pytorch 中autograd.grad()函数的用法说明


Posted in Python onMay 12, 2021

我们在用神经网络求解PDE时, 经常要用到输出值对输入变量不是Weights和Biases)求导; 在训练WGAN-GP 时, 也会用到网络对输入变量的求导。

以上两种需求, 均可以用pytorch 中的autograd.grad() 函数实现。

autograd.grad(outputs, inputs, grad_outputs=None, retain_graph=None, create_graph=False, only_inputs=True, allow_unused=False)

outputs: 求导的因变量(需要求导的函数)

inputs: 求导的自变量

grad_outputs: 如果 outputs为标量,则grad_outputs=None,也就是说,可以不用写; 如果outputs 是向量,则此参数必须写,不写将会报如下错误:

pytorch 中autograd.grad()函数的用法说明

那么此参数究竟代表着什么呢?

先假设pytorch 中autograd.grad()函数的用法说明为一维向量, 即可设自变量因变量分别为 pytorch 中autograd.grad()函数的用法说明 , 其对应的 Jacobi 矩阵为

pytorch 中autograd.grad()函数的用法说明

grad_outputs 是一个shape 与 outputs 一致的向量, 即

pytorch 中autograd.grad()函数的用法说明

在给定grad_outputs 之后,真正返回的梯度为

pytorch 中autograd.grad()函数的用法说明

为方便下文叙述我们引入记号 pytorch 中autograd.grad()函数的用法说明

其次假设 pytorch 中autograd.grad()函数的用法说明,第i个列向量对应的Jacobi矩阵为

pytorch 中autograd.grad()函数的用法说明

此时的grad_outputs 为(维度与outputs一致)

pytorch 中autograd.grad()函数的用法说明

由第一种情况, 我们有

pytorch 中autograd.grad()函数的用法说明

也就是说对输出变量的列向量求导,再经过权重累加。

pytorch 中autograd.grad()函数的用法说明 沿用第一种情况记号

pytorch 中autograd.grad()函数的用法说明 , 其中每一个pytorch 中autograd.grad()函数的用法说明 均由第一种方法得出,

即对输入变量列向量求导,之后按照原先顺序排列即可。

retain_graph: True 则保留计算图, False则释放计算图

create_graph: 若要计算高阶导数,则必须选为True

allow_unused: 允许输入变量不进入计算

下面我们看一下具体的例子:

import torch
from torch import autograd
 
x = torch.rand(3, 4)
x.requires_grad_()

观察 x 为

pytorch 中autograd.grad()函数的用法说明

不妨设 y 是 x 所有元素的和, 因为 y是标量,故计算导数不需要设置grad_outputs

y = torch.sum(x)
grads = autograd.grad(outputs=y, inputs=x)[0]
print(grads)

结果为

pytorch 中autograd.grad()函数的用法说明

若y是向量

y = x[:,0] +x[:,1]
# 设置输出权重为1
grad = autograd.grad(outputs=y, inputs=x, grad_outputs=torch.ones_like(y))[0]
print(grad)
# 设置输出权重为0
grad = autograd.grad(outputs=y, inputs=x, grad_outputs=torch.zeros_like(y))[0]
print(grad)

结果为

pytorch 中autograd.grad()函数的用法说明

最后, 我们通过设置 create_graph=True 来计算二阶导数

y = x ** 2
grad = autograd.grad(outputs=y, inputs=x, grad_outputs=torch.ones_like(y), create_graph=True)[0]
grad2 = autograd.grad(outputs=grad, inputs=x, grad_outputs=torch.ones_like(grad))[0]
print(grad2)

结果为

pytorch 中autograd.grad()函数的用法说明

综上,我们便搞清楚了它的求导机制。

补充:pytorch学习笔记:自动微分机制(backward、torch.autograd.grad)

一、前言

神经网络通常依赖反向传播求梯度来更新网络参数,求梯度过程通常是一件非常复杂而容易出错的事情。

而深度学习框架可以帮助我们自动地完成这种求梯度运算。

Pytorch一般通过反向传播 backward方法 实现这种求梯度计算。该方法求得的梯度将存在对应自变量张量的grad属性下。

除此之外,也能够调用torch.autograd.grad函数来实现求梯度计算。

这就是Pytorch的自动微分机制。

二、利用backward方法求导数

backward方法通常在一个标量张量上调用,该方法求得的梯度将存在对应自变量张量的grad属性下。如果调用的张量非标量,则要传入一个和它同形状的gradient参数张量。相当于用该gradient参数张量与调用张量作向量点乘,得到的标量结果再反向传播。

1, 标量的反向传播

import numpy as np 
import torch 

# f(x) = a*x**2 + b*x + c的导数

x = torch.tensor(0.0,requires_grad = True) # x需要被求导
a = torch.tensor(1.0)
b = torch.tensor(-2.0)
c = torch.tensor(1.0)
y = a*torch.pow(x,2) + b*x + c 

y.backward()
dy_dx = x.grad
print(dy_dx)

输出:

tensor(-2.)

2, 非标量的反向传播

import numpy as np 
import torch 

# f(x) = a*x**2 + b*x + c

x = torch.tensor([[0.0,0.0],[1.0,2.0]],requires_grad = True) # x需要被求导
a = torch.tensor(1.0)
b = torch.tensor(-2.0)
c = torch.tensor(1.0)
y = a*torch.pow(x,2) + b*x + c 

gradient = torch.tensor([[1.0,1.0],[1.0,1.0]])

print("x:\n",x)
print("y:\n",y)
y.backward(gradient = gradient)
x_grad = x.grad
print("x_grad:\n",x_grad)

输出:

x:

tensor([[0., 0.],

[1., 2.]], requires_grad=True)

y:

tensor([[1., 1.],

[0., 1.]], grad_fn=<AddBackward0>)

x_grad:

tensor([[-2., -2.],

[ 0., 2.]])

3, 非标量的反向传播可以用标量的反向传播实现

import numpy as np 
import torch 

# f(x) = a*x**2 + b*x + c

x = torch.tensor([[0.0,0.0],[1.0,2.0]],requires_grad = True) # x需要被求导
a = torch.tensor(1.0)
b = torch.tensor(-2.0)
c = torch.tensor(1.0)
y = a*torch.pow(x,2) + b*x + c 

gradient = torch.tensor([[1.0,1.0],[1.0,1.0]])
z = torch.sum(y*gradient)

print("x:",x)
print("y:",y)
z.backward()
x_grad = x.grad
print("x_grad:\n",x_grad)

输出:

x: tensor([[0., 0.],

[1., 2.]], requires_grad=True)

y: tensor([[1., 1.],

[0., 1.]], grad_fn=<AddBackward0>)

x_grad:

tensor([[-2., -2.],

[ 0., 2.]])

三、利用autograd.grad方法求导数

import numpy as np 
import torch 

# f(x) = a*x**2 + b*x + c的导数

x = torch.tensor(0.0,requires_grad = True) # x需要被求导
a = torch.tensor(1.0)
b = torch.tensor(-2.0)
c = torch.tensor(1.0)
y = a*torch.pow(x,2) + b*x + c


# create_graph 设置为 True 将允许创建更高阶的导数 
dy_dx = torch.autograd.grad(y,x,create_graph=True)[0]
print(dy_dx.data)

# 求二阶导数
dy2_dx2 = torch.autograd.grad(dy_dx,x)[0] 

print(dy2_dx2.data)

输出:

tensor(-2.)

tensor(2.)

import numpy as np 
import torch 

x1 = torch.tensor(1.0,requires_grad = True) # x需要被求导
x2 = torch.tensor(2.0,requires_grad = True)

y1 = x1*x2
y2 = x1+x2


# 允许同时对多个自变量求导数
(dy1_dx1,dy1_dx2) = torch.autograd.grad(outputs=y1,
                inputs = [x1,x2],retain_graph = True)
print(dy1_dx1,dy1_dx2)

# 如果有多个因变量,相当于把多个因变量的梯度结果求和
(dy12_dx1,dy12_dx2) = torch.autograd.grad(outputs=[y1,y2],
            inputs = [x1,x2])
print(dy12_dx1,dy12_dx2)

输出:

tensor(2.) tensor(1.)

tensor(3.) tensor(2.)

四、利用自动微分和优化器求最小值

import numpy as np 
import torch 

# f(x) = a*x**2 + b*x + c的最小值

x = torch.tensor(0.0,requires_grad = True) # x需要被求导
a = torch.tensor(1.0)
b = torch.tensor(-2.0)
c = torch.tensor(1.0)

optimizer = torch.optim.SGD(params=[x],lr = 0.01)


def f(x):
    result = a*torch.pow(x,2) + b*x + c 
    return(result)

for i in range(500):
    optimizer.zero_grad()
    y = f(x)
    y.backward()
    optimizer.step()
   
    
print("y=",f(x).data,";","x=",x.data)

输出:

y= tensor(0.) ; x= tensor(1.0000)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。如有错误或未考虑完全的地方,望不吝赐教。

Python 相关文章推荐
Python SQLite3数据库操作类分享
Jun 10 Python
修改Python的pyxmpp2中的主循环使其提高性能
Apr 24 Python
Python语言描述最大连续子序列和
Dec 05 Python
python pygame实现2048游戏
Nov 20 Python
python实现公司年会抽奖程序
Jan 22 Python
python定时按日期备份MySQL数据并压缩
Apr 19 Python
java中的控制结构(if,循环)详解
Jun 26 Python
Python SELENIUM上传文件或图片实现过程
Oct 28 Python
如何使用Python破解ZIP或RAR压缩文件密码
Jan 09 Python
解决python3插入mysql时内容带有引号的问题
Mar 02 Python
django queryset相加和筛选教程
May 18 Python
python怎么对数字进行过滤
Jul 05 Python
python3实现无权最短路径的方法
Python入门之基础语法详解
May 11 #Python
如何利用Matlab制作一款真正的拼图小游戏
Python机器学习之逻辑回归
Python Pandas知识点之缺失值处理详解
Pytorch实现图像识别之数字识别(附详细注释)
浅谈Python基础之列表那些事儿
You might like
用PHP进行MySQL删除记录操作代码
2008/06/07 PHP
谈谈新手如何学习PHP 默默经典版本
2009/08/04 PHP
PHP删除目录及目录下所有文件的方法详解
2013/06/06 PHP
is_uploaded_file函数引发的不能上传文件问题
2013/10/29 PHP
php判断数组元素中是否存在某个字符串的方法
2014/06/14 PHP
PHP简单判断手机设备的方法
2016/08/23 PHP
PHP的PDO预定义常量讲解
2019/01/24 PHP
List the Codec Files on a Computer
2007/06/18 Javascript
JavaScript Sort 表格排序
2009/10/31 Javascript
通过length属性判断jquery对象是否存在
2013/10/18 Javascript
JS限制文本框只能输入数字和字母方法
2015/02/28 Javascript
AngularJS定时器的使用与移除操作方法【interval与timeout】
2016/12/14 Javascript
详解axios在node.js中的post使用
2017/04/27 Javascript
Vue 多层组件嵌套二种实现方式(测试实例)
2017/09/08 Javascript
vue轮播图插件vue-concise-slider的使用
2018/03/13 Javascript
脚手架vue-cli工程webpack的基本用法详解
2018/09/29 Javascript
使用微信小程序开发弹出框应用实例详解
2018/10/18 Javascript
Node.js 如何利用异步提升任务处理速度
2019/01/07 Javascript
最简单的vue消息提示全局组件的方法
2019/06/16 Javascript
vue-cli3使用mock数据的方法分析
2020/03/16 Javascript
Node.js API详解之 vm模块用法实例分析
2020/05/27 Javascript
Express 配置HTML页面访问的实现
2020/11/01 Javascript
Python实现读取txt文件并转换为excel的方法示例
2018/05/17 Python
Python3.5装饰器典型案例分析
2019/04/30 Python
Python的几种主动结束程序方式
2019/11/22 Python
Pycharm连接gitlab实现过程图解
2020/09/01 Python
伊利莎白雅顿官网:Elizabeth Arden
2016/10/10 全球购物
荷兰最大的儿童服装店:The Kids Republic
2019/04/13 全球购物
C#基础面试题
2016/10/17 面试题
大学生演讲稿范文
2014/01/11 职场文书
小班上学期评语
2014/05/05 职场文书
仲裁协议书
2014/09/26 职场文书
2014年路政工作总结
2014/12/10 职场文书
项目验收申请报告
2015/05/15 职场文书
2016优秀班主任个人先进事迹材料
2016/02/26 职场文书
MySql新手入门的基本操作汇总
2021/05/13 MySQL