使用python在本地电脑上快速处理数据


Posted in Python onJune 22, 2017

大数据一般是在“云”上玩的,但“云”都是要钱的,而且数据上上下下的也比较麻烦。所以,在本地电脑上快速处理数据的技能还是要的。

pandas

在比赛中学到的一个工具,本地可以在亿级别的数据上进行聚合等操作。内部的数据包括:
• Series:一维数组,每个元素有一个标签
• DataFrame:二维表格,可以看做Series的集合
• Panel:三维数据

数据的初始化

我们可以通过构造函数来初始化,从下面的代码中可以想象得到数据是样子:

from pandas import Series, DataFrame

s = Series(data=[1, 2, 3], index=['a', 'b', 'c'])

df = DataFrame(
  data=[
    [1, 2, 3],
    [4, 5, 6],
    [7, 8, 9]
  ],
  index=['i1', 'i2', 'i3'],
  columns=['c1', 'c2', 'c3']
)

如果源数据是格式比较好的CSV(或者是自己加工生成的中间数据),可以直接读取:
df = pandas.read_csv("../volume.csv", header=0)

数据的更新

更新结构

在定义完成之后可以对行、列进行增减(增减数据、修改结构):
• 增加列: • df.insert(3, 'new_column', [4, 7, 10])
• df['c4'] = [4, 7, 10]

• 删除列 • df.pop('c1')
• df = df.drop('c1', axis=1)

• 增加行:一般不要动态的增加行,据说新能不高 • df.loc['i4'] = [10, 11, 12]
• df.loc['i4'] = {'c1': 10, 'c2': 11, 'c3': 12}

• 删除行: • df = df.drop('i1', axis=0)

更新数据

我们可以精确修改单个位置的值:
• df['c1']['i1'] = 77
• df.ix[1, 2] = 66

合并数据

数据很多时候分布在不同的DataFrame中,要使用需要将他们进行合并,第一种方式是concat(基础方法):

import pandas as pd

df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
          'B': ['B0', 'B1', 'B2', 'B3'],
          'C': ['C0', 'C1', 'C2', 'C3'],
          'D': ['D0', 'D1', 'D2', 'D3']},
          index=[0, 1, 2, 3])

df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
          'B': ['B4', 'B5', 'B6', 'B7'],
          'C': ['C4', 'C5', 'C6', 'C7'],
          'D': ['D4', 'D5', 'D6', 'D7']},
          index=[4, 5, 6, 7])

result = pd.concat([df1, df2])

合并完的结果为:

A  B  C  D
0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7

其参数含义如下:
• objs :合并的数据(Series、DataFrame)
• axis :合并轴方向,行(0)、列(1)
• join :关联类型(inner、outer)
• join_axes :结果行,eg: pd.concat([df1, df2], axis=1, join_axes=[pd.Int64Index([1, 2, 3])])
• ignore_index :是否忽略objs中传入的索引
• keys :来自不同表的index,每个表一个(ignore_index=True时不管用)
• levels :不同层次的索引
• names :不同层次的索引的名字
• verify_integrity :检查是否包含重复项(有一定的代价)
• copy :是否赋值数据

另一个相对简化点的操作是append(简化版,好像没啥特别的):
result = df1.append(df2)

接着来看重点方法merge(将两个表的数据进行融合):

import pandas as pd

left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
           'A': ['A0', 'A1', 'A2', 'A3'],
           'B': ['B0', 'B1', 'B2', 'B3']})

right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
           'C': ['C0', 'C1', 'C2', 'C3'],
           'D': ['D0', 'D1', 'D2', 'D3']})

result = pd.merge(left, right, on='key')

print(result)

结果为(注意观察与concat不一样的地方): 

A  B key  C  D
0 A0 B0 K0 C0 D0
1 A1 B1 K1 C1 D1
2 A2 B2 K2 C2 D2
3 A3 B3 K3 C3 D3

方法的参数有:
• left、right :将要进行关联的两个表
• how :关联方式(left、right、inner、outer)
• on :实现关联的列,不传应该是找相同列名
• left_on、right_on :分别为left、right的关联列,在列名不同时使用
• left_index、right_index :是否用索引来关联
• sort :排序
• suffixes :后缀
• copy :是否复制数据

对应的简化版本为join方法:

import pandas as pd

left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
           'B': ['B0', 'B1', 'B2', 'B3']},
          index=['K0', 'K1', 'K2', 'K3'])

right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
           'D': ['D0', 'D1', 'D2', 'D3']},
           index=['K0', 'K1', 'K2', 'K3'])

result = left.join(right)

print(result)

输出为:

A  B  C  D
K0 A0 B0 C0 D0
K1 A1 B1 C1 D1
K2 A2 B2 C2 D2
K3 A3 B3 C3 D3

数据的查询和分析

基本查询

精确查看单个位置数据的方法:
• df['c1']['i1']
• df.loc['i1']['c1'] (先行后列)
• df.iloc[1] (下标操作)
• df.ix['i1'][1] 或 df.ix[0, 2] (随意使用下标或名称)

通过切片的操作批量取出数据:
• df.loc['i1':'i2', ['c1', 'c2']]
• df.iloc[1:3, [1, 2]]
• df.ix[1:3, 0:2]

查看某行或某列:
• 行: df.loc['i1']
• 列: df['c1']

分组

分组(GroupBy)是最最基本的一个分析手段,看个例子:

import pandas as pd
import numpy as np

df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],
          'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
          'C': np.random.randn(8),
          'D': np.random.randn(8)})

result = df.groupby(['A'])

print(result.get_group('foo'))

其他分组形式:
• df.groupby('A')
• df.groupby(['A', 'B'])
• df.groupby(group_func, axis=1)
• df.groupby(level=0)
• df.groupby([pd.Grouper(level=0), 'A'])

可以对各组进行遍历:

for name, group in result:
  print(name)
  print(group)

对分组的结果可以过滤:

df.groupby('A').B.filter(lambda x : len(x) > 1)

进一步对各个分组进行计算(结果太直观,就不写了):
• df.groupby(['A', 'B']).sum()
• df.groupby(['A', 'B']).sum().reset_index()
• df.groupby(['A', 'B']).aggregate(np.sum)
• df.groupby(['A', 'B']).agg(np.sum)
• df.groupby(['A', 'B']).agg([np.sum, np.mean])
• df.groupby(['A', 'B']).agg([np.sum, np.mean]).rename(columns={'sum': 's', 'mean': 'm'})
• df.groupby(['A', 'B']).agg({'C': np.sum, 'D': np.mean})
• df.groupby(['A', 'B']).agg({'C': 'sum', 'D': 'mean'})

利用transform(类似的还有apply)可以对各个分组分别计算:

import pandas as pd
import numpy as np

df = pd.DataFrame(data={
  'A': [1, 1, 3],
  'B': [4, 5, 6],
  'C': [7, np.nan, 9]})

print(df.groupby('A')['B'].transform(lambda x : x - x.mean()))

输出结果为:

0  -0.5
1  0.5
2  0.0
Name: B, dtype: float64

类似的,可以在分组上使用窗口函数:
• rolling
• resample
• expanding

条件过滤

用一些常用的构造方式,可以有类似SQL的开发效率��:
• tips[tips['time'] == 'Dinner'].head(5)
• tips[(tips['time'] == 'Dinner') & (tips['tip'] > 5.00)]
• tips[(tips['size'] >= 5) | (tips['total_bill'] > 45)]
• frame[frame['col2'].isnull()]
• frame[frame['col1'].notnull()]

最后,如果想图形化看在PyCharm里面需要搞个 plt.show() (其他的IDE并不清楚)。

numpy

比较早接触的numpy,总体上来看处理数据比自带类型方便些:
• np.array([[1, 2, 3, 4],[4, 5, 6, 7], [7, 8, 9, 10]])
• np.array((5, 6, 7, 8))

主要集中在数组、矩阵的处理上!是很多工具的基础。

Python 相关文章推荐
python 实现文件的递归拷贝实现代码
Aug 02 Python
python通过索引遍历列表的方法
May 04 Python
python开发之str.format()用法实例分析
Feb 22 Python
浅谈python类属性的访问、设置和删除方法
Jul 25 Python
Python实现自动登录百度空间的方法
Jun 10 Python
Python实现购物车功能的方法分析
Nov 10 Python
python爬虫中get和post方法介绍以及cookie作用
Feb 08 Python
配置 Pycharm 默认 Test runner 的图文教程
Nov 30 Python
Python笔记之观察者模式
Nov 20 Python
opencv之为图像添加边界的方法示例
Dec 26 Python
python3让print输出不换行的方法
Aug 24 Python
python获取淘宝服务器时间的代码示例
Apr 22 Python
python2.7 mayavi 安装图文教程(推荐)
Jun 22 #Python
python 字符串转列表 list 出现\ufeff的解决方法
Jun 22 #Python
Python查询IP地址归属完整代码
Jun 21 #Python
Python批量查询域名是否被注册过
Jun 21 #Python
Python图片裁剪实例代码(如头像裁剪)
Jun 21 #Python
Python编程实战之Oracle数据库操作示例
Jun 21 #Python
Python获取SQLite查询结果表列名的方法
Jun 21 #Python
You might like
PHP与SQL注入攻击[二]
2007/04/17 PHP
PHP安全防范技巧分享
2011/11/03 PHP
解析PHP的session过期设置
2013/06/29 PHP
Win7 64位系统下PHP连接Oracle数据库
2014/08/20 PHP
Zend Framework教程之Zend_Db_Table表关联实例详解
2016/03/23 PHP
Yii框架中sphinx索引配置方法解析
2016/10/18 PHP
Mac系统下安装PHP Xdebug
2018/03/30 PHP
PHP7变量处理机制修改
2021/03/09 PHP
两种简单实现菜单高亮显示的JS类代码
2010/06/27 Javascript
js实现快速分享功能(你的文章分享工具)
2013/06/25 Javascript
浅析JQuery UI Dialog的样式设置问题
2013/12/18 Javascript
JavaScript实现的图像模糊算法代码分享
2014/04/22 Javascript
jquery访问ashx文件示例代码
2014/08/11 Javascript
jQuery判断元素上是否绑定了指定事件的方法
2015/03/17 Javascript
Bootstrap网格系统详解
2016/04/26 Javascript
解决jquery无法找到其他父级子集问题的方法
2016/05/10 Javascript
Vue.js 表单校验插件
2016/08/14 Javascript
bootstrap按钮插件(Button)使用方法解析
2017/01/13 Javascript
jquery dataTable 获取某行数据
2017/05/05 jQuery
vue.js如何将echarts封装为组件一键使用详解
2017/10/10 Javascript
移动前端图片压缩上传的实例
2017/12/06 Javascript
详解JSON Web Token 入门教程
2018/07/30 Javascript
使用Node搭建reactSSR服务端渲染架构
2018/08/30 Javascript
Vue使用.sync 实现父子组件的双向绑定数据问题
2019/04/04 Javascript
vuejs实现下拉框菜单选择
2020/10/23 Javascript
Python threading多线程编程实例
2014/09/18 Python
在Python下尝试多线程编程
2015/04/28 Python
在Python中使用mechanize模块模拟浏览器功能
2015/05/05 Python
Python构建网页爬虫原理分析
2017/12/19 Python
实例讲解Python3中abs()函数
2019/02/19 Python
python根据txt文本批量创建文件夹
2020/12/08 Python
Calzedonia美国官网:意大利风格袜子、打底裤和沙滩装
2018/07/19 全球购物
利用异或运算实现两个无符号数的加法运算
2013/12/20 面试题
2014村务公开实施方案
2014/02/25 职场文书
趣味运动会开幕词
2015/01/28 职场文书
面试分析分布式架构Redis热点key大Value解决方案
2022/03/13 Redis