bitmap是很常用的数据结构,比如用于Bloom Filter中;用于无重复整数的排序等等。bitmap通常基于数组来实现,数组中每个元素可以看成是一系列二进制数,所有元素组成更大的二进制集合。对于Python来说,整数类型默认是有符号类型,所以一个整数的可用位数为31位。
bitmap实现思路
bitmap是用于对每一位进行操作。举例来说,一个Python数组包含4个32位有符号整型,则总共可用位为4 * 31 = 124位。如果要在第90个二进制位上操作,则要先获取到操作数组的第几个元素,再获取相应的位索引,然后执行操作。
上图所示为一个32位整型,在Python中默认是有符号类型,最高位为符号位,bitmap不能使用它。左边是高位,右边是低位,最低位为第0位。
bitmap是用于对每一位进行操作。举例来说,一个Python数组包含4个32位有符号整型,则总共可用位为4 * 31 = 124位。如果要在第90个二进制位上操作,则要先获取到操作数组的第几个元素,再获取相应的位索引,然后执行操作。
初始化bitmap
首先需要初始化bitmap。拿90这个整数来说,因为单个整型只能使用31位,所以90除以31并向上取整则可得知需要几个数组元素。代码如下:
#!/usr/bin/env python #coding: utf8 class Bitmap(object): def __init__(self, max): self.size = int((max + 31 - 1) / 31) #向上取整 if __name__ == '__main__': bitmap = Bitmap(90) print '需要 %d 个元素。' % bitmap.size
$ python bitmap.py 需要 3 个元素。
计算在数组中的索引
计算在数组中的索引其实是跟之前计算数组大小是一样的。只不过之前是对最大数计算,现在换成任一需要存储的整数。但是有一点不同,计算在数组中的索引是向下取整,所以需要修改calcElemIndex方法的实现。代码改为如下:
#!/usr/bin/env python #coding: utf8 class Bitmap(object): def __init__(self, max): self.size = self.calcElemIndex(max, True) self.array = [0 for i in range(self.size)] def calcElemIndex(self, num, up=False): '''up为True则为向上取整, 否则为向下取整''' if up: return int((num + 31 - 1) / 31) #向上取整 return num / 31 if __name__ == '__main__': bitmap = Bitmap(90) print '数组需要 %d 个元素。' % bitmap.size print '47 应存储在第 %d 个数组元素上。' % bitmap.calcElemIndex(47)
$ python bitmap.py 数组需要 3 个元素。 47 应存储在第 1 个数组元素上。
所以获取最大整数很重要,否则有可能创建的数组容纳不下某些数据。
计算在数组元素中的位索引
数组元素中的位索引可以通过取模运算来得到。令需存储的整数跟31取模即可得到位索引。代码改为如下:
#!/usr/bin/env python #coding: utf8 class Bitmap(object): def __init__(self, max): self.size = self.calcElemIndex(max, True) self.array = [0 for i in range(self.size)] def calcElemIndex(self, num, up=False): '''up为True则为向上取整, 否则为向下取整''' if up: return int((num + 31 - 1) / 31) #向上取整 return num / 31 def calcBitIndex(self, num): return num % 31 if __name__ == '__main__': bitmap = Bitmap(90) print '数组需要 %d 个元素。' % bitmap.size print '47 应存储在第 %d 个数组元素上。' % bitmap.calcElemIndex(47) print '47 应存储在第 %d 个数组元素的第 %d 位上。' % (bitmap.calcElemIndex(47), bitmap.calcBitIndex(47),)
别忘了是从第0位算起哦。
置1操作
二进制位默认是0,将某位置1则表示在此位存储了数据。代码改为如下:
#!/usr/bin/env python #coding: utf8 class Bitmap(object): def __init__(self, max): self.size = self.calcElemIndex(max, True) self.array = [0 for i in range(self.size)] def calcElemIndex(self, num, up=False): '''up为True则为向上取整, 否则为向下取整''' if up: return int((num + 31 - 1) / 31) #向上取整 return num / 31 def calcBitIndex(self, num): return num % 31 def set(self, num): elemIndex = self.calcElemIndex(num) byteIndex = self.calcBitIndex(num) elem = self.array[elemIndex] self.array[elemIndex] = elem | (1 << byteIndex) if __name__ == '__main__': bitmap = Bitmap(90) bitmap.set(0) print bitmap.array
因为从第0位算起,所以如需要存储0,则需要把第0位置1。
清0操作
将某位置0,也即丢弃已存储的数据。代码如下:
#!/usr/bin/env python #coding: utf8 class Bitmap(object): def __init__(self, max): self.size = self.calcElemIndex(max, True) self.array = [0 for i in range(self.size)] def calcElemIndex(self, num, up=False): '''up为True则为向上取整, 否则为向下取整''' if up: return int((num + 31 - 1) / 31) #向上取整 return num / 31 def calcBitIndex(self, num): return num % 31 def set(self, num): elemIndex = self.calcElemIndex(num) byteIndex = self.calcBitIndex(num) elem = self.array[elemIndex] self.array[elemIndex] = elem | (1 << byteIndex) def clean(self, i): elemIndex = self.calcElemIndex(i) byteIndex = self.calcBitIndex(i) elem = self.array[elemIndex] self.array[elemIndex] = elem & (~(1 << byteIndex)) if __name__ == '__main__': bitmap = Bitmap(87) bitmap.set(0) bitmap.set(34) print bitmap.array bitmap.clean(0) print bitmap.array bitmap.clean(34) print bitmap.array
清0和置1是互反操作。
测试某位是否为1
判断某位是否为1是为了取出之前所存储的数据。代码如下:
#!/usr/bin/env python #coding: utf8 class Bitmap(object): def __init__(self, max): self.size = self.calcElemIndex(max, True) self.array = [0 for i in range(self.size)] def calcElemIndex(self, num, up=False): '''up为True则为向上取整, 否则为向下取整''' if up: return int((num + 31 - 1) / 31) #向上取整 return num / 31 def calcBitIndex(self, num): return num % 31 def set(self, num): elemIndex = self.calcElemIndex(num) byteIndex = self.calcBitIndex(num) elem = self.array[elemIndex] self.array[elemIndex] = elem | (1 << byteIndex) def clean(self, i): elemIndex = self.calcElemIndex(i) byteIndex = self.calcBitIndex(i) elem = self.array[elemIndex] self.array[elemIndex] = elem & (~(1 << byteIndex)) def test(self, i): elemIndex = self.calcElemIndex(i) byteIndex = self.calcBitIndex(i) if self.array[elemIndex] & (1 << byteIndex): return True return False if __name__ == '__main__': bitmap = Bitmap(90) bitmap.set(0) print bitmap.array print bitmap.test(0) bitmap.set(1) print bitmap.test(1) print bitmap.test(2) bitmap.clean(1) print bitmap.test(1)
$ python bitmap.py [1, 0, 0] True True False False
接下来实现一个不重复数组的排序。已知一个无序非负整数数组的最大元素为879,请对其自然排序。代码如下:
#!/usr/bin/env python #coding: utf8 class Bitmap(object): def __init__(self, max): self.size = self.calcElemIndex(max, True) self.array = [0 for i in range(self.size)] def calcElemIndex(self, num, up=False): '''up为True则为向上取整, 否则为向下取整''' if up: return int((num + 31 - 1) / 31) #向上取整 return num / 31 def calcBitIndex(self, num): return num % 31 def set(self, num): elemIndex = self.calcElemIndex(num) byteIndex = self.calcBitIndex(num) elem = self.array[elemIndex] self.array[elemIndex] = elem | (1 << byteIndex) def clean(self, i): elemIndex = self.calcElemIndex(i) byteIndex = self.calcBitIndex(i) elem = self.array[elemIndex] self.array[elemIndex] = elem & (~(1 << byteIndex)) def test(self, i): elemIndex = self.calcElemIndex(i) byteIndex = self.calcBitIndex(i) if self.array[elemIndex] & (1 << byteIndex): return True return False if __name__ == '__main__': MAX = 879 suffle_array = [45, 2, 78, 35, 67, 90, 879, 0, 340, 123, 46] result = [] bitmap = Bitmap(MAX) for num in suffle_array: bitmap.set(num) for i in range(MAX + 1): if bitmap.test(i): result.append(i) print '原始数组为: %s' % suffle_array print '排序后的数组为: %s' % result
bitmap实现了,则利用其进行排序就非常简单了。其它语言也同样可以实现bitmap,但对于静态类型语言来说,比如C/Golang这样的语言,因为可以直接声明无符号整型,所以可用位就变成32位,只需将上述代码中的31改成32即可,这点请大家注意。
python实现bitmap数据结构详解
声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@