Python实现的异步代理爬虫及代理池


Posted in Python onMarch 17, 2017

使用python asyncio实现了一个异步代理池,根据规则爬取代理网站上的免费代理,在验证其有效后存入redis中,定期扩展代理的数量并检验池中代理的有效性,移除失效的代理。同时用aiohttp实现了一个server,其他的程序可以通过访问相应的url来从代理池中获取代理。

源码

Github

环境

  • Python 3.5+
  • Redis
  • PhantomJS(可选)
  • Supervisord(可选)

因为代码中大量使用了asyncio的async和await语法,它们是在Python3.5中才提供的,所以最好使用Python3.5及以上的版本,我使用的是Python3.6。

依赖

  • redis
  • aiohttp
  • bs4
  • lxml
  • requests
  • selenium

selenium包主要是用来操作PhantomJS的。

下面来对代码进行说明。

1. 爬虫部分

核心代码

async def start(self):
 for rule in self._rules:
 parser = asyncio.ensure_future(self._parse_page(rule)) # 根据规则解析页面来获取代理
 logger.debug('{0} crawler started'.format(rule.__rule_name__))
 if not rule.use_phantomjs:
  await page_download(ProxyCrawler._url_generator(rule), self._pages, self._stop_flag) # 爬取代理网站的页面
 else:
  await page_download_phantomjs(ProxyCrawler._url_generator(rule), self._pages,
rule.phantomjs_load_flag, self._stop_flag) # 使用PhantomJS爬取
 await self._pages.join()
 parser.cancel()
 logger.debug('{0} crawler finished'.format(rule.__rule_name__))

上面的核心代码实际上是一个用asyncio.Queue实现的生产-消费者模型,下面是该模型的一个简单实现:

import asyncio
from random import random
async def produce(queue, n):
 for x in range(1, n + 1):
 print('produce ', x)
 await asyncio.sleep(random())
 await queue.put(x) # 向queue中放入item
async def consume(queue):
 while 1:
 item = await queue.get() # 等待从queue中获取item
 print('consume ', item)
 await asyncio.sleep(random())
 queue.task_done() # 通知queue当前item处理完毕 
async def run(n):
 queue = asyncio.Queue()
 consumer = asyncio.ensure_future(consume(queue))
 await produce(queue, n) # 等待生产者结束
 await queue.join() # 阻塞直到queue不为空
 consumer.cancel() # 取消消费者任务,否则它会一直阻塞在get方法处
def aio_queue_run(n):
 loop = asyncio.get_event_loop()
 try:
 loop.run_until_complete(run(n)) # 持续运行event loop直到任务run(n)结束
 finally:
 loop.close()
if __name__ == '__main__':
 aio_queue_run(5)

运行上面的代码,一种可能的输出如下:

produce 1
produce 2
consume 1
produce 3
produce 4
consume 2
produce 5
consume 3
consume 4
consume 5

爬取页面

async def page_download(urls, pages, flag):
 url_generator = urls
 async with aiohttp.ClientSession() as session:
 for url in url_generator:
  if flag.is_set():
  break
  await asyncio.sleep(uniform(delay - 0.5, delay + 1))
  logger.debug('crawling proxy web page {0}'.format(url))
  try:
  async with session.get(url, headers=headers, timeout=10) as response:
   page = await response.text()
   parsed = html.fromstring(decode_html(page)) # 使用bs4来辅助lxml解码网页:http://lxml.de/elementsoup.html#Using only the encoding detection
   await pages.put(parsed)
   url_generator.send(parsed) # 根据当前页面来获取下一页的地址
  except StopIteration:
  break
  except asyncio.TimeoutError:
  logger.error('crawling {0} timeout'.format(url))
  continue # TODO: use a proxy
  except Exception as e:
  logger.error(e)

使用aiohttp实现的网页爬取函数,大部分代理网站都可以使用上面的方法来爬取,对于使用js动态生成页面的网站可以使用selenium控制PhantomJS来爬取——本项目对爬虫的效率要求不高,代理网站的更新频率是有限的,不需要频繁的爬取,完全可以使用PhantomJS。

解析代理

最简单的莫过于用xpath来解析代理了,使用Chrome浏览器的话,直接通过右键就能获得选中的页面元素的xpath:

 Python实现的异步代理爬虫及代理池

安装Chrome的扩展“XPath Helper”就可以直接在页面上运行和调试xpath,十分方便:

 Python实现的异步代理爬虫及代理池

BeautifulSoup不支持xpath,使用lxml来解析页面,代码如下:

async def _parse_proxy(self, rule, page):
 ips = page.xpath(rule.ip_xpath) # 根据xpath解析得到list类型的ip地址集合
 ports = page.xpath(rule.port_xpath) # 根据xpath解析得到list类型的ip地址集合
 if not ips or not ports:
 logger.warning('{2} crawler could not get ip(len={0}) or port(len={1}), please check the xpaths or network'.
  format(len(ips), len(ports), rule.__rule_name__))
 return
 proxies = map(lambda x, y: '{0}:{1}'.format(x.text.strip(), y.text.strip()), ips, ports)
 if rule.filters: # 根据过滤字段来过滤代理,如“高匿”、“透明”等
 filters = []
 for i, ft in enumerate(rule.filters_xpath):
  field = page.xpath(ft)
  if not field:
  logger.warning('{1} crawler could not get {0} field, please check the filter xpath'.
   format(rule.filters[i], rule.__rule_name__))
  continue
  filters.append(map(lambda x: x.text.strip(), field))
 filters = zip(*filters)
 selector = map(lambda x: x == rule.filters, filters)
 proxies = compress(proxies, selector)
for proxy in proxies:
await self._proxies.put(proxy) # 解析后的代理放入asyncio.Queue中

爬虫规则

网站爬取、代理解析、滤等等操作的规则都是由各个代理网站的规则类定义的,使用元类和基类来管理规则类。基类定义如下:

class CrawlerRuleBase(object, metaclass=CrawlerRuleMeta):
 start_url = None
 page_count = 0
 urls_format = None
 next_page_xpath = None
 next_page_host = ''
 use_phantomjs = False
 phantomjs_load_flag = None
 filters = ()
 ip_xpath = None
 port_xpath = None
 filters_xpath = ()

各个参数的含义如下:

start_url(必需)

爬虫的起始页面。

ip_xpath(必需)

爬取IP的xpath规则。

port_xpath(必需)

爬取端口号的xpath规则。

page_count

爬取的页面数量。

urls_format

页面地址的格式字符串,通过urls_format.format(start_url, n)来生成第n页的地址,这是比较常见的页面地址格式。

next_page_xpathnext_page_host

由xpath规则来获取下一页的url(常见的是相对路径),结合host得到下一页的地址:next_page_host + url。

use_phantomjs, phantomjs_load_flag

use_phantomjs用于标识爬取该网站是否需要使用PhantomJS,若使用,需定义phantomjs_load_flag(网页上的某个元素,str类型)作为PhantomJS页面加载完毕的标志。

filters

过滤字段集合,可迭代类型。用于过滤代理。

爬取各个过滤字段的xpath规则,与过滤字段按顺序一一对应。

元类CrawlerRuleMeta用于管理规则类的定义,如:如果定义use_phantomjs=True,则必须定义phantomjs_load_flag,否则会抛出异常,不在此赘述。

目前已经实现的规则有西刺代理、快代理、360代理、66代理和 秘密代理。新增规则类也很简单,通过继承CrawlerRuleBase来定义新的规则类YourRuleClass,放在proxypool/rules目录下,并在该目录下的__init__.py中添加from . import YourRuleClass(这样通过CrawlerRuleBase.__subclasses__()就可以获取全部的规则类了),重启正在运行的proxy pool即可应用新的规则。

2. 检验部分

免费的代理虽然多,但是可用的却不多,所以爬取到代理后需要对其进行检验,有效的代理才能放入代理池中,而代理也是有时效性的,还要定期对池中的代理进行检验,及时移除失效的代理。

这部分就很简单了,使用aiohttp通过代理来访问某个网站,若超时,则说明代理无效。

async def validate(self, proxies):
 logger.debug('validator started')
 while 1:
 proxy = await proxies.get()
 async with aiohttp.ClientSession() as session:
  try:
  real_proxy = 'http://' + proxy
  async with session.get(self.validate_url, proxy=real_proxy, timeout=validate_timeout) as resp:
   self._conn.put(proxy)
  except Exception as e:
  logger.error(e)
 proxies.task_done()

3. server部分

使用aiohttp实现了一个web server,启动后,访问http://host:port即可显示主页:

Python实现的异步代理爬虫及代理池

  • 访问http://host:port/get来从代理池获取1个代理,如:'127.0.0.1:1080';
  • 访问http://host:port/get/n来从代理池获取n个代理,如:"['127.0.0.1:1080', '127.0.0.1:443', '127.0.0.1:80']";
  • 访问http://host:port/count来获取代理池的容量,如:'42'。

因为主页是一个静态的html页面,为避免每来一个访问主页的请求都要打开、读取以及关闭该html文件的开销,将其缓存到了redis中,通过html文件的修改时间来判断其是否被修改过,如果修改时间与redis缓存的修改时间不同,则认为html文件被修改了,则重新读取文件,并更新缓存,否则从redis中获取主页的内容。

返回代理是通过aiohttp.web.Response(text=ip.decode('utf-8'))实现的,text要求str类型,而从redis中获取到的是bytes类型,需要进行转换。返回的多个代理,使用eval即可转换为list类型。

返回主页则不同,是通过aiohttp.web.Response(body=main_page_cache, content_type='text/html') ,这里body要求的是bytes类型,直接将从redis获取的缓存返回即可,conten_type='text/html'必不可少,否则无法通过浏览器加载主页,而是会将主页下载下来——在运行官方文档中的示例代码的时候也要注意这点,那些示例代码基本上都没有设置content_type。

这部分不复杂,注意上面提到的几点,而关于主页使用的静态资源文件的路径,可以参考之前的博客《aiohttp之添加静态资源路径》。

4. 运行

将整个代理池的功能分成了3个独立的部分:

proxypool

定期检查代理池容量,若低于下限则启动代理爬虫并对代理检验,通过检验的爬虫放入代理池,达到规定的数量则停止爬虫。

proxyvalidator

用于定期检验代理池中的代理,移除失效代理。

proxyserver

启动server。

这3个独立的任务通过3个进程来运行,在Linux下可以使用supervisod来=管理这些进程,下面是supervisord的配置文件示例:

; supervisord.conf
[unix_http_server]
file=/tmp/supervisor.sock 

[inet_http_server]  
port=127.0.0.1:9001 

[supervisord]
logfile=/tmp/supervisord.log 
logfile_maxbytes=5MB 
logfile_backups=10  
loglevel=debug  
pidfile=/tmp/supervisord.pid 
nodaemon=false  
minfds=1024   
minprocs=200   

[rpcinterface:supervisor]
supervisor.rpcinterface_factory = supervisor.rpcinterface:make_main_rpcinterface

[supervisorctl]
serverurl=unix:///tmp/supervisor.sock

[program:proxyPool]
command=python /path/to/ProxyPool/run_proxypool.py  
redirect_stderr=true
stdout_logfile=NONE

[program:proxyValidator]
command=python /path/to/ProxyPool/run_proxyvalidator.py
redirect_stderr=true  
stdout_logfile=NONE

[program:proxyServer]
command=python /path/to/ProxyPool/run_proxyserver.py
autostart=false
redirect_stderr=true  
stdout_logfile=NONE

因为项目自身已经配置了日志,所以这里就不需要再用supervisord捕获stdout和stderr了。通过supervisord -c supervisord.conf启动supervisord,proxyPool和proxyServer则会随之自动启动,proxyServer需要手动启动,访问http://127.0.0.1:9001即可通过网页来管理这3个进程了:

Python实现的异步代理爬虫及代理池

supervisod的官方文档说目前(版本3.3.1)不支持python3,但是我在使用过程中没有发现什么问题,可能也是由于我并没有使用supervisord的复杂功能,只是把它当作了一个简单的进程状态监控和启停工具了。

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,同时也希望多多支持三水点靠木!

Python 相关文章推荐
Python导入模块时遇到的错误分析
Aug 30 Python
利用python求解物理学中的双弹簧质能系统详解
Sep 29 Python
python2.7实现FTP文件下载功能
Apr 15 Python
python基于物品协同过滤算法实现代码
May 31 Python
Python 忽略warning的输出方法
Oct 18 Python
详解Python的三种可变参数
May 08 Python
Python代码使用 Pyftpdlib实现FTP服务器功能
Jul 22 Python
python BlockingScheduler定时任务及其他方式的实现
Sep 19 Python
Python提取PDF内容的方法(文本、图像、线条等)
Sep 25 Python
基于keras 模型、结构、权重保存的实现
Jan 24 Python
python中tab键是什么意思
Jun 18 Python
分享unittest单元测试框架中几种常用的用例加载方法
Dec 02 Python
Python 专题一 函数的基础知识
Mar 16 #Python
python 专题九 Mysql数据库编程基础知识
Mar 16 #Python
Python实现树莓派WiFi断线自动重连的实例代码
Mar 16 #Python
Windows下安装python MySQLdb遇到的问题及解决方法
Mar 16 #Python
python Selenium爬取内容并存储至MySQL数据库的实现代码
Mar 16 #Python
python开发利器之ulipad的使用实践
Mar 16 #Python
离线安装Pyecharts的步骤以及依赖包流程
Apr 23 #Python
You might like
有关JSON以及JSON在PHP中的应用
2010/04/09 PHP
PHP更新购物车数量(表单部分/PHP处理部分)
2013/05/03 PHP
深入探讨:Nginx 502 Bad Gateway错误的解决方法
2013/06/03 PHP
PHP跳转页面的几种实现方法详解
2013/06/08 PHP
PHP strip_tags()去除HTML、XML以及PHP的标签介绍
2014/02/18 PHP
php计算指定目录下文件占用空间的方法
2015/03/13 PHP
PHP+Ajax实现验证码的实时验证
2016/07/20 PHP
php实现微信公众平台发红包功能
2018/06/14 PHP
jQuery延迟加载图片插件Lazy Load使用指南
2015/03/25 Javascript
JavaScript实现简单的数字倒计时
2015/05/15 Javascript
JavaScript中的lastIndexOf()方法使用详解
2015/06/06 Javascript
jQuery实现的Div窗口震动效果实例
2015/08/07 Javascript
JS实现的打字机效果完整实例
2016/06/20 Javascript
利用Js+Css实现折纸动态导航效果实例源码
2017/01/25 Javascript
JS正则获取HTML元素的方法
2017/03/31 Javascript
微信小程序中form 表单提交和取值实例详解
2017/04/20 Javascript
基于vue-cli创建的项目的目录结构及说明介绍
2017/11/23 Javascript
原生JS实现的碰撞检测功能示例
2018/05/18 Javascript
解决webpack+Vue引入iView找不到字体文件的问题
2018/09/28 Javascript
自定义Vue中的v-module双向绑定的实现
2019/04/17 Javascript
webpack 代码分离优化快速指北
2019/05/18 Javascript
JS实现的定时器展示简单秒表、页面弹框及跳转操作完整示例
2020/01/26 Javascript
typescript配置alias的详细步骤
2020/08/12 Javascript
在Python中操作文件之seek()方法的使用教程
2015/05/24 Python
python简单实现基于SSL的IRC bot实例
2015/06/15 Python
Python利用pandas计算多个CSV文件数据值的实例
2018/04/19 Python
Django框架表单操作实例分析
2019/11/04 Python
纯CSS3实现绘制各种图形实现代码详细整理
2012/12/26 HTML / CSS
canvas实现滑动验证的实现示例
2020/08/11 HTML / CSS
安德玛比利时官网:Under Armour比利时
2019/08/28 全球购物
纺织工程专业个人求职信范文
2014/01/27 职场文书
关爱残疾人标语
2014/06/25 职场文书
英文自荐信范文
2015/03/25 职场文书
办公经费申请报告
2015/05/15 职场文书
2016年秋季新学期致辞
2015/07/30 职场文书
导游词之新疆-喀纳斯
2019/10/10 职场文书