在某一时间段的实现代码
2015/09/05 Javascript
Angular2 (RC4) 路由与导航详解
2016/09/21 Javascript
js格式化时间的简单实例
2016/11/27 Javascript
使用VueCli3+TypeScript+Vuex一步步构建todoList的方法
2019/07/25 Javascript
vue实现商城秒杀倒计时功能
2019/12/12 Javascript
Vue组件模板及组件互相引用代码实例
2020/03/11 Javascript
[15:15]教你分分钟做大人:狙击手
2014/10/30 DOTA
[04:09]2018年度DOTA2社区贡献奖-完美盛典
2018/12/16 DOTA
在Python中关于中文编码问题的处理建议
2015/04/08 Python
编写Python脚本抓取网络小说来制作自己的阅读器
2015/08/20 Python
使用Python写个小监控
2016/01/27 Python
通过python将大量文件按修改时间分类的方法
2018/10/17 Python
python基于SMTP协议发送邮件
2019/05/31 Python
解决Mac下使用python的坑
2019/08/13 Python
Python数据处理篇之Sympy系列(五)---解方程
2019/10/12 Python
python SVD压缩图像的实现代码
2019/11/05 Python
python科学计算之narray对象用法
2019/11/25 Python
使用Python将Exception异常错误堆栈信息写入日志文件
2020/04/08 Python
Python安装第三方库攻略(pip和Anaconda)
2020/10/15 Python
印度手工编织服装和家居用品商店:Fabindi
2019/10/07 全球购物
Ajax实现页面无刷新留言效果
2021/03/24 Javascript
企业管理培训感言
2014/01/27 职场文书
小学生家长评语大全
2014/02/10 职场文书
项目合作协议书范本
2014/04/16 职场文书
国际贸易毕业生自荐书
2014/06/22 职场文书
计划生育证明格式范本
2014/09/12 职场文书
学校查摆问题整改措施
2014/09/28 职场文书
2014年物流工作总结
2014/11/25 职场文书
2014年高数考试作弊检讨书
2014/12/14 职场文书
2016年猴年新春致辞
2015/08/01 职场文书
Sleuth+logback 设置traceid 及自定义信息方式
2021/07/26 Java/Android
springboot实现string转json json里面带数组
2022/06/16 Java/Android