浅谈用Python实现一个大数据搜索引擎


Posted in Python onNovember 28, 2017

搜索是大数据领域里常见的需求。Splunk和ELK分别是该领域在非开源和开源领域里的领导者。本文利用很少的Python代码实现了一个基本的数据搜索功能,试图让大家理解大数据搜索的基本原理。

布隆过滤器 (Bloom Filter)

第一步我们先要实现一个布隆过滤器。

布隆过滤器是大数据领域的一个常见算法,它的目的是过滤掉那些不是目标的元素。也就是说如果一个要搜索的词并不存在与我的数据中,那么它可以以很快的速度返回目标不存在。

让我们看看以下布隆过滤器的代码:

class Bloomfilter(object):
  """
  A Bloom filter is a probabilistic data-structure that trades space for accuracy
  when determining if a value is in a set. It can tell you if a value was possibly
  added, or if it was definitely not added, but it can't tell you for certain that
  it was added.
  """
  def __init__(self, size):
    """Setup the BF with the appropriate size"""
    self.values = [False] * size
    self.size = size

  def hash_value(self, value):
    """Hash the value provided and scale it to fit the BF size"""
    return hash(value) % self.size

  def add_value(self, value):
    """Add a value to the BF"""
    h = self.hash_value(value)
    self.values[h] = True

  def might_contain(self, value):
    """Check if the value might be in the BF"""
    h = self.hash_value(value)
    return self.values[h]

  def print_contents(self):
    """Dump the contents of the BF for debugging purposes"""
    print self.values
  1. 基本的数据结构是个数组(实际上是个位图,用1/0来记录数据是否存在),初始化是没有任何内容,所以全部置False。实际的使用当中,该数组的长度是非常大的,以保证效率。
  2. 利用哈希算法来决定数据应该存在哪一位,也就是数组的索引
  3. 当一个数据被加入到布隆过滤器的时候,计算它的哈希值然后把相应的位置为True
  4. 当检查一个数据是否已经存在或者说被索引过的时候,只要检查对应的哈希值所在的位的True/Fasle

看到这里,大家应该可以看出,如果布隆过滤器返回False,那么数据一定是没有索引过的,然而如果返回True,那也不能说数据一定就已经被索引过。在搜索过程中使用布隆过滤器可以使得很多没有命中的搜索提前返回来提高效率。

我们看看这段 code是如何运行的:

bf = Bloomfilter(10)
bf.add_value('dog')
bf.add_value('fish')
bf.add_value('cat')
bf.print_contents()
bf.add_value('bird')
bf.print_contents()
# Note: contents are unchanged after adding bird - it collides
for term in ['dog', 'fish', 'cat', 'bird', 'duck', 'emu']:
  print '{}: {} {}'.format(term, bf.hash_value(term), bf.might_contain(term))

结果:

[False, False, False, False, True, True, False, False, False, True]
[False, False, False, False, True, True, False, False, False, True]
dog: 5 True
fish: 4 True
cat: 9 True
bird: 9 True
duck: 5 True
emu: 8 False

首先创建了一个容量为10的的布隆过滤器

浅谈用Python实现一个大数据搜索引擎

然后分别加入 ‘dog',‘fish',‘cat'三个对象,这时的布隆过滤器的内容如下:

浅谈用Python实现一个大数据搜索引擎

然后加入‘bird'对象,布隆过滤器的内容并没有改变,因为‘bird'和‘fish'恰好拥有相同的哈希。

浅谈用Python实现一个大数据搜索引擎

最后我们检查一堆对象('dog', 'fish', 'cat', 'bird', 'duck', 'emu')是不是已经被索引了。结果发现‘duck'返回True,2而‘emu'返回False。因为‘duck'的哈希恰好和‘dog'是一样的。

浅谈用Python实现一个大数据搜索引擎

分词

下面一步我们要实现分词。 分词的目的是要把我们的文本数据分割成可搜索的最小单元,也就是词。这里我们主要针对英语,因为中文的分词涉及到自然语言处理,比较复杂,而英文基本只要用标点符号就好了。

下面我们看看分词的代码:

def major_segments(s):
  """
  Perform major segmenting on a string. Split the string by all of the major
  breaks, and return the set of everything found. The breaks in this implementation
  are single characters, but in Splunk proper they can be multiple characters.
  A set is used because ordering doesn't matter, and duplicates are bad.
  """
  major_breaks = ' '
  last = -1
  results = set()

  # enumerate() will give us (0, s[0]), (1, s[1]), ...
  for idx, ch in enumerate(s):
    if ch in major_breaks:
      segment = s[last+1:idx]
      results.add(segment)

      last = idx

  # The last character may not be a break so always capture
  # the last segment (which may end up being "", but yolo)  
  segment = s[last+1:]
  results.add(segment)

  return results

主要分割

主要分割使用空格来分词,实际的分词逻辑中,还会有其它的分隔符。例如Splunk的缺省分割符包括以下这些,用户也可以定义自己的分割符。

] < > ( ) { } | ! ; , ' " * \n \r \s \t & ? + %21 %26 %2526 %3B %7C %20 %2B %3D -- %2520 %5D %5B %3A %0A %2C %28 %29

def minor_segments(s):
  """
  Perform minor segmenting on a string. This is like major
  segmenting, except it also captures from the start of the
  input to each break.
  """
  minor_breaks = '_.'
  last = -1
  results = set()

  for idx, ch in enumerate(s):
    if ch in minor_breaks:
      segment = s[last+1:idx]
      results.add(segment)

      segment = s[:idx]
      results.add(segment)

      last = idx

  segment = s[last+1:]
  results.add(segment)
  results.add(s)

  return results

次要分割

次要分割和主要分割的逻辑类似,只是还会把从开始部分到当前分割的结果加入。例如“1.2.3.4”的次要分割会有1,2,3,4,1.2,1.2.3

def segments(event):
  """Simple wrapper around major_segments / minor_segments"""
  results = set()
  for major in major_segments(event):
    for minor in minor_segments(major):
      results.add(minor)
  return results

分词的逻辑就是对文本先进行主要分割,对每一个主要分割在进行次要分割。然后把所有分出来的词返回。

我们看看这段 code是如何运行的:

for term in segments('src_ip = 1.2.3.4'):
    print term

src
1.2
1.2.3.4
src_ip
3
1
1.2.3
ip
2
=
4

搜索

好了,有个分词和布隆过滤器这两个利器的支撑后,我们就可以来实现搜索的功能了。

上代码:

class Splunk(object):
  def __init__(self):
    self.bf = Bloomfilter(64)
    self.terms = {} # Dictionary of term to set of events
    self.events = []
  
  def add_event(self, event):
    """Adds an event to this object"""

    # Generate a unique ID for the event, and save it
    event_id = len(self.events)
    self.events.append(event)

    # Add each term to the bloomfilter, and track the event by each term
    for term in segments(event):
      self.bf.add_value(term)

      if term not in self.terms:
        self.terms[term] = set()
      self.terms[term].add(event_id)

  def search(self, term):
    """Search for a single term, and yield all the events that contain it"""
    
    # In Splunk this runs in O(1), and is likely to be in filesystem cache (memory)
    if not self.bf.might_contain(term):
      return

    # In Splunk this probably runs in O(log N) where N is the number of terms in the tsidx
    if term not in self.terms:
      return

    for event_id in sorted(self.terms[term]):
      yield self.events[event_id]

Splunk代表一个拥有搜索功能的索引集合

每一个集合中包含一个布隆过滤器,一个倒排词表(字典),和一个存储所有事件的数组

当一个事件被加入到索引的时候,会做以下的逻辑

  1. 为每一个事件生成一个unqie id,这里就是序号
  2. 对事件进行分词,把每一个词加入到倒排词表,也就是每一个词对应的事件的id的映射结构,注意,一个词可能对应多个事件,所以倒排表的的值是一个Set。倒排表是绝大部分搜索引擎的核心功能。

当一个词被搜索的时候,会做以下的逻辑

  1. 检查布隆过滤器,如果为假,直接返回
  2. 检查词表,如果被搜索单词不在词表中,直接返回
  3. 在倒排表中找到所有对应的事件id,然后返回事件的内容

我们运行下看看把:

s = Splunk()
s.add_event('src_ip = 1.2.3.4')
s.add_event('src_ip = 5.6.7.8')
s.add_event('dst_ip = 1.2.3.4')

for event in s.search('1.2.3.4'):
  print event
print '-'
for event in s.search('src_ip'):
  print event
print '-'
for event in s.search('ip'):
  print event
src_ip = 1.2.3.4
dst_ip = 1.2.3.4
-
src_ip = 1.2.3.4
src_ip = 5.6.7.8
-
src_ip = 1.2.3.4
src_ip = 5.6.7.8
dst_ip = 1.2.3.4

是不是很赞!

更复杂的搜索

更进一步,在搜索过程中,我们想用And和Or来实现更复杂的搜索逻辑。

上代码:

class SplunkM(object):
  def __init__(self):
    self.bf = Bloomfilter(64)
    self.terms = {} # Dictionary of term to set of events
    self.events = []
  
  def add_event(self, event):
    """Adds an event to this object"""

    # Generate a unique ID for the event, and save it
    event_id = len(self.events)
    self.events.append(event)

    # Add each term to the bloomfilter, and track the event by each term
    for term in segments(event):
      self.bf.add_value(term)
      if term not in self.terms:
        self.terms[term] = set()
      
      self.terms[term].add(event_id)

  def search_all(self, terms):
    """Search for an AND of all terms"""

    # Start with the universe of all events...
    results = set(range(len(self.events)))

    for term in terms:
      # If a term isn't present at all then we can stop looking
      if not self.bf.might_contain(term):
        return
      if term not in self.terms:
        return

      # Drop events that don't match from our results
      results = results.intersection(self.terms[term])

    for event_id in sorted(results):
      yield self.events[event_id]


  def search_any(self, terms):
    """Search for an OR of all terms"""
    results = set()

    for term in terms:
      # If a term isn't present, we skip it, but don't stop
      if not self.bf.might_contain(term):
        continue
      if term not in self.terms:
        continue

      # Add these events to our results
      results = results.union(self.terms[term])

    for event_id in sorted(results):
      yield self.events[event_id]

利用Python集合的intersection和union操作,可以很方便的支持And(求交集)和Or(求合集)的操作。

运行结果如下:

s = SplunkM()
s.add_event('src_ip = 1.2.3.4')
s.add_event('src_ip = 5.6.7.8')
s.add_event('dst_ip = 1.2.3.4')

for event in s.search_all(['src_ip', '5.6']):
  print event
print '-'
for event in s.search_any(['src_ip', 'dst_ip']):
  print event
src_ip = 5.6.7.8
-
src_ip = 1.2.3.4
src_ip = 5.6.7.8
dst_ip = 1.2.3.4

总结

以上的代码只是为了说明大数据搜索的基本原理,包括布隆过滤器,分词和倒排表。如果大家真的想要利用这代码来实现真正的搜索功能,还差的太远。所有的内容来自于Splunk Conf2017。希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python选择排序算法实例总结
Jul 01 Python
python如何通过实例方法名字调用方法
Mar 21 Python
Python实现的端口扫描功能示例
Apr 08 Python
python实现求两个字符串的最长公共子串方法
Jul 20 Python
对python requests的content和text方法的区别详解
Oct 11 Python
基于Django ORM、一对一、一对多、多对多的全面讲解
Jul 26 Python
Python图像处理库PIL的ImageGrab模块介绍详解
Feb 26 Python
python3的pip路径在哪
Jun 23 Python
Python如何定义有可选参数的元类
Jul 31 Python
scrapy结合selenium解析动态页面的实现
Sep 28 Python
python 爬虫请求模块requests详解
Dec 04 Python
Python绘画好看的星空图
Mar 17 Python
Python中用psycopg2模块操作PostgreSQL方法
Nov 28 #Python
Python搜索引擎实现原理和方法
Nov 27 #Python
python输入错误密码用户锁定实现方法
Nov 27 #Python
动态规划之矩阵连乘问题Python实现方法
Nov 27 #Python
Python基于贪心算法解决背包问题示例
Nov 27 #Python
Python标准模块--ContextManager上下文管理器的具体用法
Nov 27 #Python
利用信号如何监控Django模型对象字段值的变化详解
Nov 27 #Python
You might like
php头像上传预览实例代码
2017/05/02 PHP
js 函数的执行环境和作用域链的深入解析
2009/11/01 Javascript
基于jquery实现的服务器验证控件的启用和禁用代码
2010/04/27 Javascript
jQuery实现级联菜单效果(仿淘宝首页菜单动画)
2014/04/10 Javascript
jquery进行数组遍历如何跳出当前的each循环
2014/06/05 Javascript
JQuery的常用选择器、过滤器、方法全面介绍
2016/05/25 Javascript
jquery判断页面网址是否有效的两种方法
2016/12/11 Javascript
基于vue实现多引擎搜索及关键字提示
2017/03/16 Javascript
Vue.js实现价格计算器功能
2020/03/30 Javascript
基于ajax和jsonp的原生封装(实例)
2017/10/16 Javascript
nodejs中art-template模板语法的引入及冲突解决方案
2017/11/07 NodeJs
vue页面加载闪烁问题的解决方法
2018/03/28 Javascript
JavaScript中变量、指针和引用功能与操作示例
2018/08/04 Javascript
原生js实现移动端Touch轮播图的方法步骤
2019/01/03 Javascript
jquery简单实现纵向的无缝滚动代码实例
2019/04/01 jQuery
JavaScript实现alert弹框效果
2020/11/19 Javascript
如何在vue中使用video.js播放m3u8格式的视频
2021/02/01 Vue.js
[01:14]TI珍贵瞬间系列(六):冠军
2020/08/30 DOTA
Python中运行并行任务技巧
2015/02/26 Python
Python实现股市信息下载的方法
2015/06/15 Python
使用paramiko远程执行命令、下发文件的实例
2017/10/01 Python
Python编程之基于概率论的分类方法:朴素贝叶斯
2017/11/11 Python
Python通过OpenCV的findContours获取轮廓并切割实例
2018/01/05 Python
Python实现的批量修改文件后缀名操作示例
2018/12/07 Python
详解tf.device()指定tensorflow运行的GPU或CPU设备实现
2021/02/20 Python
瑞典首都斯德哥尔摩的多元奢侈时尚品牌:Acne Studios
2017/07/09 全球购物
GWT (Google Web Toolkit)有哪些主要的原件组成?
2015/06/08 面试题
委托证明的格式
2014/01/10 职场文书
中国梦主题教育活动总结
2014/05/05 职场文书
数学系毕业生求职信
2014/05/29 职场文书
护理实习生带教计划
2015/01/16 职场文书
2015年银行个人工作总结
2015/05/14 职场文书
毕业证明书
2015/06/19 职场文书
市直属机关2016年主题党日活动总结
2016/04/05 职场文书
element多个表单校验的实现
2021/05/27 Javascript
MySQL连接控制插件介绍
2021/09/25 MySQL